
I
s it possible to write object-ori-
ented (OO) programs in a non-
OO language like C? How can
you implement an OO design in
a small embedded system with-

out a C++ compiler available? How

can you improve your coding style in
C to make your code more re-usable,
modular, and robust? How do inheri-
tance and polymorphism actually
work? Is the overhead acceptable in
your system? How much convenience

and expressiveness do you have to
compromise by implementing OO
design in C rather than in an OO lan-
guage? In this article I address these
questions by presenting a small,
portable, and efficient C language
implementation of the following OO
concepts:

■ Encapsulation—packaging data
with functions into classes, as well
as techniques for information hid-
ing and modularity

■ Inheritance—the ability to define
new classes and behavior based on
existing classes to obtain code re-
use and code organization

■ Polymorphism—the same message
sent to different objects, which
results in behavior that is dependent
on the nature of the object receiving
the message

In my implementation I adopt a Java
language approach to inheritance and
polymorphism.1 Class inheritance (or
implementation inheritance) is provid-
ed only as a single inheritance model
with the object abstract class at the root
of the class hierarchy. In contrast, the
implementation permits multiple
implementation inheritance, allowing
classes to implement many Java-style
interfaces.

In spite of unquestioned advantages
of OO languages, C still remains the
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Although object-oriented designs are largely language-independent,
most literature assumes C++, Smalltalk, or Java for OO 
implementations. Here’s a lower-level view that assumes only a 
procedural language like C for embedded developers who want 
to apply OO without switching to an OO language.



best known and widespread implemen-
tation language. Many embedded sys-
tems today still simply do not offer any
other choice. Consequently, most
developers still exclusively use proce-
dural programming techniques, and
many are unaware that it’s quite easy
to implement key OO concepts direct-
ly in C. Promoting this awareness may
be important for at least two reasons.

The first is leveraging OO technolo-
gy. Most OO designs can be imple-
mented in C, but many developers
wouldn’t consider them without the
availability of an OO language. This
unnecessarily limits application of the
technology.

The second is smoothing transition
from procedural to OO thinking.
Migrating to OO technology can
require quite a leap in your way of
thinking. Implementing OO concepts
in currently used and familiar lan-
guages gives you an opportunity to get
exposed to the new programming para-
digm right away and without major
investment.

ENCAPSULATION

You can achieve packaging of
data with functions in C by
making each class attribute

(instance variable) a field in the C
struct. You implement class methods
as C functions that take as their first
argument the pointer to the structure of

attributes (the this pointer). You can
further strengthen the association
between the attributes and methods by
a consistent naming convention for
method names. The most popular con-
vention that I adopt is to concatenate
the structure name (class name) with
the operation name. This altering of
function names is part of name deco-
rating (also known as name mangling)
and is performed implicitly by most
C++ compilers. Because name deco-
rating eliminates method name clashes
between different classes, it effectively
partitions the flat C function name-
space into separate namespaces nested
within classes.

The next aspect I address by a cod-
ing convention is access control. In C,
you can only indicate your intention
for the level of access permitted to a
particular attribute or a method.
Conveying this intention through the
name of an attribute or a method is bet-
ter than just expressing it in the form of
a comment at the declaration point. In
this way, unintentional access to class
members in any portion of the code
will be easier to detect. Most OO
designs distinguish the following three
levels of protection:

■ private—accessible only from with-
in the class

■ protected—accessible only by the
class and its subclasses

■ public—available anywhere (de-
fault in C)

I use a double underscore prefix
(__foo) for private attributes. Note that
there is usually no need to expose pri-
vate methods (helper methods) in the
class declaration file (.H file). Rather,
you should hide them completely in
the implementation file (declare them
static in the .C file). For protected
members I use a single underscore
(_foo, String_Foo). I avoid using under-
scores in the public members at all
(foo, StringFoo). So, with this conven-
tion, the presence of underscores in a
name is a signal that access rights
should be checked against the context
of use. Because public members can be
used without any constraints, they
don’t need any special adornment.

Every class must provide at least
one constructor method for initializa-
tion of its attribute structure.
Constructor calls should be the only
method of initialization. Otherwise, the
internal structure of an object must be
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exposed, thereby compromising
encapsulation.

Optionally, a class may provide a
destructor, which is a method responsi-
ble for releasing the resources allocat-
ed during the lifetime of an object.
Whereas there may be many ways of
instantating a class (different construc-
tors taking different arguments), there

should be only one way of destroying
an object.

Because of the special role of con-
structors and destructors, I again
advise a consistent naming pattern. I
use base names “Con” (FooCon1,
FooCon2) and “Des” (FooDes) for con-
structors and destructors, respectively.
I suggest that constructors return either

the pointer to a properly initialized
attribute structure, or NULL if initializa-
tion fails. The destructor should take
only the this argument and should
return void.

Objects can be allocated statically,
dynamically (on the heap), or automat-
ically (on the stack). Because of C syn-
tax limitations, you generally cannot
initialize objects through a constructor
call at the definition point. For static
objects, you cannot call a constructor
at all, because function calls aren’t per-
mitted in a static initializer. Automatic
objects must all be defined at the
beginning of a block and at this point,
you will generally not have enough ini-
tialization information to call an appro-
priate constructor. Therefore, you will
often have to divorce object allocation
from initialization. You should treat
objects as all other C variables, in that
you never use them before initializa-
tion. Typically, you’ll want to initialize
objects as soon as the initialization
information becomes available.

Some objects may require destruc-
tion, and calling destructors for all
objects when they become obsolete or
go out of scope is a good programming
practice. Later, I’ll show that a virtual
destructor is available for all classes.

INHERITANCE

Inheritance is a mechanism by
which new and more specialized
classes can be defined in terms of

existing classes. When a child class
(subclass) inherits from a parent class
(superclass), the subclass then includes
the definitions of all the attributes and
methods that the superclass defines.
Usually, the subclass extends the
superclass by adding its own attributes
and methods. Objects that are instances
of the subclass contain all data defined
by the subclass and its parent classes,
and they are able to perform all opera-
tions defined by this subclass and its
parents.

This kind of class relationship can
be implemented in C by embedding the
parent class attribute structure as the
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first member of the child class struc-
ture. As shown in Figure 1, this struc-
turing results in such an attribute align-
ment that a pointer to the Child class
can always be safely cast (upcast) on
the pointer to the Parent class. In par-
ticular, this pointer can always be
passed to any C function expecting a
pointer to the Parent class. (To be
strictly correct in C, you should explic-
itly upcast this pointer.) This means
that all methods of parent classes are
automatically available to child class-
es—in other words, they are inherited.

This simple approach works only for
single inheritance (one parent class)
because a class with many parent
classes cannot align attributes with all
of those parents.

I’ve named the inherited member
super to make the inheritance relation-
ship between classes more explicit and
to increase the similarity to Java. The
super member provides a handle to
access the superclass attributes. For
example, a grandchild class can access
its grandparent protected attribute _foo
as this-> super.super._foo.

Inheritance adds responsibilities to
class constructors and the destructor.
Because each child object contains an
embedded parent object, the child con-
structor must take care of initializing
the portion controlled by the parent. To
avoid any potential dependencies, the
superclass constructor should be called
before initializing the attributes.
Exactly the opposite holds true for the
destructor. The inherited portion

should be destroyed as the last step.
In my implementation, I also adopt

from Java the concept of a single
abstract base class Object. This means
that no class can be defined as stand-
alone, but rather must extend some
other class, with the Object class at the
root of the class hierarchy. This setup
is especially convenient in this hybrid
implementation (OO add-on to a pro-
cedural language) because every object
can be ultimately treated as the Object
class instance—which clearly sepa-
rates objects from all other types. This
differs from the C++ approach, in

which each structure is equivalent to a
class. As I will demonstrate, my Object
class adds important behavior, subse-
quently inherited by all other classes,
thus enabling polymorphism.

Listing 1 shows the declaration of a
basic class String extending the class
Object. The class encapsulates a char-
acter buffer (__buffer), provides two
ways of construction (StringCon1,
StringCon2), a destructor, and a method
for read-only access to the character
buffer StringToChar. The class is
declared by means of preprocessor
macros: CLASS, VTABLE, METHODS, and
END_CLASS, which are defined and docu-
mented in object.h, available to down-
load at www.embedded.com/code.

POLYMORPHISM

An extended class often over-
rides the behavior of its super-
class by providing new imple-

mentations of one or more inherited
methods. For example, class Object
defines destructor Object_Des. Class
String, which extends Object (refer to
Listing 1), overrides this behavior with
its own destructor, StringDes. Let’s
assume that somewhere in your code
you destroy a heterogeneous container
holding generic Object pointers.
Because String (as all other classes)
inherits from Object, some pointers
from the collection may actually point
to String objects. Your code will be
polymorphic if it invokes the correct
implementation StringDes to destroy
String objects (and possibly other
implementations for objects of other
classes). Polymorphic behavior
requires method resolution depending
on the run-time class of the object
(String) and not the class of the point-
er (Object), and is known as dynamic
binding.

You can efficiently implement
dynamic binding in C by introducing
an additional level of indirection in
method resolution. Rather than calling
a method (C function) directly, you
call a function pointed to by a function
pointer defined in a class descriptor
referenced by each object.2 The class

LISTING 1
Declaration of String class.

#include “object.h”
/** Character String class */
CLASS(String, Object)

char *__buffer; /* private buffer */
VTABLE(String, Object)
METHODS

/* public constructors */
String StringCon1(String this,

const char *str);
String StringCon2(String this, 

String other);

/* public destructor */
void StringDes(String this);

/* public to char conversion */
const char *StringToChar(String this);

END_CLASS

FIGURE 1
Declaration of “Child” attribute structure with embedded “Parent” as the first
member “super” (a); Memory layout (b).

(a)
struct Child {
    struct Parent super;
    /* other attributes */
    . . .
};

(b)
this

attributes inherited
from Parent

attributes added
by Child
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descriptor (sometimes called the virtu-
al table or VTABLE)3 is a record of
function pointers corresponding to vir-
tual functions—in other words, meth-
ods intended to be overridden by sub-
classes.

In the previous example, the Object
class implementation of a virtual
destructor looks as follows. The class

descriptor of the Object class declares
function pointer Des:

struct ObjectClass {
...

void (*Des)(struct Object*);
};

Each instance of class Object maintains

a pointer (called a virtual pointer or
VPTR—see Eckel, 1995) to this class
descriptor:

struct Object {
struct ObjectClass *__vptr;

};

Dynamic binding for the virtual
destructor now takes the form:

(*obj->__vptr->Des)(obj);

where obj points to the Object structure.
Note that the pointer obj is used here

twice: once for resolving the method
and once as the this argument.
Dynamic binding requires two more
memory accesses and one more addi-
tion than a direct function call
(Rumbaugh, 1991). The memory cost
of late binding is storing the virtual
pointer (inherited from Object) in each
object, plus the cost of storing one
VTABLE per class.

Class descriptors can themselves be
treated as sole instances of VTABLE
classes (a class being represented as a
VTABLE object). Therefore you can
apply the technique of nesting
VTABLEs to achieve inheritance of
virtual functions. This is encapsulated
in the macro VTABLE (see Listing 1). All
class descriptors inherit directly or
indirectly from the ObjectClass descrip-
tor, so all inherit the virtual destructor.

Inheritance slightly complicates the
syntax of virtual function calls. In gen-
eral, you will have to upcast the object
pointer (on the Object class) and down-
cast the virtual pointer __vptr (on the
specific class descriptor). These opera-
tions, as well as double object pointer
referencing, are encapsulated in the
macros VCALL and END_CALL. For exam-
ple, the virtual destructor call for
object obj of any class takes the form:

VCALL(obj, Object, Des)END_CALL;

If a virtual function takes arguments
other than this, they should be listed
before macro END_CALL. For example:

Portable Inheritance and Polymorphism
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result = VCALL(obj, FooClass, Foo) ,5 ,i+j 
END_CALL;

where obj points to a FooClass or any
subclass of FooClass and virtual function
Foo is defined in FooClass VTABLE.

Virtual tables need to be initialized
through their constructors. The initial-
ization performed by the VTABLE
constructor can be broken into two
steps: copying the inherited VTABLE,
and customizing it by overriding the
implementation of the chosen virtual
functions.

The first step is generated automati-
cally by the macro BEGIN_VTABLE.
Copying the inherited VTABLE guar-
antees that adding new virtual func-
tions to the superclass doesn’t break
any subclasses; in other words, no
manual changes to subclasses are nec-
essary (you will only have to recom-
pile the subclass code). Unless a given
class explicitly chooses to override the
superclass behavior, the inherited
implementation is adequate. Of course
if a class declares its own virtual func-
tions, the corresponding function
pointers will not be initialized during
this step.

I also provide the macros VMETHOD
and IMETHOD to facilitate the second step
of binding virtual functions to their
implementation. If you cannot provide
implementation for a given method—
you intend it to be a “pure virtual func-
tion” implemented by subclasses—you
should still initialize the function
pointer with an Object_NoIm dummy
implementation. Object_NoIm interrupts
execution (through a failing assertion),
which helps detecting unimplemented
abstract methods at run-time.

As I’ve mentioned, each object
keeps a pointer (virtual pointer) to its
class descriptor, inherited from the
object class. The virtual pointer needs
to be set up correctly during object ini-
tialization, that is, in the constructor.
This must be done after the superclass
constructor call because the superclass
constructor will set this pointer to point
to the superclass VTABLE. If the
VTABLE for the object being initial-
ized isn’t set up yet, the VTABLE con-
structor should be called. These two
steps are accomplished by invoking the
macro VHOOK. Note that by the time the
superclass constructor has done the
same with the superclass VTABLE, so

the whole class hierarchy is initialized
properly.

Listing 2 shows the definition of the
class String declared in Listing 1. The
VTABLE of this class overrides only
the virtual destructor implementation. I
used explicit upcasting of the this
argument of the destructor before
assigning it to VMETHOD (Object, Des) to
avoid compiler warnings. Note also
how the constructor first calls the
superclass constructor, then hooks the
virtual pointer, and finally initializes
attributes.

INTERFACES

Sometimes you need only to
define abstract methods that an
object must support, but not nec-

essarily commit to a specific imple-
mentation. Manipulating objects solely
in terms of the interfaces greatly
reduces implementation dependencies
between subsystems, so that one of the
major principles of reusable OO design
is: “program to interface, not to imple-
mentation.”4 Java addresses this design
need very elegantly with support for
interfaces (Gosling, 1995 and Arnold,
1996).5

My approach to Java-style interfaces
in C is just a generalization of the
VTABLE concept. What if a class
defined only abstract methods (purely
virtual functions) but did not define
any attributes? Such a class would be
represented only by its VTABLE.
Inheriting from this class would only
require maintaining a virtual pointer to
the corresponding VTABLE and of
course, implementing all abstract
methods. An object could easily main-
tain many such pointers, so multiple
inheritance from such specific classes
(interfaces) would be simple.

This doesn’t completely solve the
memory alignment problem. You can-
not simply use a pointer to an object in
a place where an interface is expected,
because there is no way of finding the
corresponding VTABLE. This is
because the additional virtual pointers
cannot be aligned with the virtual
pointer __vptr inherited from Object.

FIGURE 2
Memory layout of class Foo implementing interface Fooable. Pointer foo allows
you to access the Fooable VTABLE (*(*foo)) as well as to reconstruct the pointer
obj to the class attribute struct (obj = (Object)((char*)foo - (*foo) -> _offset).

Struct Foo FooClass VTABLE

_vptr

. . .

. . .

Fooable

. . .

. . .

_offset

Fooable function
pointers

obj

foo

_offset

. . .
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As always in this kind of situation, you
can use an additional level of indirec-
tion to solve the problem. As shown in
Figure 3, a pointer foo to a Fooable
VPTR located inside an object that
implements interface Fooable is a good
starting point. This pointer can be used
both to access the Fooable virtual table
(to resolve the virtual call) and to
reconstruct the location of the object
(to provide the this argument).

Interfaces differ significantly from
classes—they don’t descend from
Object (because they define no attribut-
es) and they define different
VTABLEs containing the __offset
field. Note that virtual functions
defined by interfaces also must use the
this pointer, but it should be of gener-
ic Object type. The sample code I dis-
cuss in the next section demonstrates
how you can use interfaces to write
code without committing to any partic-
ular implementation.

SAMPLE CODE

To illustrate the concepts I’ve
discussed, I’ve provided an
implementation of the simple

class hierarchy depicted in Figure 3.
(Complete listings are provided on the
ESP Web site, www.embedded.com/
code). Class Shape extends Object and
implements the Scalable interface. This
is an abstract class (designed for inher-
itance only), so it protects its construc-
tor and destructor. Class Shape contains
the String object as its member,
demonstrating object composition. The
Scalable interface defines only one
abstract method, Scale(). Concrete
classes Circle and Rect both extend
Shape and override Scale() and Area()
methods. The test case allocates the
Circle object on the stack frame and
array of Rect objects on the heap. Test
functions for the Shape class and
Scalable interface demonstrate dynam-
ic binding for classes and interfaces,
respectively.

As an exercise, you can modify the
code by adding attributes or virtual
functions to the Shape class (or even the
Object base class). You can convince

Portable Inheritance and Polymorphism

FIGURE 3
Class diagram of Shape and its subclasses. (Interface box is pink.)

LISTING 2
Definition of class String.

#include <stdlib.h>
#include <string.h>
#include “string.h”
/** implementation of String class */
BEGIN_VTABLE(String, Object)

VMETHOD(Object, Des) = (void (*)(Object))StringDes;
END_VTABLE
String StringCon1(String this, const char *str) {

Object_Con(&this->super); /* construct superclass */
VHOOK(this, String);   /* hook String VPTR */
/* allocate and initialize the buffer */
this->__buffer = (char*)malloc(strlen(str) + 1);
if (!this->__buffer)

return NULL;      /* failure */
strcpy(this->__buffer, str);
return this;

}
String StringCon2(String this, String other) {

return StringCon1(this, StringToChar(other));
}
const char *StringToChar(String this) {

return this->__buffer;
}
void StringDes(String this) {

free(this->__buffer);   /* release buffer */
Object_Des(&this->super); /* destroy superclass */

}



yourself that these modifications don’t
require any manual changes to sub-
classes. I also strongly recommend that
you step through the code using a
debugger.

WHAT’S TO LOSE?

So what do you lose by using C
rather than an OO language?
Using the techniques I’ve pre-

sented here, you don’t have to sacrifice
much convenience and expressiveness,
because you can fairly easily map most
important OO concepts to C. You
don’t have to compromise much main-
tainability either, because you can
automate many tasks. The most impor-
tant feature of this implementation is
that adding new attributes and methods
(including virtual functions and inter-
faces) to the superclass doesn’t require
any manual changes to subclasses.

The real issue is that C requires sig-

nificantly higher programming disci-
pline in object initialization and
cleanup than OO languages, especially
those with garbage collection. But this
is a well known deficiency of C, which
isn’t to be repaired easily. (For exam-
ple, C++ is still plagued by most of
these problems.)

Encapsulation, inheritance, and
polymorphism are nothing but design
patterns at the C language level
(Gamma, 1995). As do all design pat-
terns, they bring a higher (OO) level of
abstraction by introducing their specif-
ic naming conventions and idioms. If
you aren’t comfortable with my con-
ventions, you should adopt your own.
Most important is consistency, which
dramatically improves code readability
and allows for quick identification of
the patterns.

If you start using these patterns, you
will probably notice that they com-
pletely change your thinking and pro-
gramming style in C. You’ll not only
find your C code to be more similar to
Java, you’ll find yourself more pre-
pared for Java.
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