
QP state machine framework example

Application Note
Dining Philosophers
Problem (DPP) Example

Document Revision D
August 2012

Copyright © Quantum Leaps, LLC

www.quantum-leaps.com
www.state-machine.com

http://www.state-machine.com/
http://www.quantum-leaps.com/

i

Table of Contents

1 Introduction ... 1

2 Requirements .. 1

3 Design and Implementation ... 2
3.1 Step 1: Sequence Diagrams .. 2
3.2 Step 2: Signals, Events, and Active Objects .. 3
3.3 Step 3: State Machines .. 5
3.4 Step 4: Initializing and Starting the Application .. 12
3.5 Step 5: Gracefully Terminating the Application .. 14

4 References ... 15

5 Contact Information .. 16

Copyright © Quantum Leaps, LLC. All Rights Reserved.

1 of 16

1 Introduction
This Application Note describes the classic Dining Philosophers Problem (DPP) as an example
application for the QP state machine framework. DPP was posed and solved by Edsger Dijkstra back in
1971 [Dijkstra 71]. The DPP application is relatively simple and can be tested only with a couple of LEDs
on your target board. Still, DPP contains six concurrent active objects that exchange events via publish-
subscribe and direct event posting mechanisms. The application uses five time events (timers), as well as
dynamic and static events. This Application Note describes step-by-step how to design and implemented
of DPP with QP.

NOTE: This Application Note assumes the QP/C framework and uses example code in C to explain
implementation details. However, the discussion applies equally to QP/C++ version. The differences of
the C++ implementation with respect to the C implementation will be discussed only when such
differences become non-trivial and important.

2 Requirements
First, your always need to understand what your application is supposed to accomplish. In the case of a
simple application, the requirements are conveyed through the problem specification, which for the DPP
is as follows.

Five philosophers are gathered around a table with a big plate of spaghetti in the middle (see Figure 1).
Between each philosopher is a fork. The spaghetti is so slippery that a philosopher needs two forks to eat
it. The life of a philosopher consists of alternate periods of thinking and eating. When a philosopher wants
to eat, he tries to acquire forks. If successful in acquiring two forks, he eats for a while, then puts down
the forks and continues to think. The key issue is that a finite set of tasks (philosophers) is sharing a finite
set of resources (forks), and each resource can be used by only one task at a time. (An alternative
oriental version replaces spaghetti with rice and forks with chopsticks, which perhaps explains better why
philosophers need two chopsticks to eat.)

As an additional feature, the Dining Philosophers can be paused for an arbitrary period of time. During
this paused period, the Philosophers don't get permissions to eat. After the pause period, the
Philosophers should resume normal operation.

Figure 1 The Dining Philosophers Problem.

Copyright © Quantum Leaps, LLC. All Rights Reserved.

2 of 16

Application Note:
Dining Philosophers Problem Example

www.state-machine.com

3 Design and Implementation

3.1 Step 1: Sequence Diagrams
A good starting point in designing any event-driven system is to draw sequence diagrams for the main
scenarios (main use cases) identified from the problem specification. To draw such diagrams, you need to
break up your problem into active objects with the main goal of minimizing the coupling among active
objects. You seek a partitioning of the problem that avoids resource sharing and requires minimal
communication in terms of number and size of exchanged events.

DPP has been specifically conceived to make the philosophers contend for the forks, which are the
shared resources in this case. In active object systems, the generic design strategy for handling such
shared resources is to encapsulate them inside a dedicated active object and to let that object manage
the shared resources for the rest of the system (i.e., instead of sharing the resources directly, the rest of
the application shares the dedicated active object). When you apply this strategy to DPP, you will
naturally arrive at a dedicated active object to manage the forks. This active object has been named
“Table”.

The sequence diagram in Figure 2 shows the most representative event exchanges among any two
adjacent Philosophers and the Table active objects.

Figure 2 The sequence diagram of the DPP application.

(1) Each Philosopher active object starts in the “thinking” state. Upon the entry to this state, the
Philosopher arms a one-shot time event to terminate the thinking.

(2) The QF framework posts the time event (timer) to Philosopher[m].
(3) Upon receiving the TIMEOUT event, Philosopher[m] transitions to “hungry” state and posts the

HUNGRY(m) event to the Table active object. The parameter of the event tells the Table which
Philosopher is getting hungry.

(4) The Table active object finds out that the forks for Philosopher[m] are available and grants it the
permission to eat by publishing the EAT(m) event.

(5) The permission to eat triggers the transition to “eating” in Philosopher[m]. Also, upon the entry to
“eating”, the Philosopher arms its one-shot time event to terminate the eating.

Copyright © Quantum Leaps, LLC. All Rights Reserved.

http://www.state-machine.com/

3 of 16

Application Note:
Dining Philosophers Problem Example

www.state-machine.com

(6) The Philosopher[n] receives the TIMEOUT event, and behaves exactly as Philosopher[m], that is,
transitions to “hungry” and posts HUNGRY(n) event to the Table active object.

(7) This time, the Table active object finds out that the forks for Philosopher[n] are not available, and
so it does not grant the permission to eat. Philosopher[n] remains in the “hungry” state.

(8) The QF framework delivers the timeout for terminating the eating arrives to Philosopher[m]. Upon
the exit from “eating”, Philosopher[m] publishes event DONE(m), to inform the application that it is
no longer eating.

(9) The Table active object accounts for free forks and checks whether any direct neighbors of
Philosopher[m] are hungry. Table posts event EAT(n) to Philosopher[n].

(10) The permission to eat triggers the transition to “eating” in Philosopher[n].

3.2 Step 2: Signals, Events, and Active Objects
Sequence diagrams, like Figure 2, help you discover events exchanged among active objects. The choice
of signals and event parameters is perhaps the most important design decision in any event-driven
system. The events affect the other main application components: events and state machines of the
active objects.

In QP, signals are typically enumerated constants and events with parameters are structures derived from
the QEvent base structure. Listing 1 shows signals and events used in the DPP application. The DPP
sample code for the DOS version (in C) is located in the <qp>\qpc\examples\80x86\dos\watcom\l\
dpp\ directory, where <qp> stands for the installation directory you chose to install the accompanying
software.

NOTE: This section describes the platform-independent code of the DPP application. This code is
actually identical in all DPP versions.

Listing 1 Signals and events used in the DPP application (file dpp.h)

 #ifndef dpp_h
 #define dpp_h

 (1) enum DPPSignals {
 (2) EAT_SIG = Q_USER_SIG, /* published by Table to let a philosopher eat */
 DONE_SIG, /* published by Philosopher when done eating */
 PAUSE_SIG, /* published by BSP to pause the application */
 TERMINATE_SIG, /* published by BSP to terminate the application */
 (3) MAX_PUB_SIG, /* the last published signal */

 (4) HUNGRY_SIG, /* posted directly from hungry Philosopher to Table */
 (5) MAX_SIG /* the last signal */
 };

 typedef struct TableEvtTag {
 (6) QEvent super; /* derives from QEvent */
 uint8_t philoNum; /* Philosopher number */
 } TableEvt;

 enum { N_PHILO = 5 }; /* number of Philosophers */

 (7) void Philo_ctor(void); /* ctor that instantiates all Philosophers */
 (8) void Table_ctor(void);

 (9) extern QActive * const AO_Philo[N_PHILO]; /* "opaque" pointers to Philo AOs */

Copyright © Quantum Leaps, LLC. All Rights Reserved.

http://www.state-machine.com/

4 of 16

Application Note:
Dining Philosophers Problem Example

www.state-machine.com

(10) extern QActive * const AO_Table; /* "opaque" pointer to Table AO */

 #endif /* dpp_h */

(1) For smaller applications, such as the DPP, all signals can be defined in one enumeration (rather
than in separate enumerations or, worse, as preprocessor #define macros). An enumeration
automatically guarantees the uniqueness of signals.

(2) Note that the user signals must start with the offset Q_USER_SIG to avoid overlapping the reserved
QEP signals.

(3) The globally published signals are grouped at top of the enumeration. The MAX_PUB_SIG
enumeration automatically keeps track of the maximum published signals in the application.

(4) The Philosophers post the HUNGRY event directly to the Table object rather than publicly publish
the event (perhaps a Philosopher is “embarrassed” to be hungry, so it does not want other
Philosophers to know about it). This demonstrates direct event posting and publish-subscribe
mechanism coexisting in a single application.

(5) The MAX_SIG enumeration automatically keeps track of the total number of signals used in the
application.

(6) Every event with parameters, such as the TableEvt derives from the QEvent base structure.

The listing shows how to keep the code and data structure of every active object strictly encapsulated
within its own C-file. For example, all code and data for the active object Table are encapsulated in the
file table.c, with the external interface consisting of the function Table_ctor() and the pointer
AO_Table.

(7-8) These functions perform an early initialization of the active objects in the system. They play the
role of static “constructors”, which in C you need to call explicitly, typically at the beginning of
main().

(9-10) These global pointers represent active objects in the application and are used for posting events
directly to active objects. Because the pointers can be initialized at compile time, they are
declared const, sot that they can be placed in ROM. The active object pointers are “opaque”,
because they cannot access the whole active object, but only the part inherited from the QActive
structure.

Copyright © Quantum Leaps, LLC. All Rights Reserved.

http://www.state-machine.com/

5 of 16

Application Note:
Dining Philosophers Problem Example

www.state-machine.com

3.3 Step 3: State Machines
At the application level, you can mostly ignore such aspects of active objects as the separate task
contexts, or private event queues, and view them predominantly as state machines. In fact, your main job
in developing QP application consists of elaborating the state machines of your active objects.

Figure 3(a) shows the state machines associated with Philosopher active object, which clearly shows the
life cycle consisting of states “thinking”, “hungry”, and “eating”. This state machine generates the
HUNGRY event on entry to the “hungry” state and the DONE event on exit from the “eating” state
because this exactly reflects the semantics of these events. An alternative approach—to generate these
events from the corresponding TIMEOUT transitions—would not guarantee the preservation of the
semantics in potential future modifications of the state machine. This actually is the general guideline in
state machine design.

Figure 3 State machines associated with the Philosopher active object (a),
 and Table active object (b).

GUIDELINE: Favor entry and exit actions over actions on transitions.

Copyright © Quantum Leaps, LLC. All Rights Reserved.

thinking

entry /

exit /

hungry

entry /

eating

entry /

exit /

 /

TIMEOUT

EAT, DONE /

[Q_EVT_CAST(TableEvt)->p...
== PHILO_ID(me)]

EAT

DONE /

TIMEOUT

EAT, DONE /

active

serving

entry / give pending permitions to eat

paused

entry /
 BSP_displayPaused(1U);

exit /
 BSP_displayPaused(0U);

 /

TERMINATE /

EAT /
 Q_ERROR();

[both free] /

[else] /

HUNGRY /

DONE /

EAT /
 Q_ERROR();

PAUSE

PAUSE

HUNGRY

DONE /

(a) (b)

http://www.state-machine.com/

6 of 16

Application Note:
Dining Philosophers Problem Example

www.state-machine.com

Figure 3(b) shows the state machine associated with the Table active object. This state machine is trivial
because Table keeps track of the forks and hungry philosophers by means of extended state variables,
rather than by its state machine. The state diagram in Figure 3(b) obviously does not convey how the
Table active object behaves, as the specification of actions is missing. The actions are omitted from the
diagram, however, because including them required cutting and pasting most of the Table code into the
diagram, which would make the diagram too cluttered. In this case, the diagram simply does not add
much value over the code.

Figure 4 Numbering of philosophers and forks
(see the macros LEFT() and RIGHT() in Listing 2).

As mentioned before, each active object is strictly encapsulated inside a dedicated source file (.C file).
Listing 2 shows the declaration (active object structure) and complete definition (state handler functions)
of the Table active object in the file table.c. The explanation section immediately following this listing
describes the techniques of encapsulating active objects and using QF services. The recipes for coding
state machine elements are not repeated here, because they are already described in the “QP Tutorials”
available online.

Listing 2 Table active object (file table.c generated by the QM modeling tool).

 #include "qp_port.h"
 #include "dpp.h"
 #include "bsp.h"

 Q_DEFINE_THIS_FILE

 /* Active object class ---*/
 /* @(/2/1) ...*/
 (1) typedef struct TableTag {
 /* protected: */
 (2) QActive super;

 /* private: */
 (3) uint8_t fork[N_PHILO];
 (4) uint8_t isHungry[N_PHILO];
 } Table;

 /* protected: */
 static QState Table_initial(Table * const me, QEvt const * const e);
 static QState Table_active(Table * const me, QEvt const * const e);
 static QState Table_serving(Table * const me, QEvt const * const e);
 static QState Table_paused(Table * const me, QEvt const * const e);

Copyright © Quantum Leaps, LLC. All Rights Reserved.

http://www.state-machine.com/

7 of 16

Application Note:
Dining Philosophers Problem Example

www.state-machine.com

 (5) #define RIGHT(n_) ((uint8_t)(((n_) + (N_PHILO - 1U)) % N_PHILO))
 (6) #define LEFT(n_) ((uint8_t)(((n_) + 1U) % N_PHILO))
 #define FREE ((uint8_t)0)
 #define USED ((uint8_t)1)

 /* Local objects ---*/
 (7) static Table l_table; /* the single instance of the Table active object */

 /* Global-scope objects --*/
 (8) QActive * const AO_Table = &l_table.super; /* "opaque" AO pointer */

 /*..*/
 /* @(/2/5) ...*/
 (9) void Table_ctor(void) {
 uint8_t n;
 Table *me = &l_table;

(10) QActive_ctor(&me->super, Q_STATE_CAST(&Table_initial));

(11) for (n = 0U; n < N_PHILO; ++n) {
 me->fork[n] = FREE;
 me->isHungry[n] = 0U;
 }
 }
 /* @(/2/1) ...*/
 /* @(/2/1/2) ...*/
 /* @(/2/1/2/0) */
 static QState Table_initial(Table * const me, QEvt const * const e) {
 uint8_t n;
 (void)e; /* suppress the compiler warning about unused parameter */

(12) QS_OBJ_DICTIONARY(&l_table);
 QS_FUN_DICTIONARY(&QHsm_top);
 QS_FUN_DICTIONARY(&Table_initial);
 QS_FUN_DICTIONARY(&Table_serving);

 QS_SIG_DICTIONARY(DONE_SIG, (void *)0); /* global signals */
 QS_SIG_DICTIONARY(EAT_SIG, (void *)0);
 QS_SIG_DICTIONARY(PAUSE_SIG, (void *)0);
 QS_SIG_DICTIONARY(TERMINATE_SIG, (void *)0);

 QS_SIG_DICTIONARY(HUNGRY_SIG, me); /* signal just for Table */

(13) QActive_subscribe(&me->super, DONE_SIG);
(14) QActive_subscribe(&me->super, PAUSE_SIG);
(15) QActive_subscribe(&me->super, TERMINATE_SIG);

 for (n = 0U; n < N_PHILO; ++n) {
 me->fork[n] = FREE;
 me->isHungry[n] = 0U;
(16) BSP_displayPhilStat(n, "thinking");
 }
 return Q_TRAN(&Table_serving);
 }
 /* @(/2/1/2/1) ...*/

Copyright © Quantum Leaps, LLC. All Rights Reserved.

http://www.state-machine.com/

8 of 16

Application Note:
Dining Philosophers Problem Example

www.state-machine.com

 static QState Table_active(Table * const me, QEvt const * const e) {
 QState status;
 switch (e->sig) {
 /* @(/2/1/2/1/0) */
 case TERMINATE_SIG: {
(17) BSP_terminate(0);
 status = Q_HANDLED();
 break;
 }
 /* @(/2/1/2/1/1) */
 case EAT_SIG: {
(17) Q_ERROR();
 status = Q_HANDLED();
 break;
 }
 default: {
 status = Q_SUPER(&QHsm_top);
 break;
 }
 }
 return status;
 }
 /* @(/2/1/2/1/2) ...*/
 static QState Table_serving(Table * const me, QEvt const * const e) {
 QState status;
 switch (e->sig) {
 /* @(/2/1/2/1/2) */
 case Q_ENTRY_SIG: {
 uint8_t n;
 for (n = 0U; n < N_PHILO; ++n) { /* give permissions to eat... */
 if ((me->isHungry[n] != 0U)
 && (me->fork[LEFT(n)] == FREE)
 && (me->fork[n] == FREE))
 {
 TableEvt *te;

 me->fork[LEFT(n)] = USED;
 me->fork[n] = USED;
 te = Q_NEW(TableEvt, EAT_SIG);
 te->philoNum = n;
 QF_PUBLISH(&te->super, me);
 me->isHungry[n] = 0U;
 BSP_displayPhilStat(n, "eating ");
 }
 }
 status = Q_HANDLED();
 break;
 }
 /* @(/2/1/2/1/2/0) */
 case HUNGRY_SIG: {
 uint8_t n, m;

 n = Q_EVT_CAST(TableEvt)->philoNum;
 /* phil ID must be in range and he must be not hungry */
 Q_ASSERT((n < N_PHILO) && (me->isHungry[n] == 0U));

 BSP_displayPhilStat(n, "hungry ");

Copyright © Quantum Leaps, LLC. All Rights Reserved.

http://www.state-machine.com/

9 of 16

Application Note:
Dining Philosophers Problem Example

www.state-machine.com

 m = LEFT(n);
 /* @(/2/1/2/1/2/0/0) */
 if ((me->fork[m] == FREE) && (me->fork[n] == FREE)) {
 TableEvt *pe;
 me->fork[m] = USED;
 me->fork[n] = USED;
 pe = Q_NEW(TableEvt, EAT_SIG);
 pe->philoNum = n;
 QF_PUBLISH(&pe->super, me);
 BSP_displayPhilStat(n, "eating ");
 status = Q_HANDLED();
 }
 /* @(/2/1/2/1/2/0/1) */
 else {
 me->isHungry[n] = 1U;
 status = Q_HANDLED();
 }
 break;
 }
 /* @(/2/1/2/1/2/1) */
 case DONE_SIG: {
 uint8_t n, m;
 TableEvt *pe;

 n = Q_EVT_CAST(TableEvt)->philoNum;
 /* phil ID must be in range and he must be not hungry */
 Q_ASSERT((n < N_PHILO) && (me->isHungry[n] == 0U));

 BSP_displayPhilStat(n, "thinking");
 m = LEFT(n);
 /* both forks of Phil[n] must be used */
 Q_ASSERT((me->fork[n] == USED) && (me->fork[m] == USED));

 me->fork[m] = FREE;
 me->fork[n] = FREE;
 m = RIGHT(n); /* check the right neighbor */

 if ((me->isHungry[m] != 0U) && (me->fork[m] == FREE)) {
 me->fork[n] = USED;
 me->fork[m] = USED;
 me->isHungry[m] = 0U;
 pe = Q_NEW(TableEvt, EAT_SIG);
 pe->philoNum = m;
 QF_PUBLISH(&pe->super, me);
 BSP_displayPhilStat(m, "eating ");
 }
 m = LEFT(n); /* check the left neighbor */
 n = LEFT(m); /* left fork of the left neighbor */
 if ((me->isHungry[m] != 0U) && (me->fork[n] == FREE)) {
 me->fork[m] = USED;
 me->fork[n] = USED;
 me->isHungry[m] = 0U;
 pe = Q_NEW(TableEvt, EAT_SIG);
 pe->philoNum = m;
 QF_PUBLISH(&pe->super, me);
 BSP_displayPhilStat(m, "eating ");
 }

Copyright © Quantum Leaps, LLC. All Rights Reserved.

http://www.state-machine.com/

10 of 16

Application Note:
Dining Philosophers Problem Example

www.state-machine.com

 status = Q_HANDLED();
 break;
 }
 /* @(/2/1/2/1/2/2) */
 case EAT_SIG: {
 Q_ERROR();
 status = Q_HANDLED();
 break;
 }
 /* @(/2/1/2/1/2/3) */
 case PAUSE_SIG: {
 status = Q_TRAN(&Table_paused);
 break;
 }
 default: {
 status = Q_SUPER(&Table_active);
 break;
 }
 }
 return status;
 }
 /* @(/2/1/2/1/3) ...*/
 static QState Table_paused(Table * const me, QEvt const * const e) {
 QState status;
 switch (e->sig) {
 . . .
 default: {
 status = Q_SUPER(&Table_active);
 break;
 }
 }
 return status;
 }

(1) To achieve true encapsulation, The declaration of the active object structure is placed in the
source file (.C file).

(2) Each active object in the application derives from the QActive base structure.
(3) The Table active object keeps track of the forks in the array fork[]. The forks are numbered as

shown in Figure 4.
(4) Similarly, the Table active object needs to remember which philosophers are hungry, in case the

forks aren’t immediately available. Table keeps track of hungry philosophers in the array
isHungry[]. Philosophers are numbered as shown in Figure 4.

(5-6) The helper macros LEFT() and RIGHT() access the left and right philosopher or fork,
respectively, as shown in Figure 4.

(7) The Table active object is allocated statically, which makes it inaccessible outside of the .C file.
(8) Externally, the Table active object is known only through the “opaque” pointer AO_Table. The

pointer is declared ‘const’ (with the const after the ‘*’), which means that the pointer itself cannot
change. This ensures that the active object pointer cannot change accidentally and also allows
the compiler to allocate the active object pointer in ROM.

(9) The function Table_ctor() performs the instantiation of the Table active object. It plays the role
of the static “constructor”, which in C you need to call explicitly, typically at the beginning of
main().

Copyright © Quantum Leaps, LLC. All Rights Reserved.

http://www.state-machine.com/

11 of 16

Application Note:
Dining Philosophers Problem Example

www.state-machine.com

NOTE: In C++, static constructors are invoked automatically before main(). This means that in the C++
version of DPP (found in <qp>\qpcpp\examples\80x86\dos\watcom\l\dpp\), you provide a regular
constructor for the Table class and don’t bother with calling it explicitly. However, you must make sure
that the startup code for your particular embedded target includes the additional steps required by the
C++ initialization.

(10) The constructor must first instantiate the QActive superclass.
(11) The constructor can then initialize the internal data members of the active object.
(12) The macros staring with QS_ pertain to the Q-SPY software tracing instrumentation and are

active only in the SPY build configuration.
(13-15) The active object subscribes to all interesting to it signals in the top-most initial transition. Please

note that Table does not subscribe to the HUNGRY event, because this event is posted directly.

NOTE: New QP users often forget to subscribe to events and then the application appears “dead” when
you first run it.

(16) The output to the screen is a BSP (board support package) operation. The different BSPs
implement this operation differently, but the code of the Table state machine does not need to
change.

(17) Upon receiving the TERMINATE event, the Table active object calls BSP_terminate() to stop QF
and return to the underlying operating system.

(18) The Table state machine extensively uses assertions to monitor correct execution of the DPP
application. For example, in line (19) both forks of a philosopher that just finished eating must be
used.

The Philosopher active objects bring no essentially new techniques, so the listing of the philo.c file is
not reproduced here. One interesting aspect of philosophers is that all five philosopher active objects are
instances of the same active object class. The philosopher state machine also uses a few assertions to
monitor correct execution of the application according to the problem specification.

Copyright © Quantum Leaps, LLC. All Rights Reserved.

http://www.state-machine.com/

12 of 16

Application Note:
Dining Philosophers Problem Example

www.state-machine.com

3.4 Step 4: Initializing and Starting the Application
Most of the system initialization and application startup can be written in a platform-independent way. In
other words, you can use essentially the same main() function for the DPP application with many QP
ports.

Typically, you start all your active objects from main(). The signature of the QActive_start() function
forces you to make several important decisions about each active object upon startup. First, you need to
decide the relative priorities of the active objects. Second, you need to decide the size of the event
queues you pre-allocate for each active object. The correct size of the queue is actually related to the
priority, as described in Chapter 9 of PSiCC2. Third, in some QF ports, you need to give each active
object a separate stack, which also needs to be pre-allocated adequately. And finally, you need to decide
the order in which you start your active objects.

The order of starting active objects becomes important when you use an OS or RTOS, in which a
spawned thread starts to run immediately, possibly preempting the main() thread from which you launch
your application. This could cause problems, if for example the newly created active object attempts to
post an event directly to another active object that has not been yet created. Such situation does not
occur in DPP, but if it is an issue for you, you can try to lock the scheduler until all active objects are
started. You can then unlock the scheduler in the QF_onStartup() callback, which is invoked right before
QF takes over control. Some RTOSs (e.g., µC/OS-II) allow you to defer starting multitasking until after
you start active objects. Another alternative is to start active objects from within other active objects, but
this design increases coupling because the active object that serves as the launch pad must know the
priorities, queue sizes, and stack sizes for all active objects to be started.

Listing 3 Initializing and Starting the DPP Application (file main.c).

 #include "qp_port.h"
 #include "dpp.h"
 #include "bsp.h"

 /* Local-scope objects ---*/
 (1) static QEvt const *l_tableQueueSto[N_PHILO];
 (2) static QEvt const *l_philoQueueSto[N_PHILO][N_PHILO];
 (3) static QSubscrList l_subscrSto[MAX_PUB_SIG];

 /* storage for event pools... */
 (4) static QF_MPOOL_EL(TableEvt) l_smlPoolSto[2U*N_PHILO]; /* small pool */

 /*..*/
 int_t main(void) {
 uint8_t n;

 (5) Philo_ctor(); /* instantiate all Philosopher active objects */
 (6) Table_ctor(); /* instantiate the Table active object */

 (7) QF_init(); /* initialize the framework and the underlying RT kernel */
 (8) BSP_init(); /* initialize the BSP */

 /* object dictionaries... */
 (9) QS_OBJ_DICTIONARY(l_smlPoolSto);
 QS_OBJ_DICTIONARY(l_tableQueueSto);
 QS_OBJ_DICTIONARY(l_philoQueueSto[0]);
 QS_OBJ_DICTIONARY(l_philoQueueSto[1]);
 QS_OBJ_DICTIONARY(l_philoQueueSto[2]);
 QS_OBJ_DICTIONARY(l_philoQueueSto[3]);
 QS_OBJ_DICTIONARY(l_philoQueueSto[4]);

Copyright © Quantum Leaps, LLC. All Rights Reserved.

http://www.state-machine.com/

13 of 16

Application Note:
Dining Philosophers Problem Example

www.state-machine.com

(10) QF_psInit(l_subscrSto, Q_DIM(l_subscrSto)); /* init publish-subscribe */

 /* initialize event pools... */
(11) QF_poolInit(l_smlPoolSto, sizeof(l_smlPoolSto), sizeof(l_smlPoolSto[0]));

 for (n = 0U; n < N_PHILO; ++n) { /* start the active objects... */
(12) QActive_start(AO_Philo[n], (uint8_t)(n + 1U),
 l_philoQueueSto[n], Q_DIM(l_philoQueueSto[n]),
 (void *)0, 0U, (QEvt *)0);
 }
(13) QActive_start(AO_Table, (uint8_t)(N_PHILO + 1U),
 l_tableQueueSto, Q_DIM(l_tableQueueSto),
 (void *)0, 0U, (QEvt *)0);

(14) return (int_t)QF_run(); /* run the QF application */
 }

(1-2) The memory buffers for all event queues are statically allocated.
(3) The memory space for subscriber lists is also statically allocated. The MAX_PUB_SIG enumeration

comes in handy here.
(4) The macro QF_MPOOL_EL(TableEvt) provides correctly aligned memory block of the size at least

as big as the sizeof(TableEvt) for all events that are served by the “small” event pool.
(5-6) The main() function starts with calling all static “constructors” (see Listing 1(7-8)). This step is not

necessary in C++.
(7) QF is initialized together with the underlying OS/RTOS.
(8) The target board is initialized.
(9) The macros staring with QS_ pertain to the Q-SPY software tracing instrumentation and are

active only in the SPY build configuration.
(10) The publish-subscribe mechanism is initialized. You don’t need to call QF_psInit() if your

application does not use publish-subscribe.
(11) Up to three event pools can be initialized by calling QF_poolInit() up to three times. The

subsequent calls must be made in the order of increasing block-sizes of the event pools. You
don’t need to call QF_poolInit() if your application does not use dynamic events.

(12-13) All active objects are started using the “opaque” active object pointers (see Listing 1(9-10)). In
this particular example, the active objects are started without private stacks. However, some
RTOSs, such as µC/OS-II, require pre-allocating stacks for all active objects.

(14) The control is transferred to QF to run the application. QF_run() might never actually return.

Copyright © Quantum Leaps, LLC. All Rights Reserved.

http://www.state-machine.com/

14 of 16

Application Note:
Dining Philosophers Problem Example

www.state-machine.com

3.5 Step 5: Gracefully Terminating the Application
Terminating an application is not really a big concern in embedded systems, because embedded
programs almost never have a need to terminate gracefully. The job of a typical embedded system is
never finished and most embedded software runs forever or until the power is removed, whichever comes
first.

NOTE: You still need to carefully design and test the fail-safe mechanism triggered by a CPU exception
or assertion violation in your embedded system. However, such situation represents a catastrophic
shutdown, followed perhaps by a reset. The subject of this section is the graceful termination, which is
part of the normal application life cycle.

However, in desktop programs, or when embedded applications run on top of a general-purpose
operating system, such as Linux, Windows, or DOS, the shutdown of a QP application becomes
important. The problem is that in order to terminate gracefully, the application must cleanup all resources
allocated by the application during its lifetime. Such a shutdown is always application-specific and cannot
be pre-programmed generically at the framework level.

The DPP application uses the following mechanism to shut down. When the user decides to terminate the
application, the global TERMINATE event is published. In DPP, only the Table active object subscribes to
this event (Listing 2(13)), but in general all active objects that need to cleanup anything before exiting
should subscribe to the TERMINATE event. The last subscriber, which is typically the lowest-priority
subscriber, calls the QF_stop() function. As described in Chapter 8 of PSiCC2, QF_stop() is
implemented in the QF port. Often, QF_stop() causes the QF_run() function to return. Right before
transferring control to the underlying operating system, QF invokes the QF_onCleanup() callback. This
callback gives the application the last chance to cleanup globally (e.g., the DOS version restores the
original DOS interrupt vectors).

Finally, you can also stop individual active objects and let the rest of the application continue execution.
The cleanest way to end an active object’s thread is to have it stop itself by calling QActive_stop(me),
which should cause a return from the active object’s thread routine. Of course to “commit a suicide”
voluntarily, the active object must be running, and cannot be waiting for an event. In addition, before
disappearing, the active object should release all the resources acquired during its lifetime. Additionally,
the active object should unsubscribe from receiving all signals, and somehow should make sure that no
more events will be posted to it directly. Unfortunately, all these requirements cannot be pre-programmed
generically and always require some work on the application programmer’s part.

Copyright © Quantum Leaps, LLC. All Rights Reserved.

http://www.state-machine.com/

15 of 16

Application Note:
Dining Philosophers Problem Example

www.state-machine.com

4 References

Document Location

[PSiCC2] “Practical UML Statecharts in
C/C++, Second Edition”, Miro Samek,
Newnes, 2008, ISBN 0750687061

Available from most online book retailers, such as
amazon.com. See also:
http://www.state-machine.com/psicc2

[QP/C 08] “QP/C Reference Manual”,
Quantum Leaps, LLC, 2008

http://www.state-machine.com/qpc/

[QP/C++ 08] “QP/C++ Reference
Manual”, Quantum Leaps, LLC, 2008

http://www.state-machine.com/qpcpp/

[QP-nano 08] “QP-nano Reference
Manual”, Quantum Leaps, LLC, 2008

http://www.quantum-leaps.com/qpn/

Copyright © Quantum Leaps, LLC. All Rights Reserved.

http://www.state-machine.com/
http://www.quantum-leaps.com/qpn/
http://www.state-machine.com/qpcpp/
http://www.state-machine.com/qpc/
http://www.state-machine.com/psicc2/
http://www.amazon.com/

16 of 16

Application Note:
Dining Philosophers Problem Example

www.state-machine.com

5 Contact Information

Quantum Leaps, LLC
103 Cobble Ridge Drive
Chapel Hill, NC 27516
USA
+1 866 450 LEAP (toll free, USA only)
+1 919 869-2998 (FAX)
e-mail: info@quantum-leaps.com
WEB : www.state-machine.com

“Practical UML
Statecharts in
C/C++, Second
Edition” (PSiCC2),

by Miro Samek,
Newnes, 2008,
ISBN 0750687061

Copyright © Quantum Leaps, LLC. All Rights Reserved.

http://www.state-machine.com/
http://www.state-machine.com/
mailto:info@quantum-leaps.com

	1 Introduction
	2 Requirements
	3 Design and Implementation
	3.1 Step 1: Sequence Diagrams
	3.2 Step 2: Signals, Events, and Active Objects
	3.3 Step 3: State Machines
	3.4 Step 4: Initializing and Starting the Application
	3.5 Step 5: Gracefully Terminating the Application

	4 References
	5 Contact Information

