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Chapter 2

 

Introduction to Protocols: 

SCRATCHP

 

Overview

 

In this chapter, I start by looking at what a protocol is, then I show how it can be imple-
mented in software. I’ll examine
• the definition of a protocol,
• the standard way of describing a protocol,
• the client–server model,
• modal and modeless clients, and
• logical connections — open, close, and data transfer

Because this is a hands-on book, I’ll illustrate these points by creating a protocol from
scratch (called SCRATCHP) and writing a utility that allows you to exercise the protocol.
While implementing the protocol, you’ll have an opportunity to explore the following areas.
• Storage of Ethernet and SLIP frames
• Ethernet addressing
• Protocol identification
• Byte swapping
• Low-level packet transmission and reception
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You’ll end up with a stand-alone utility that can be used to exercise the protocol that’s been
created, or it can be used as a base for implementing another protocol. The foundations will
have been laid for the TCP/IP protocols to come.

 

Protocol

 

For two computers to communicate, they must speak the same language. A communication
language framework is generally called a 

 

protocol

 

. The name is derived from the framework
employed by diplomats when attempting to communicate across cultural boundaries. Two
computers may employ different processors, languages, and operating systems, but if they
both use a common protocol, then they can communicate.

Protocols don’t just enable communications, they also restrict them. Neither party may
stray outside the bounds of protocol without facing incomprehension or rejection. So a proto-
col doesn’t just define how communication may occur but also provides a framework for the
information that is communicated.  But how can any one protocol encompass all the variety
of present-day computer communications? It can’t, so you need a family of protocols, each of
which is designed for a specific task. As with a software project, you need a tree structure,
with the simpler network-oriented tasks at the bottom and the higher user-oriented tasks at
the top. Such a structure is often called a protocol 

 

stack

 

, though this leads to confusion with
the last in, first out (LIFO, push/pop, or call/return) stack data storage mechanism also used
by programmers.

Here, the term stack refers to the way protocol components are stacked on top of each
other to give the desired functionality. If I want to transfer a file, I might take a standard file
transfer protocol and stack it on top of a communications protocol. The communications
protocol wouldn’t understand about files — it simply moves bocks of data around. Con-
versely, the file transfer protocol wouldn’t understand about networks — it simply converts
files into blocks of data. Combine the two, and you have network file transfer capability.

The separation into protocol layers doesn’t necessarily make for easier reading. Older pro-
tocol specifications used to simply record the pattern of “bytes on the wire” for achieving a
given result (and also, if you’re lucky, a smattering of timing information). In a layered world,
a protocol specification must tie down the upper and lower application programming inter-
faces (APIs) and the operations to be performed on them. Any relation to bytes on the wire
(i.e., actual visible work) is purely coincidental. There is the danger that the APIs may become
operating system–specific, so vendor-independent standardization is very important.

 

Standardization

 

The international community, in its wisdom, decided to standardize on the number of proto-
col layers in a stack, and the International Standards Organization (ISO) Open Systems Inter-
connection (OSI) model was born (Figure 2.1). Their layers are listed below from top down.

7. ApplicationUser interface

6. PresentationData formatting

5. SessionLogical connections

4. TransportError-free communication

3. NetworkNetwork addressing
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2. Data linkTransmission and reception

1. PhysicalNetwork hardware

For local area networks (LANs), the data link layer is further subdivided into a compo-
nent called medium access control (MAC), which resides within the network hardware, and
the software-based logical link control (LLC), which provides a uniform software interface
(packet driver interface) to the higher levels.

 

Figure 2.1 OSI seven-layer model.

 

When two applications are communicating over a network, it can be useful to think in
terms of the data entering at the top of one protocol stack then traveling downward on that
machine, across to the other machine at the physical layer, and back up the second stack (Fig-
ure 2.2).

Of course, not all data will originate at application level: resolving addresses requires
communication between network layers, and maintenance of a connection requires session-
to-session communications. The user is generally unaware of these until he or she happens to
see a diagnostic log of all packet transfers; then the reaction is one of amazement that a sim-
ple transfer between applications can generate so much traffic. As with a duck crossing a
pond, the smooth visible motion belies the furious paddling underneath.

The TCP/IP family of protocols predates the ISO standardization effort, so it does not fit
comfortably within the model. Also, the higher layers are remarkably difficult to standardize
because they must encompass the totality of network applications. Confronted by the
remarkable growth of the Internet, this overall ISO standardization effort has been com-
pletely sidelined, though the seven-layer terminology and the lower level standards are still in
widespread use. Although I’ll implement SCRATCHP as a single protocol, the seven-layer
model does provide important pointers on how your software might be structured.
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Data Link

Physical

Logical Link Control
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Figure 2.2 Application-to-application transfer.

 

SCRATCHP Services

 

Just as an operating system offers the user a range of commands, so SCRATCHP will offer
the network user a range of services (i.e., remotely accessible functions). The usual TCP/IP
approach is to create a separate specification for each service, but to save time, I’ll combine
several services into the one protocol. I’ll start with a minimum of these, but the protocol
must permit the addition of services at a later date. A preliminary list of services is

1.

 

IDENT

 

 (ID resolution)
2.

 

ECHO

 

 (connection diagnostic)
3.

 

DIR

 

 (file directory)
4.

 

GET

 

 (file transfer: read)
5.

 

PUT

 

 (file transfer: write)

The 

 

ident

 

 service is used for converting computer IDs into addresses and is explained
later. The 

 

echo

 

 service allows simple diagnostic tests to be performed. It duplicates incoming
data and returns it to the sender. In this way, you can check response times and error rates.
File transfer is a fundamental requirement of computer networking and is useful for examin-
ing bulk data transfer techniques. I have provided simple 

 

dir

 

,  

 

get

 

, and 

 

put

 

 functions.

 

Client–Server Model

 

A useful piece of terminology would be to refer to one machine (the requester of the service)
as a 

 

client

 

 and the other (the provider of the service) as the 

 

server

 

. In reality, you might as well
write the software so that every machine has the potential to become a client or a server and
use keyboard or network commands to determine which mode should be activate at any time.
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The 

 

ident

 

 service is used to identify potential servers, so it must be as simple as
possible — one packet transmitted and one packet received. The command is sent as a string,
followed by an optional argument string. If a server responds, it returns a copy of the com-
mand string to confirm which command it is responding to.

A potential problem is that the response is indistinguishable from the command, so it may
be interpreted as another command, generating another response, and so on ad infinitum.
There are two approaches to solving this problem: one modal, the other modeless.

 

Modal Client

 

Every time a client issues a command, it could go into some sort of command mode, so it
knows the next communication it receives is going to be a response to that command. This
mode would typically be stored as a state variable. The transaction would be:

1. client goes into command mode and
2. client sends command to server; then,

either

3. client receives response and goes back into normal mode

or

3. client receives no response, times out, and goes back into normal mode.

There are two risks with this approach.

1. The client time-out occurs while the response is still in transit, so it is no longer in com-
mand mode when it arrives.

2. While in command mode, the client receives an unexpected packet from another node,
which it can’t handle because it is in the wrong mode.

Modal techniques are frequently used in simple point-to-point serial links, but they must
be used with care in networking, where it is impossible to anticipate what will happen next.

 

Modeless Client

 

If you want to keep your client as modeless (i.e., stateless) as possible, you must include more
information in the data packet that is transmitted. Instead of sending pure data and storing
the command mode 

 

internally

 

, the transmitted packet must contain an indication that says, “I
am a command packet.” The server’s reply packet must then have a different indication that
says, “I am a response packet.” By expressing the information 

 

externally

 

, the client doesn’t
have to store it internally, and debugging is made easier because you can determine the client’s
intentions by examining the packets it has sent, rather than having to pry on its internal data.

It is interesting to note that one of the key factors in the success of the World Wide Web
has been that the upper protocol layers are stateless. At any one time a Web server may be
handling hundreds of clients, and in the course of a day it may handle millions. If it had to
keep detailed information on each, there would be a major storage problem. A simple Web
server stores no information about any user. Contrast this with a typical multiuser system,
where a large number of settings and  preferences are stored in an individual user’s account.

So, keep the 

 

ident

 

 command stateless for simplicity, but what about the file transfer com-
mands? If you’re going to handle bulk data transfers, it is hard to keep the machines com-
pletely stateless. If nothing else, they have to remember which files they have opened and
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why. Ideally, the network would be treated as a simple 

 

pipe

 

, through which data would flow
(or stream).

For this, you really need to establish a 

 

logical connection

 

, or bidirectional 

 

data pipe

 

between the client and server: anything fed in one end of the pipe will emerge unaltered at the
other end. This is an important concept, which is much used in networking.

 

Logical Connections

 

From the earliest days, networks have usually been used for the purpose of establishing logi-
cal connections between two computers. When you use a browser to contact a Web site, you
are setting up one or more logical connections between your client and their server. The Web
pages and graphics are then fed down these connections, like water down a pipe, until the cli-
ent has all the necessary data to display the page.

Logical connections are reliable. To maintain the connection, the protocol software has to
keep track of all packets sent and received and have a retry strategy to cover any packets that
go astray. Unfortunately, this reliability comes at a price: writing the protocol software for
opening, maintaining, and closing logical connections is a nontrivial task, involving the cre-
ation of state machines in both client and server and an exchange of signals between them to
ensure the state machines remain in sync.

You may spot an apparent contradiction with my previous assertion that Web client–
server communications are stateless. Clearly they must keep state information about each
other for the duration of a transfer. That’s why I was careful to say their 

 

applications

 

 are
stateless; the lower levels are continuously making and breaking connections, with all the
state tracking that entails.

 

Opening and Closing a Connection

 

In a simplified protocol, clients have to initiate all actions, so they will request a service that
requires the establishment of a connection. The host can then agree to the establishment of a
connection by acknowledging the request, ignoring the request if it disagrees, or setting an
error flag (it may have insufficient resources to support another connection).

Closure of the connection may be initiated by either party. In a file transfer, it will normally
be the sender of the data who closes the connection after the data is transferred; although, the
recipient may also do this if it can’t handle the data any more (e.g., its disk is full).

 

Data Flow in a Connection

 

For the duration of the connection, data may flow bidirectionally between the two parties.
Both sides need to keep track of the amount of data sent and received to ensure no data has
been skipped or duplicated. Commonly used techniques to do this are listed below.

 

Lock-step

 

One packet is sent, and the sender waits until an acknowledgment is received
before sending another.

 

Block sequencing

 

Each packet contains one data block, with a sequential number
(sequence number). The recipient may acknowledge receipt of each block, using its sequence
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number, or wait until a few have been received then acknowledge them all, using the sequence
number of the latest block.

 

Byte sequencing

 

This is similar to block sequencing, but the sequence number reflects the
byte count, rather than the block count.

 

Figure 2.3 Sequencing methods.

 

Figure 2.3 shows the client–server interactions, assuming the client is sending 11 bytes in
three blocks to the server. The lock-step method doesn’t need to identify each block individu-
ally, since only one can be in transit at any one time (in railway parlance: one engine in
steam). The sequencing methods differ in that they identify a block using either an increment-
ing block number or the total number of bytes sent prior to the current block. The acknowl-
edgment reflects either the latest block received or the latest byte received (i.e., the sequence
number plus the byte count).
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For simplicity, I have shown the first block as having a byte count of zero. In reality, it is
better to start with a pseudorandom base value, which is negotiated at the start of the trans-
action and is subsequently increased to reflect the actual byte count transferred. The value is
typically stored as a 32-bit 

 

LWORD

 

 and is allowed to wrap around past zero when it gets too
large, on the assumption that there won’t be several gigabytes of data in transit for any one
transaction at any one time.

Note that the lock-step method has built-in flow control: the sender cannot out-pace the
receiver because the receiver will only acknowledge if it has spare buffer space for the next
data block. Flow control can be added to the other techniques by the simple expedient of
placing a limit on the maximum number of blocks (or bytes of data) that can be in transit and
unacknowledged. When the sender exceeds this “window,” it must stop transmitting data
until it receives an acknowledgment.

There is little to choose between the two sequencing methods. Block acknowledgment is
used in the ISO link layer LLC and is slightly easier to implement than byte sequencing, pro-
vided a fixed block size is used. TCP has a variable block size (a “sliding window”), so it
employs a byte-sequencing method. This is what I’ll use for SCRATCHP.

 

Packet Format

 

Having decided on the basic structure of transactions, I can define a packet format to suit
(Figure 2.4). Because of my minimalist approach, there is relatively little in it.
• protocol version (one byte)
• flags (one bit each)

• command
• response
• start connection
• connected
• stop connection
• error

• sequence and acknowledgment numbers (four bytes each)
• data length (two bytes)

 

Figure 2.4 SCRATCHP packet format.

 

The 

 

protocol version

 

 is a useful way of retaining compatibility as SCRATCHP evolves. It
can be checked by any recipient to ensure that it is equipped to decode this version of the pro-
tocol and to give the user sensible error messages if there is a problem (e.g., “This utility does
not support SCRATCHP version 5”).

Version
1 byte

Flags
1 byte

Seq
4 bytes

Data
0 - 1488 bytes

Datalen
2 bytes

Ack
4 bytes

12 - 1500 bytes
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The 

 

data length

 

 field may seem redundant, since the underlying network protocol should
provide an overall length value from which the data length could be derived. Unfortunately,
the Ethernet frame length will include any padding applied to undersized frames, so it won’t
always give the correct answer.

In common with most other Ethernet protocols, the integer values will be sent with the
most significant byte first. The SCRATCHP data array is dimensioned at 994 bytes, which
allows it to fit within the 1,500-byte Ethernet or 1,006-byte SLIP data area.

 

Internal Storage

 

Having fixed the external appearance of the SCRATCHP packet, I need to decide the internal
storage format. You will recall that my network drivers work on a generic frame format,
which has a two-byte frame type (which will identify whether it is an Ethernet or SLIP packet
and maybe provide a system-specific handle for the network adaptor), followed by a block of
data up to the maximum Ethernet frame size.

 

/* Flag values */

#define FLAG_CMD        0x01    /* Data area contains command */

#define FLAG_RESP       0x02    /* Data area contains response */

#define FLAG_START      0x04    /* Request to start connection */

#define FLAG_CONN       0x08    /* Connected; sequenced transfer in use */

#define FLAG_STOP       0x10    /* Stop connection */

#define FLAG_ERR        0x20    /* Error; abandon connection */

/* SCRATCHP packet header */

typedef struct {

    BYTE ver;                   /* Protocol version number */

    BYTE flags;                 /* Flag bits */

    LWORD seq;                  /* Sequence value */

    LWORD ack;                  /* acknowledgment value */

    WORD dlen;                  /* Length of following data */

} SCRATCHPHDR;

/* SCRATCHP packet */

#define SCRATCHPDLEN 994

typedef struct {

    SCRATCHPHDR h;              /* Header */

    BYTE data[SCRATCHPDLEN];    /* Data (or null-terminated cmd/resp string) */

} SCRATCHPKT;
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The  SCRATCHP packet will be contained within the data area of an Ethernet or SLIP
packet (Figure 2.5).

 

Figure 2.5 Ethernet and SLIP packets.

 

Because Ethernet and SLIP packets have different header lengths (14 bytes and zero bytes),
you need a standard way of determining where the network header ends and the SCRATCHP
packet starts. A function can do this by checking the packet type and indexing into the packet
data area accordingly.

Note that a pointer to the frame 

 

data

 

 area also points to the SCRATCHP 

 

header

 

, and a
pointer to the SCRATCHP 

 

data

 

 area may also point to a command 

 

header

 

. In this nested
world, one packet’s data is generally another packet’s header, so the term “data” must always
be qualified by the context in which it appears.

There are other awkward differences between Ethernet and SLIP: the former has a source
address, which will be useful when sending a reply, and a protocol-type identifier, which is
discussed later. Any functions attempting to access these features need to check the packet
type first.

 

typedef struct {

    GENHDR g;                   /* General-pupose frame header */

    BYTE buff[MAXGEN];          /* Frame itself (2 frames if fragmented) */

} GENFRAME;

Dest Srce Pcol Ver Flag Seq Ack

Ethernet

SLIP

DataDlen

Ver Flag Seq Ack DataDlen

 

/* Get pointer to the data area of the given frame */

void *getframe_datap(GENFRAME *gfp)

{

    return(&gfp->buff[dtype_hdrlen(gfp->g.dtype)]);

}

/* Return frame header length, given driver type */

WORD dtype_hdrlen(WORD dtype)

{

    return(dtype&DTYPE_ETHER ? sizeof(ETHERHDR) : 0);

}
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/* Get pointer to the source address of the given frame, 0 if none */

BYTE *getframe_srcep(GENFRAME *gfp)

{

    ETHERHDR *ehp;

    BYTE *srce=0;

    if (gfp->g.dtype & DTYPE_ETHER)         /* Only Ethernet has address */

    {

        ehp = (ETHERHDR *)gfp->buff;

        srce = ehp->srce;

    }

    return(srce);

}

/* Copy the source MAC addr of the given frame; use broadcast if no addr */

BYTE *getframe_srce(GENFRAME *gfp, BYTE *buff)

{

    BYTE *p;

    p = getframe_srcep(gfp);

    if (p)

        memcpy(buff, p, MACLEN);

    else

        memcpy(buff, bcast, MACLEN);

    return(p);

}

/* Get pointer to the destination address of the given frame, 0 if none */

BYTE *getframe_destp(GENFRAME *gfp)

{

    ETHERHDR *ehp;

    BYTE *dest=0;

    if (gfp->g.dtype & DTYPE_ETHER)         /* Only Ethernet has address */

    {

        ehp = (ETHERHDR *)gfp->buff;

        dest = ehp->dest;

    }

    return(dest);

}
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Using these functions, you can safely access the address and protocol fields on all packets,
even though SLIP frames don’t possess them. This avoids the necessity for frame-specific fea-
tures in the SCRATCHP code layer, since all frames can be treated equally.

 

Addressing

 

I have already talked about the client contacting the server, but I have given no indication
as to how this is achieved. How are the client and server identified so that they can contact
each other? Of course, the server can simply respond to the address of any client that contacts
it, but there is still the burden on the client to make the initial contact, and to do that, it needs
some way of addressing the host, since there might be multiple hosts on the network.

Each Ethernet card has a unique six-byte 

 

physical address

 

, so the client could use that. But
imagine the complaints from the users if they have to type a 12-digit hexadecimal number
every time they want to contact a new host. Also, the number would be highly specific to that
item of hardware. If the network card failed and had to be replaced, the number would
change, even though the computer still seemed to be the same from the user’s point of view.

 

/* Copy destination MAC addr of the given frame; use broadcast if no addr */

BYTE *getframe_dest(GENFRAME *gfp, BYTE *buff)

{

    BYTE *p;

    p = getframe_destp(gfp);

    if (p)

        memcpy(buff, p, MACLEN);

    else

        memcpy(buff, bcast, MACLEN);

    return(p);

}

/* Get the protocol for the given frame; if unknown , return 0 */

WORD getframe_pcol(GENFRAME *gfp)

{

    ETHERHDR *ehp;

    WORD pcol=0;

    if (gfp->g.dtype & DTYPE_ETHER)         /* Only Ethernet has protocol */

    {

        ehp = (ETHERHDR *)gfp->buff;

        pcol = ehp->ptype;

    }

    return(pcol);

}



 

Protocol Identification

 

43

 

It is far better to assign each computer on the network a 

 

logical address

 

 then invent some
scheme to map the logical address onto the physical address of the Ethernet card. For conve-
nience, I will refer to the logical address as the Ident (ID) of the computer and the physical
address as the 

 

address

 

. The logical-to-physical mapping process is called 

 

address resolution

 

.
What is an ID, and where does it come from? An ID can be numeric (

 

123

 

) or a null-termi-
nated string (

 

fileserver

 

). I’ll use the latter format for maximum flexibility. It must either be
permanently burned into the software when it is created (a nuisance, since all nodes on the
network would have to run different copies of the software) or read when the software is
loaded — either from the command line or from a configuration file. Either way, it is essential
that each computer on the network acquires a unique ID.

To resolve an ID into an address, the client must broadcast the ID on the network as an
invitation for the designated server to respond. The server responds, giving its physical
address, which the client stores and uses for all subsequent communications.

Figure 2.6 Sample ident transactions.

Figure 2.6 shows a client broadcasting an identification request for the machine node1,
using two null-terminated strings in the SCRATCHP data area — the null character is indi-
cated by a strikethrough of the box. The client receives a reply containing a duplicate of the
request, with the all-important node address, which will be used for subsequent communica-
tions. The second transaction illustrates the use of a null ident string to identify all nodes on
the (hopefully very small) network. Two responses are obtained in a pseudorandom order.
There is no knowing which node will answer first.

Protocol Identification
Ethernet is capable of carrying several protocols at the same time without the risk of confu-
sion over which data belongs to which protocol. It achieves that by tagging each frame with a
16-bit protocol type, which uniquely identifies that protocol; for example, Internet Protocol
(IP) has a hexadecimal value of 800h. If SCRATCHP was intended to coexist with other pro-
tocols, you would need to obtain an official protocol identifier from the Institution of Electri-
cal and Electronic Engineers (IEEE). At the time of writing, this cost $5,000; however,
SCRATCHP should only be run on a “scratch” network, so you can use any identifier you
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like. Prudence dictates you should pick a high number that is out of the range of currently
assigned protocols, so the hexadecimal value FEEBh is used.

Multiplexing and Buffering
The software that gathers transmit packets from a variety of senders is a multiplexer (mux,
for short), and the corresponding software that accepts received packets and dispatches them
to the appropriate recipient is called a demultiplexer (demux, for short).

Figure 2.7 Data flow between nodes.

The mux/demux operation (Figure 2.7) is automatically performed by the network driver
layer. Submitting a packet to put_net() automatically routes it to the appropriate network
driver, possibly via a (polygonal, as described in the previous chapter) packet buffer, if the
interface doesn’t have its own Transmit buffer. All received packets are stored in a similar
polygonal incoming packet buffer.

Control flow, as shown in Figure 2.8, is more convoluted since there must be some provi-
sion for polling the network interfaces, as they may be interrupt-driven.

The receive_ether() and receive_slip() functions take the place of Ethernet and serial
interrupt handlers, in that they are called from get_net(), call get_ether() or get_slip()
for each packet received, then do an up-call to save the packet, which in turn uses the stan-
dard circular buffer input routine (Figure 2.8). Having done that, get_net() calls the buffer
output routine to fetch any stored packets.

If interrupts are available, the two receive_ functions are redundant, and the interrupt
handlers call the get_ functions directly.
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Figure 2.8 Control flow for packet reception.

Byte Swapping
SCRATCHP will normally run on a little endian (least significant byte first) PC architecture,
so it was tempting to use this storage method for the two-byte values in the SCRATCHP
packets. However, most Ethernet protocols use big endian (most significant byte first) storage,
and I wanted to explore byte-swapping issues, so I made SCRATCHP little endian. If you
happen to run my software on a little endian machine, then the byte-swapping stage must be
skipped (preferably using conditional compilation), but the underlying software structure
remains the same.

I have seen protocol software that is liberally sprinkled with byte swap functions, which is
a nightmare to debug because you’re never quite sure whether a value is in its swapped or
unswapped state. To avoid this, you have to have a byte-swapping philosophy and stick rig-
idly to it. My philosophy is that byte swapping is the last action to be performed when send-
ing a packet and the first action to be performed when receiving a packet.

This means that a transmit packet, that has been byte swapped is only fit for transmission:
it may not be used for other purposes such as diagnostic printouts because the printout func-
tion won’t display the swapped values correctly. After transmission, a transmit packet must
be discarded because it is useless; on the relatively rare occasions a retransmission is required,
the packet can easily be rebuilt from the original data. This approach also helps to minimize
the storage requirements and forces you to think clearly about a retry strategy, rather than
relying on resending old packets that happen to be around. This rigorous approach is perhaps
slightly too dogmatic and inflexible for a simple protocol such as SCRATCHP, but it prepares
the ground for the more complex protocols to come.
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Reception and Transmission
When a packet is received, do the necessary testing and byte swapping then forward it to
do_scratchp() for action.

To economize on storage, do_scratchp() reuses the Receive buffer as a Transmit buffer to
hold any response it wants to make and simply returns a transmit length value, or 0 if no
response has been generated.

/* Demultiplex incoming packets */

int get_pkts(GENFRAME *nfp)

{

    int rxlen, txlen=0;

    if ((rxlen=get_frame(nfp)) > 0)         /* If any packet received.. */

    {

        if (is_scratchp(nfp, rxlen))        /* If SCRATCHP.. */

        {

            swap_scratchp(nfp);                 /* ..do byte-swaps.. */

            txlen = do_scratchp(nfp, rxlen, 0); /* ..action it.. */

        }

    }                                       /* ..and maybe return a response */

    return(txlen);                          /* (using the same pkt buffer) */

}

/* Check Ethernet frame, given frame pointer & length, return non-0 if OK */

int is_ether(GENFRAME *gfp, int len)

{

    int dlen=0;

    if (gfp && (gfp->g.dtype & DTYPE_ETHER) && len>=sizeof(ETHERHDR))

    {

        dlen = len - sizeof(ETHERHDR);

        swap_ether(gfp);

    }

    return(dlen);

}

/* Make a frame, given data length. Return length of complete frame

** If Ethernet, set dest addr & protocol type; if SLIP, ignore these */

int make_frame(GENFRAME *gfp, BYTE dest[], WORD pcol, WORD dlen)

{

    ETHERHDR *ehp;
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    if (gfp->g.dtype & DTYPE_ETHER)

    {

        ehp = (ETHERHDR *)gfp->buff;

        ehp->ptype = pcol;

        memcpy(ehp->dest, dest, MACLEN);

        swap_ether(gfp);

        dlen += sizeof(ETHERHDR);

    }

    return(dlen);

}

/* Byte-swap an Ethernet frame, return header length */

void swap_ether(GENFRAME *gfp)

{

    ETHERFRAME *efp;

    efp = (ETHERFRAME *)gfp->buff;

    efp->h.ptype = swapw(efp->h.ptype);

}

/* Check SLIP frame, return non-zero if OK */

int is_slip(GENFRAME *gfp, int len)

{

    return((gfp->g.dtype & DTYPE_SLIP) && len>0);

}

/* Check for SCRATCHP, given frame pointer & length */

int is_scratchp(GENFRAME *nfp, int len)

{

    WORD pcol;

                                            /* SLIP has no protocol field.. */

    pcol = getframe_pcol(nfp);              /* ..so assume 0 value is correct */

    return((pcol==0 || pcol==PCOL_SCRATCHP) && len>=sizeof(SCRATCHPHDR));

}

/* Byte-swap an SCRATCHP packet, return header length */

int swap_scratchp(GENFRAME *nfp)

{

    SCRATCHPKT *sp;

    sp = getframe_datap(nfp);

    sp->h.dlen = swapw(sp->h.dlen);
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Transmission is a fill-in-the-blanks exercise, followed by the necessary byte swaps.

    sp->h.seq = swapl(sp->h.seq);

    sp->h.ack = swapl(sp->h.ack);

    return(sizeof(SCRATCHPHDR));

}

/* Make a SCRATCHP packet given command, flags and string data */

int make_scratchpds(GENFRAME *nfp, BYTE *dest, char *cmd,

                    BYTE flags, char *str)

{

    return(make_scratchp(nfp, dest, cmd, flags, str, strlen(str)+1));

}

/* Make a SCRATCHP packet given command, flags and data */

int make_scratchp(GENFRAME *nfp, BYTE *dest, char *cmd, BYTE flags,

                  void *data, int dlen)

{

    SCRATCHPKT *sp;

    ETHERHDR *ehp;

    int cmdlen=0;

    sp = (SCRATCHPKT *)getframe_datap(&genframe);

    sp->h.ver = SCRATCHPVER;                /* Fill in the blanks.. */

    sp->h.flags = flags;

    sp->h.seq = txbuff.trial;               /* Direct seq/ack mapping.. */

    sp->h.ack = rxbuff.in;                  /* ..to my circ buffer pointers! */

    if (cmd)

    {

        strcpy((char *)sp->data, cmd);      /* Copy command string */

        cmdlen = strlen(cmd) + 1;

    }

    sp->h.dlen = cmdlen + dlen;             /* Add command to data length */

    if (dlen && data)                       /* Copy data */

        memcpy(&sp->data[cmdlen], data, dlen);

    if (nfp->g.dtype & DTYPE_ETHER)

    {

        ehp = (ETHERHDR *)nfp->buff;

        ehp->ptype = PCOL_SCRATCHP;         /* Fill in more blanks */

        memcpy(ehp->dest, dest, MACLEN);

    }
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Implementation
If you have read the first chapter, you’ll not be surprised that I’m about to embark on a states-
and-signals exercise. The software receives the following signals.
• User (keystrokes)
• Network (packets)
• Timer (time-outs)
• Null (idle)

When it receives one of these, it may take any or none of the following actions.
• Change state
• Send a packet
• Update user display

    diaghdrs[diagidx] = sp->h;              /* Copy hdr into diagnostic log */

    diaghdrs[diagidx].ver = DIAG_TX;

    diagidx = (diagidx + 1) % NDIAGS;

    return(sp->h.dlen+sizeof(SCRATCHPHDR)); /* Return length incl header */

}

/* Transmit a SCRATCHP packet. given length incl. SCRATCHP header */

int put_scratchp(GENFRAME *nfp, WORD txlen)

{

    int len=0;

    if (txlen >= sizeof(SCRATCHPHDR))       /* Check for min length */

    {

        if (pktdebug)

        {

            printf ("Tx ");

            disp_scratchp(nfp);

            printf("   ");

        }

        swap_scratchp(nfp);                 /* Byte-swap SCRATCHP header */

        if (is_ether(nfp, txlen+sizeof(ETHERHDR)))

            txlen += sizeof(ETHERHDR);

        txcount++;

        len = put_net(nfp, txlen);          /* Transmit packet */

    }

    return(len);

}
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I’ll start with the simplest command, ident, which is completely stateless.

ident Command
When the user presses the I key, a broadcast Ident packet is emitted. If any responses are
received, the software displays them as part of its normal idle-state network polling.

First, I have a main loop that translates the key press into a signal.

The user key press is translated into a key signal, SIG_USER_IDENT. This signal is bounced
straight through the application code, do_apps(), without change (more on this function
later). It is then sent to the main SCRATCHP state machine, do_scratchp(), to be translated
into a network packet.

GENFRAME *nfp;

WORD txlen;

...

nfp = &genframe;                            /* Open net driver.. */

nfp->ftype = frametype = open_net(netcfg);  /* ..get frame type */

...

int i, keysig, connsig, sstep=0;

while (cmdkey != 'Q')               /* Main command loop.. */

{

    txlen = keysig = connsig = 0;

    if (sstep || kbhit())           /* If single-step or keypress..*/

    {

        k = getch();                /* ..get key */

        if (sstep)

            timeout(&errtimer, 0);  /* If single-step, refresh timer */

        cmdkey = toupper(k);        /* Decode keystrokes.. */

        switch (cmdkey)             /* ..and generate signals */

        {

        case 'I':                   /* 'I': broadcast ident */

            if (connstate != STATE_CONNECTED)

            printf("Broadcast ident request\n");

            keysig = SIG_USER_IDENT;

            break;

        }

    }

}

connsig = do_apps(&rxbuff, &txbuff, keysig);

txlen = do_scratchp(nfp, 0, connsig);

put_scratchp(nfp, txlen);       /* Transmit packet (if any) */
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The packet (in the buffer indicated by network frame pointer nfp) is then transmitted by
put_scratchp().

So what happens when you press the I key? With a bit of luck, your first packet is sent on
the network. If you’re fortunate enough to possess a protocol analyzer (which captures and
displays all network traffic), you might see a display similar to this.

Packet #1
  Packet Length:64
  Ethernet Header
  Destination:  FF:FF:FF:FF:FF:FF  Ethernet Broadcast
  Source:       00:C0:26:B0:0A:93  Rack2
  Protocol Type:0xFEEB
  Packet Data:
............iden  01 01 00 00 00 00 00 00 00 00 00 07 69 64 65 6E
t...............  74 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
..............    00 00 00 00 00 00 00 00 00 00 00 00 00 00

This is the actual byte stream on the network. The analyzer doesn’t understand the packet
contents, so some manual decoding is necessary. The six-byte Ethernet addresses are unique
to each adaptor, so yours should not be the same as mine! The analyzer has identified the
node name as Rack2, which, not coincidentally, is the same ID name as in the SCRATCHP
configuration file.

The actual data is below the 64-byte minimum frame size, so there is a significant amount
of padding. You can see the protocol version number (01) followed by the command flag (01).
Skipping the four-byte sequence and acknowledgment numbers, there is a length value of seven

int do_scratchp(GENFRAME *nfp, int rxlen, int sig)

{

    ...

    if (connstate == STATE_IDLE)            /* If idle state.. */

    {

        timeout(&errtimer, 0);              /* Refresh timer */

        switch (sig)                        /* Check signals */

        {

        case SIG_USER_IDENT:                 /* User IDENT request? */

            txlen = make_scratchpds(nfp, bcast, CMD_IDENT, FLAG_CMD, "");

            break;

        ...

        }

    }

    ...

}

txlen = make_scratchpds(nfp, bcast, CMD_IDENT, FLAG_CMD, "");

put_scratchp(nfp, txlen);

...
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(most significant byte first). The ident string is only six bytes, including a null terminator, so
one extra null character is significant, indicating that this is a wildcard search for all nodes.

Such a broadcast would be inadvisable on a network of any size, since I’d get a flood of
responses, but I’ll assume I have only two other nodes on the network, named vale and sun,
to get the responses.

Packet #2
  Packet Length:64
  Ethernet Header
  Destination:  00:C0:26:B0:0A:93  Rack2
  Source:       00:20:18:3A:ED:64  Sun  Protocol Type:0xFEEB
  Packet Data:
............iden  01 02 00 00 00 00 00 00 00 00 00 0A 69 64 65 6E
t.sun...........  74 00 73 75 6E 00 00 00 00 00 00 00 00 00 00 00
..............    00 00 00 00 00 00 00 00 00 00 00 00 00 00

Packet #3
  Packet Length:64
  Ethernet Header
  Destination:  00:C0:26:B0:0A:93  Rack2
  Source:       00:50:04:F7:7C:CA  Vale
  Protocol Type:0xFEEB
  Packet Data:
............iden  01 02 00 00 00 00 00 00 00 00 00 0B 69 64 65 6E
t.vale..........  74 00 76 61 6C 65 00 00 00 00 00 00 00 00 00 00
..............    00 00 00 00 00 00 00 00 00 00 00 00 00 00
The order in which these responses arrive is not significant, since both are transmitting at

more or less the same time.
The responses are received and decoded and displayed by the SCRATCHP application.

ident 'sun' address 00:20:18:3a:ed:64
ident 'vale' address 00:50:04:f7:7c:ca

In a real application, the Ident-to-address mapping would be stored (cached) for reuse
later. I will just display the addresses and discard them.

int do_scratchp(GENFRAME *nfp, int rxlen, int sig)

{    

    if (rxlen)                              /* If packet received.. */

    {

        rxflags = sp->h.flags;              /* Decode command & data areas */

        if (rxflags&FLAG_CMD || rxflags&FLAG_RESP)

            crlen = strlen((char *)sp->data) + 1;

        dlen = sp->h.dlen - crlen;          /* Actual data is after command */

        if (rxflags & FLAG_ERR)             /* Convert flags into signals */

            sig = SIG_ERR;

        ...

        else if (rxflags & FLAG_CMD)
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            sig = SIG_CMD;

        else if (rxflags & FLAG_RESP)

            sig = SIG_RESP;

        ...

    }

    if (connstate == STATE_IDLE)           /* If idle state.. */

    {

        timeout(&errtimer, 0);             /* Refresh timer */

        switch (sig)                       /* Check signals */

        {

        case SIG_CMD:                      /* Command signal? */

            if (!strcmp((char *)sp->data, CMD_IDENT))

            {                              /* IDENT cmd with my ID or null? */

                if (dlen<2 || !strncmp((char *)&sp->data[crlen], locid, dlen))

                {                          /* Respond to sender */

                    txlen = make_scratchp(nfp, getframe_srcep(nfp), CMD_IDENT,

                                          FLAG_RESP, locid, strlen(locid)+1);

                }

            }

            break;

        case SIG_RESP:                     /* Response signal? */

            if (!strcmp((char *)sp->data, CMD_IDENT))

            {                              /* IDENT response? */

                printf("Ident '%s'", (char *)&sp->data[crlen]);

                if ((p=getframe_srcep(nfp)) !=0 )

                {

                    printf(" address ");

                    pr6byt(p);

                }

                printf("\n");

            }

            break;

        ...

        }

    }

}
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If a packet is received (rxlen is non-zero), then a signal is raised. Because I am the com-
mand originator,  I’m interested in the response signal, SIG_RESP, which simply prints the
ident name and address.

Note that the same function also handles the case where I have received a command; that
is, I am the host being queried. In this case, a SIG_CMD is raised, and I must respond by putting
my (local) ident string, locid, in the response.

It may seem strange placing the client and server code side-by-side in the same function,
and this can make the code slightly more difficult to read, since these are two mutually exclu-
sive execution strands. However, the commonality of the support code (e.g., packet composi-
tion and decomposition) and the vital necessity of keeping any modifications to the client and
server in sync does favor this approach, even at the expense of some confusion over identity
(“… so, is this a client, or server, or what?”).

Connection
The bulk of the services require a logical connection between the two machines. I can put off
the creation of state and signal tables no longer (Table 2.1).

Connection State Machine
The state changes have been marked with angle brackets, so <IDENT> indicates a change to the
IDENT state. Network signals (from received packets) are in uppercase, whereas user and sys-
tem signals (key presses and time-outs) are in lowercase. The fail signal is raised after several
successive time-outs (i.e., the retry count has been exceeded).

Table 2.1 State and signal table.

Signals States

IDLE IDENT OPEN CONNECTED CLOSE
CMD Send RESP Send to app.

RESP Check RESP
Send START 
<OPEN> Send to app.

START
Send CONN
<CONNECTED>

Send CONN
<CONNECTED> Send CONN

CONN Send ERR
Send CONN
<CONNECTED> Send to app.

STOP Send ERR
Send STOP
<IDLE>

Send STOP
<IDLE> <IDLE>

ERR <IDLE>
Send STOP
<IDLE>

Send STOP
<IDLE>

timeout Resend IDENT Resend START Resend data Resend STOP

fail <IDLE>
Send ERR
<IDLE>

Send ERR
<IDLE> <IDLE>

open
Send IDENT
<IDENT>

close
Send END
<IDLE>

Send STOP
<CLOSE>
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Opening and Closing a Connection
To assist you in reading these tables, here’s a sample connection sequence for a client. That is,
the node requests the connection starting from the IDLE state.

1. receive open signal from user; send ident command; go to IDENT state
2. receive ident response; send start; go to OPEN state
3. receive conn; send conn; go to CONNECTED state

The client also shoulders the burden of handling connection errors. Each step is retried on
time-out.

1. no ident response; resend ident command
2. no conn response; resend start command

The sequence for the server, starting from IDLE, is much simpler.

1. receive ident command; send response; no state change
2. receive start; send conn; go to CONNECTED state

However, you must exercise a small amount of caution when assuming that the client is
responsible for all error handling. Imagine that the server’s conn response is corrupted; the
server then thinks it is connected, but the client doesn’t realize this, so it resends a start sig-
nal. Although already connected, the server must accept this error condition (the duplicate
start packet) and resend the conn.

There are two closure sequences: abrupt, in the event of an error, or slightly more graceful
under normal conditions.

The graceful closure involves the exchange of stop signals, whereas the abrupt closure is
the unilateral sending of an error packet. A potential problem with the latter is that the error
packet may go astray, then one side would think the connection was still open, while the
other thought it was closed. The only remedy for this situation is that, sooner or later, the
open side would send a data packet to the closed side and receive an error packet in response,
thus closing the connection.

The state machine software is simply a large set of nested conditionals, with entries for
each state–signal combination that requires an action.

int do_scratchp(GENFRAME *nfp, int rxlen, int sig)

{

    ...

    if (connstate == STATE_IDLE)            /* If idle state.. */

    {

        timeout(&errtimer, 0);              /* Refresh timer */

        switch (sig)                        /* Check signals */

        {

        case SIG_USER_IDENT:                 /* User IDENT request? */

            txlen = make_scratchpds(nfp, bcast, CMD_IDENT, FLAG_CMD, "");

            break;



56 Chapter 2: Introduction to Protocols: SCRATCHP

        case SIG_USER_OPEN:                 /* User OPEN request? */

            txlen = make_scratchpds(nfp, bcast, CMD_IDENT, FLAG_CMD, remid);

            buff_setall(&txbuff, 1);        /* My distinctive SEQ value */

            newconnstate(STATE_IDENT);      /* Start ident cycle */

            break;

        case SIG_CMD:                       /* Command signal? */

            ...

            break;

        case SIG_RESP:                      /* Response signal? */

            ..,

            break;

        case SIG_START:                     /* START signal? */

            getframe_srce(nfp, remaddr);

            buff_setall(&txbuff, 0x8001);   /* My distinctive SEQ value */

            txack = sp->h.seq;              /* My ack is his SEQ */

            buff_setall(&rxbuff, txack);

            *remid = 0;                     /* Clear remote ID */

            txlen = make_scratchp(nfp, remaddr, 0, FLAG_CONN, 0, 0);

            newconnstate(STATE_CONNECTED);  /* Go connected */

            break;

        case SIG_CONN:                      /* CONNECTED or STOP signal? */

        case SIG_STOP:

            txlen = make_scratchp(nfp, getframe_srcep(nfp), 0, FLAG_ERR, 0, 0);

            break;                          /* Send error */

        }

    }

    else if (connstate == STATE_IDENT)      /* If in identification cycle.. */

    {

        switch (sig)                        /* Check signals */

        {

        case SIG_RESP:                      /* Got IDENT response? */

            if (!strcmp((char *)sp->data, CMD_IDENT) && dlen<=IDLEN)

            {

                if (!remid[0] || !strcmp((char *)&sp->data[crlen], remid))

                {                           /* Get remote addr and ID */

                    getframe_srce(nfp, remaddr);
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                    strcpy(remid, (char *)&sp->data[crlen]);

                    txlen = make_scratchp(nfp, remaddr, 0, FLAG_START, 0, 0);

                    newconnstate(STATE_OPEN);

                }                           /* Open up the connection */

            }

            break;

        case SIG_ERR:                       /* Error response? */

            newconnstate(STATE_IDLE);       /* Go idle */

            break;

        case SIG_TIMEOUT:                   /* Timeout on response? */

            n = strlen(remid) + 1;          /* Resend IDENT command */

            txlen = make_scratchp(nfp, bcast, CMD_IDENT, FLAG_CMD, remid, n);

            break;

        case SIG_FAIL:                      /* Failed? */

            newconnstate(STATE_IDLE);       /* Go idle */

            break;

        }

    }

    else if (connstate == STATE_OPEN)       /* If I requested a connection.. */

    {

        switch (sig)                        /* Check signals */

        {

        case SIG_START:

        case SIG_CONN:                      /*  Response OK? */

            buff_setall(&rxbuff, sp->h.seq);

            txlen = make_scratchp(nfp, remaddr, 0, FLAG_CONN, 0, 0);

            newconnstate(STATE_CONNECTED);  /* Send connect, go connected */

            break;

        case SIG_STOP:                      /* Stop already? */

            txlen = make_scratchp(nfp, remaddr, 0, FLAG_STOP, 0, 0);

            newconnstate(STATE_IDLE);       /* Send stop, go idle */

            break;

        case SIG_ERR:                       /* Error response? */

            newconnstate(STATE_IDLE);

            break;                          /* Go idle */
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        case SIG_TIMEOUT:                   /* Timeout on response? */

            txlen = make_scratchp(nfp, remaddr, 0, FLAG_START, 0, 0);

            break;                          /* Resend request */

        case SIG_FAIL:                      /* Failed? */

            newconnstate(STATE_IDLE);       /* Go idle */

            break;

        }

    }

    else if (connstate == STATE_CONNECTED)  /* If connected.. */

    {

        switch (sig)                        /* Check signals */

        {

        case SIG_START:                     /* Duplicate START? */

            txlen = make_scratchp(nfp, remaddr, 0, FLAG_CONN, 0, 0);

            break;                          /* Still connected */

        case SIG_TIMEOUT:                   /* Timeout on acknowledge? */

            buff_retry(&txbuff, buff_trylen(&txbuff));

                                            /* Rewind data O/P buffer */

            /* Fall through to normal connect.. */

        case SIG_CONN:                      /* If newly connected.. */

        case SIG_NULL:                      /* ..or still connected.. */

            ...

            break;

        case SIG_USER_CLOSE:                /* User closing connection? */

            txlen = make_scratchp(nfp, remaddr, 0, FLAG_STOP, 0, 0);

            newconnstate(STATE_CLOSE);      /* Send stop command, go close */

            break;

        case SIG_STOP:                      /* STOP command? */

            txlen = make_scratchp(nfp, remaddr, 0, FLAG_STOP, 0, 0);

            newconnstate(STATE_IDLE);       /* Send ack, go idle */

            break;
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The state changes are handled by newconnstate(), which allows a simple diagnostic print-
out if the appropriate debug option is enabled. It also refreshes the time-out timer, on the
assumption that no time-out is required if the system is constantly changing state (or re-enter-
ing the same state).

        case SIG_ERR:                       /* Error command? */

            newconnstate(STATE_IDLE);       /* Go idle */

            break;

        case SIG_FAIL:                      /* Application failed? */

            txlen = make_scratchp(nfp, remaddr, 0, FLAG_ERR, 0, 0);

            newconnstate(STATE_IDLE);       /* Send stop command, go idle */

            break;

        }

    }

    else if (connstate == STATE_CLOSE)      /* If I'm closing connection.. */

    {

        switch (sig)                        /* Check signals */

        {

        case SIG_STOP:                      /* Stop or error command? */

        case SIG_ERR:

            newconnstate(STATE_IDLE);       /* Go idle */

            break;

        case SIG_TIMEOUT:                   /* Timeout on response? */

            txlen = make_scratchp(nfp, remaddr, 0, FLAG_STOP, 0, 0);

            break;                          /* Resend stop command */

        }

    }

    return(txlen);

}

/* Do a connection state transition, refresh timer, do diagnostic printout */

void newconnstate(int state)

{

    if (state!=connstate)

    {

        if (statedebug)

            printf("connstate %s\n", connstates[state]);
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Maintaining a Connection
A connection supports the transfer of data between the two systems. The software must
• send and receive data, keeping in sync with the other node,
• reject duplicate data,
• resend lost data,
• avoid sending too much data to the other node, and
• avoid sending too little data in each packet.

To address the first point, imagine that both nodes have circular buffers of data, and you
are simply trying to keep the circular buffer pointers in sync. The circular buffer pointers have
32-bit values (even though the buffer size doesn’t warrant it) to allow a simple mapping onto
the sequence and acknowledgment values. What is this mapping? Imagine a data block in
traveling from one application into the transmit circular buffer, across the network, into the
receive circular buffer, and into another application.

Figure 2.9 shows the data ABCDE in transit, on the assumption that it had to be transmitted
over the network in two blocks, and a single acknowledgment was generated for both blocks.

It can be seen that the sequence pointer for the transfer is equivalent to the sender’s trial
pointer, whereas the acknowledgment value is equivalent to the sender’s in pointer. This
accounts for the following code in the routine used to create SCRATCHP packets.

        if (state != STATE_CONNECTED)

            newappstate(APP_IDLE);          /* If not connected, stop app. */

    }

    connstate = state;

    errcount = 0;

    timeout(&errtimer, 0);                  /* Refresh timeout timer */

}

/* Make a SCRATCHP packet given command, flags and data */

int make_scratchp(GENFRAME *nfp, BYTE *dest, char *cmd, BYTE flags,

                  void *data, int dlen)

{

    SCRATCHPKT *sp;

    ...

    sp = (SCRATCHPKT *)getframe_datap(&genframe);

    ...

    sp->h.seq = txbuff.trial;             /* Direct seq/ack mapping.. */

    sp->h.ack = rxbuff.in;                /* ..to my circ buffer pointers! */

    ...

}
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Figure 2.9 Data flow through a connection.

There are many ways to structure the connection code. The hardest job is to keep a clear
indication of how it reaches its decisions as to whether to accept incoming packet data and
whether to send data, acknowledgments, or both. First, I present the code for the receive deci-
sions.
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int do_scratchp(GENFRAME *nfp, int rxlen, int sig)

{

    ...

    LWORD oldrx, rxw, acked=0;
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Usually, the incoming sequence value will equal the Receive buffer in value, so the incom-
ing data block can be accepted. If it is not, but it is still within the data window size, then the
block is probably a duplicate of a previous one and may be ignored (although the most likely
reason for the duplicate is that the latest acknowledgment has gone astray, so it’s best to
retransmit it). If the incoming data block is outside the data window, then it can’t be a dupli-
cate, so an error is flagged.

    ...

            /* Check received packet */

            if (rxlen > 0)                  /* Received packet? */

            {

               newconnstate(connstate);    /* Refresh timeout timer */

               /* Rx seq shows how much of his data he thinks I've received */

               oldrx = rxbuff.in - sp->h.seq; /* Check for his repeat data */

               if (oldrx == 0)                   /* Accept up-to-date data */

                   buff_in(&rxbuff, &sp->data[crlen], dlen);

               else if (oldrx <= WINDOWSIZE)  /* Respond to repeat data.. */

                   tx = 1;                  /* ..with forced (repeat) ack */

               else                          /* Reject out-of-window data */

                   errstr = "invalid SEQ";

               /* Rx ack shows how much of my data he's actually received */

               acked = sp->h.ack - txbuff.out; /* Check amount acked */

               if (acked <= buff_trylen(&txbuff))

                   buff_out(&txbuff, 0, (WORD)acked);  /* My Tx data acked */

               else if (acked > WINDOWSIZE)

                   errstr = "invalid ACK";

               rxw = rxbuff.in - txack;        /* Check Rx window.. */

                if (rxw >= WINDOWSIZE/2)        /* ..force Tx ack if 1/2 full */

                   tx = 1;

                if (errstr)                     /* If error, close connection */

               {

                   printf("Protocol error: %s\n", errstr);

                   txlen = make_scratchp(nfp, remaddr, 0, FLAG_ERR, 0, 0);

                   newconnstate(STATE_IDLE);

               }

            }

    ...

}
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A similar test is applied to the incoming acknowledgment value. This must be within the
data window to be meaningful. If it is outside, it is an error condition.

The decision to transmit is contingent on having data to transmit or a pressing need to
send an acknowledgment. It is tempting to generate an acknowledgment for every incoming
packet, but this would significantly increase network traffic and the workload of the sender
and receiver. Instead, wait until the data window is half full, the sender has duplicated a
packet, or you have data to send (don’t forget that every one of the data transmissions always
has an acknowledgment field). This is hardly an optimal strategy, but it serves reasonably
well.

The Applications
Now that all the hard work of creating, maintaining, and destroying connections is done,
there is the relatively simple job of creating application code for
• ECHO (connection diagnostic),
• DIRectory of files,
• GET (file transfer: read), and
• PUT (file transfer: write).

To isolate them from the vagaries of the network, these applications preside over two cir-
cular buffers: a Receive buffer that is automatically filled by incoming network data and a
Transmit buffer that is automatically emptied into outgoing network packets. As far as the
applications are concerned, data transfers are reliable. The only error they may see is a cata-
strophic failure of the connection. All other errors are handled by the lower levels.

To also isolate the applications from the vagaries of the user, they receive predigested user
actions in the form of signals. They can also emit signals to the lower layers; for example, to
close a connection if the user requests it (Figure 2.10).

          /* Check whether a transmission is needed */

          txw = WINDOWSIZE - buff_trylen(&txbuff);/* Check Tx window space */

          trylen = minw(buff_untriedlen(&txbuff), /* ..size of data avail */

                        minw(SCRATCHPDLEN, txw)); /* ..and max packet len */

          if (trylen>0 || sig==SIG_TIMEOUT || tx) /* If >0, or timeout.. */

          {                                       /* ..or forced Tx.. */

              txlen = make_scratchp(nfp, remaddr, 0, FLAG_CONN, 0, trylen);

              buff_try(&txbuff, sp->data, trylen);/* ..do a transmission */

              txack = rxbuff.in;

          }

          if (buff_trylen(&txbuff) == 0)  /* If all data acked.. */

              newconnstate(connstate);    /* refresh timer (so no timeout) */

          break;
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Figure 2.10 Application and connection signals.

There is an inherent symmetry between the sending and receiving of files over the connec-
tion; to exploit this, I have a sender state and a receiver state, where a put command makes
the client a sender and the server a receiver, and the get command does the converse.
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/* Do application-specific tasks, given I/P and O/P buffers, and user signal

** Return a connection signal value, 0 if no signal */

int do_apps(CBUFF *rxb, CBUFF *txb, int usersig)

{

    WORD len;

    BYTE lenb;

    int connsig=0;

    char cmd[CMDLEN+1];

    if (sigdebug && usersig && usersig>=USER_SIGS)

        printf("Signal %s ", signames[usersig]);

    connsig = usersig;                      /* Send signal to connection */

    if (connstate != STATE_CONNECTED)       /* If not connected.. */

        ;                                   /* Do nothing! */

    else if (appstate == APP_IDLE)          /* If application is idle.. */

    {

        if (usersig == SIG_USER_DIR)        /* User requested directory? */

        {                                   /* Send command */
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            buff_in(txb, (BYTE *)CMD_DIR, sizeof(CMD_DIR));

        }

        else if (usersig == SIG_USER_GET)   /* User 'GET' command? */

        {

            filelen = 0;                    /* Open file */

            if ((fhandle = fopen(filename, "wb"))==0)

                printf("Can't open file\n");

            else

            {                              /* Send command & name to remote */

                buff_instr(txb, CMD_GET " ");

                buff_in(txb, (BYTE *)filename, (WORD)(strlen(filename)+1));

                newappstate(APP_FILE_RECEIVER); /* Become receiver */

            }

        }

        else if (usersig == SIG_USER_PUT)   /* User 'PUT' command? */

        {

            filelen = 0;                    /* Open file */

            if ((fhandle = fopen(filename, "rb"))==0)

                printf("Can't open file\n");

            else

            {                              /* Send command & name to remote */

                buff_instr(txb, CMD_PUT " ");

                buff_in(txb, (BYTE *)filename, (WORD)(strlen(filename)+1));

                newappstate(APP_FILE_SENDER);   /* Become sender */

            }

        }

        else if (usersig == SIG_USER_ECHO)  /* User equested echo? */

        {

            buff_in(txb, (BYTE *)CMD_ECHO, sizeof(CMD_ECHO));

            txoff = rxoff = 0;              /* Send echo command */

            newappstate(APP_ECHO_CLIENT);   /* Become echo client */

        }

        else if ((len=buff_strlen(rxb))>0 && len<=CMDLEN)

        {

            len++;                          /* Possible command string? */

            buff_out(rxb, (BYTE *)cmd, len);

            if (!strcmp(cmd, CMD_ECHO))     /* Echo command? */

                newappstate(APP_ECHO_SERVER);   /* Become echo server */

            else if (!strcmp(cmd, CMD_DIR)) /* DIR command? */

                do_dir(txb);                    /* Send DIR O/P to buffer */
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            else if (!strncmp(cmd, CMD_GET, 3)) /* GET command? */

            {                                   /* Try to open file */

                filelen = 0;

                strcpy(filename, &cmd[4]);

                if ((fhandle = fopen(filename, "rb"))!=0)

                    newappstate(APP_FILE_SENDER);   /* If OK, become sender */

                else                           /* If not, respond with null */

                    buff_in(txb, (BYTE *)"\0", 1);

            }

            else if (!strncmp(cmd, CMD_PUT, 3)) /* PUT command? */

            {

                filelen = 0;

                strcpy(filename, &cmd[4]);      /* Try to open file */

                fhandle = fopen(filename, "wb");

                newappstate(APP_FILE_RECEIVER); /* Become receiver */

            }

        }

        else                              /* Default: show data from remote */

        {

            len = buff_out(rxb, apptemp, TESTLEN);

            apptemp[len] = 0;

            printf("%s", apptemp);

        }

    }

    else if (appstate == APP_ECHO_CLIENT)   /* If I'm an echo client.. */

    {

        if (usersig==SIG_USER_CLOSE)        /* User closing connection? */

            newappstate(APP_IDLE);

        else

        {                                   /* Generate echo data.. */

            if ((len = minw(buff_freelen(txb), TESTLEN)) > TESTLEN/2)

            {

                len = rand() % len;             /* ..random data length */

                buff_in(&txbuff, &testdata[txoff], len);

                txoff = (txoff + len) % TESTLEN;/*..move & wrap data pointer*/

            }

            if ((len = buff_out(rxb, apptemp, TESTLEN)) > 0)

            {                               /* Check response data */

                if (!memcmp(apptemp, &testdata[rxoff], len))
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                {                               /* ..match with data buffer */

                    rxoff = (rxoff + len) % TESTLEN;/*..move & wrap data ptr*/

                    testlen += len;

                    printf("%lu bytes OK      \r", testlen);

                }

                else

                {

                    printf("\nEcho response incorrect!\n");

                    connsig = SIG_STOP;     /* If error, close connection */

                }

            }

        }

    }

    else if (appstate == APP_ECHO_SERVER)   /* If I'm an echo server.. */

    {

        if (usersig == SIG_USER_CLOSE)      /* User closing connection? */

            newappstate(APP_IDLE);

        else if ((len = minw(buff_freelen(txb), TESTLEN))>0 &&

                 (len = buff_out(rxb, apptemp, len)) > 0)

            buff_in(txb, apptemp, len);     /* Else copy I/P data to O/P */

    }

    else if (appstate == APP_FILE_RECEIVER) /* If I'm receiving a file.. */

    {

        while (buff_try(rxb, &lenb, 1))     /* Get length byte */

        {                                   /* If rest of block absent.. */

            if (buff_untriedlen(rxb) < lenb)

            {

                buff_retry(rxb, 1);         /* .. push length byte back */

                break;

            }

            else

            {

                filelen += lenb;

                buff_out(rxb, 0, 1);        /* Check length */

                if (lenb == 0)              /* If null, end of file */

                {

                    if (!fhandle || ferror(fhandle))

                        printf("ERROR writing file\n");

                    fclose(fhandle);
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Summary
I’ve looked at the elements of a protocol and how it can be slotted into the ISO standardiza-
tion framework. There are a lot of decisions to be made when creating a new protocol, and I
looked at the client–server model, with both modal and modeless clients. The logical connec-
tion is at the heart of any reliable data transfer scheme, and connection management (open-
ing, maintaining, and closing the connection) requires very careful organization.

                    fhandle = 0;

                    newappstate(APP_IDLE);

                }

                else                        /* If not null, get block */

                {

                    buff_out(rxb, apptemp, (WORD)lenb);

                    if (fhandle)

                        fwrite(apptemp, 1, lenb, fhandle);

                }

            }

        }

    }

    else if (appstate == APP_FILE_SENDER)  /* If I'm sending a file.. */

    {                                       /* While room for another block.. */

        while (fhandle && buff_freelen(txb)>=BLOCKLEN+2)

        {                                 /* Get block from disk */

            lenb = (BYTE)fread(apptemp, 1, BLOCKLEN, fhandle);

            filelen += lenb;

            buff_in(txb, &lenb, 1);         /* Send length byte */

            buff_in(txb, apptemp, lenb);    /* ..and data */

            if (lenb < BLOCKLEN)            /* If end of file.. */

            {                               /* ..send null length */

                buff_in(txb, (BYTE *)"\0", 1);

                fclose(fhandle);

                fhandle = 0;

                newappstate(APP_IDLE);

            }

        }

    }

    return(connsig);

}
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In my implementation of the nonstandard SCRATCHP protocol, I looked at the issues of
low-level packet storage and addressing and the strategies for buffering, byte-swapping,
transmitting, and receiving packets.

The SCRATCHP utility I developed can be used to evaluate the performance of my proto-
col or as a test bed for the development of new protocols. It has some of the features of a
“real” protocol (address resolution, reliable connection) but is implemented in a much sim-
pler fashion.

The main weakness of my implementation is the inability to handle more than one con-
nection at a time. In future, I’ll use the socket concept to group together all the information
for one connection and support multiple sockets, where each may be in a different state.

Source Files

ether3c.c 3C509 Ethernet card driver

etherne.c NE2000 Ethernet card driver

net.c Network interface functions

netutil.c Network utility functions

pktd.c Packet driver (BC only)

scratchp.c SCRATCHP protocol

serpc.c or serwin.c Serial drivers (BC or VC)

dosdef.h MS-DOS definitions (BC only)

ether.h Ethernet definitions

net.h Network driver definitions

netutil.h Utility function and general frame definitions

scratchp.h SCRATCHP protocol definitions

serpc.h Serial driver definitions (BC or VC)

win32def.h Win32 definitions (VC only)



70 Chapter 2: Introduction to Protocols: SCRATCHP

SCRATCHP Utility

Utility Test bed for a nonstandard protocol

Usage scratchp [configfile]

Reads tcplean.cfg from default directory if no file specified

Options None

Example scratchp test.cfg

Interface Single keypress with user prompts

[I] Identify remote node

[O] Open connection to remote node

[Q] Quit

When connected

[D] Directory of remote

[E] Echo data test

[G] Get file from remote

[P] Put file into remote

Config net to identify network type

ident to identification string for node

Modes Defaults to server mode unless otherwise directed


