
By Miro Samek
President
Quantum Leaps, LLC

In today’s world of battery-op-
erated devices, the proper use
of the low-power/sleep modes
provided in most embedded
microcontrollers (MCUs) is criti-
cal. At the same time, most high-
volume MCU applications, such
as home appliances, vending
machines, motor controllers, and
electronic toys, are organised as
foreground/background systems
(super-loops or main + ISRs).

The foreground/background
architecture consists of two main
parts—the foreground comprises
the interrupt service routines
(ISRs) that handle asynchronous
external events in a timely fash-
ion, and the background is an
infinite loop that uses all remain-
ing CPU cycles to perform the less
time-critical processing.

The foreground typically com-
municates with the background
through shared memory. The
background loop protects this
memory from potential corrup-
tion by disabling interrupts when
accessing the shared variables.

To employ a low-power MCU
mode, the background loop must
first determine that all external
and internal events have been
processed so that the CPU clock
can be stopped until the next
external event (an interrupt) will
wake the CPU up. This situation
is called the idle condition and is
illustrated in Figure 1.

Because the determination of
the idle condition involves testing
the variables shared with the fore-
ground (ISRs), the background
loop must disable interrupts
before detecting the idle condi-
tion. Moreover, the idle condition
remains valid only as long as
interrupts remain disabled. If the
interrupts were enabled after the
background loop determines that
all its work is done for now, but

before actually switching to the
low-power mode, an interrupt
could preempt the background
loop at this point and an ISR
could produce new work for the
background loop, thus invalidat-
ing the idle condition.

By the simplistic nature of the
foreground/background process-
ing, the background loop always
resumes at the point it was inter-
rupted, so the background loop

would enter the low-power sleep
mode while the MCU would
have urgent work to do. The
MCU will be stopped for a non-
deterministic time period until
the next interrupt wakes it up.
Thus, enabling interrupts before
transitioning to a low-power
state opens a time window for
a race condition between any
enabled interrupt and the transi-
tion to the low-power mode.

Entering a sleep mode while
interrupts are disabled poses a
chicken-and-egg problem for
waking the system up, because
only an interrupt can terminate the
low-power sleep mode. To oper-
ate in the foreground/background
architecture, the MCU must allow
entering the low-power sleep
mode and enabling the inter-
rupts at the same time, without
creating this race condition.

Figure 1: Foreground/background system with a low-power sleep mode.

Listing 1: Code for the CodeWarrior HCO8 C-compiler shows a background loop with the atomic trasntions to the
WAIT mode.

Listing 2: Code for the GNU MSP430 gcc compiler shows how to atomically transition to the LPM1 low-power mode
and simultaneously enable the interrupts.

Listing 3: The ISR example for the GNU gcc compiler for MSP430.

1EE Times-India | October 2007 | eetindia.com

Use an MCU’s low-power modes
in foreground/background

EMBEDDED MCU

http://www.eetindia.co.in

Many MCUs indeed allow
such an atomic transition to the
sleep mode. Other MCUs support
multiple levels of disabling inter-
rupts and can accomplish low-
power transitions with interrupts
disabled at one level. Yet other
MCUs don’t provide any way to
enter the low-power mode with
interrupts disabled and require
some different approaches.

HC08
HC08 is an 8-bit MCU family from
Freescale Semiconductors. The
HC(S)08 instruction set includes
two special instructions—WAIT
and STOP—for transitioning to
the low-power wait and stop
modes, respectively.1 The HC08
documentation states very
clearly that both WAIT and STOP
instructions atomically enable
interrupts as a side effect of en-
tering the sleep mode. Clearly,
the HC08 designers anticipated
that the transition to the low-
power mode must happen with
interrupts disabled. The code in
Listing 1 for the CodeWarrior
HC08 C-compiler shows a back-
ground loop with the atomic
transition to the WAIT mode.

MSP430
The MSP430 is an ultra-low-
power, 16-bit MCU from Texas
Instruments. It allows for a clean
atomic transition to any of the
five supported low-power modes
because the bits controlling the
various clock domains and the
general interrupt enable (GIE) bit
are all located in the same CPU
status register (SR).2

The code in Listing 2 for the
GNU gcc MSP430 compiler shows
how to atomically transition to
the LPM1 low-power mode and
simultaneously enable the inter-
rupts. In particular, the macro
_bis_SR_register (LPM1_bits |
GIE) generates a single machine
instruction BIS.W #0x58,SR, which
atomically sets bits 0x58 in the
SR (status register). The bit 0x10
(CPUOFF) turns the CPU clock off,
while the bit 0x08 (general inter-
rupt enable) enables interrupts.

While atomic transition to any
low-power mode is natural in the
MSP430, you have the opposite

problem: in each ISR you must
explicitly disable the low-power
mode in the stacked SR, so that
the machine doesn’t automati-
cally return to the low-power
mode, but rather the background
loop can continue after the ISR
restores the SR from the stack
as part of the return from the
interrupt. Luckily, this is quite
simple with the intrinsic functions
provided by most C compilers
for the MSP430. Listing 3 shows
the ISR example for the GNU gcc
compiler for MSP430.

AVR
Atmel’s AVR low-power 8-bit RISC
also provides a method for atomic
transition to the sleep mode, but
it’s less obvious than in the case
of HC08 or MSP430. The AVR core
provides a SLEEP instruction to
stop the CPU clock, but it doesn’t
enable the interrupts and, in fact,
must be executed with interrupts
enabled. This would be a problem,
if not for the following obscure
note in the AVR datasheet:3

“When using the SEI instruc-
tion to enable interrupts, the
instruction following SEI will
be executed before any pend-

ing interrupts, as shown in this
example:

SEI ; set Global
Interrupt Enable

SLEEP ; enter sleep,
waiting for interrupt

 ; note: will
enter sleep

 ; before any
pending interrupt(s)

. . .”

In other words, the pair of
instructions SEI-SLEEP is guaran-
teed to execute atomically, most
likely due to the AVR pipeline
structure. Be careful to always use
the SEI-SLEEP pair of instructions
together, never separated by any
other instruction.

Listing 4 is a C example for
the IAR AVR compiler that shows
how to enter the sleep mode
from the background loop. The
same example for the GNU AVR
(WinAVR) compiler is shown in
Listing 5.

ARM
ARM-based MCUs take a different
approach to the atomic low-
power transition. The ARM silicon
vendors, such as Atmel, NXP (for-

merly Philips), and TI, integrate
the standard ARM7 or ARM9
cores with the set of proprietary
peripherals, such as the interrupt
and power-management con-
trollers. The integration is loose in
that the ARM core’s internal state
doesn’t impact the peripherals.
In particular, the core can disable
interrupts internally by setting
the I and F bits in the current
program status register (CPSR),
but it doesn’t effect the external
power-management or interrupt
controller, which provide another
layer for disabling and enabling
interrupts.

Because of this design, the
ARM-based MCUs allow transi-
tioning to a low-power mode
with interrupts disabled at the
ARM-core level. Upon such a tran-
sition, the power-management
controller stops the CPU clock for
the ARM core, but any interrupt
enabled at the interrupt control-
ler level can start the CPU clock.
As soon as the core starts running
again, it can enable interrupts to
achieve low interrupt latency.

Listing 6 shows the gen-
eral strategy of transitioning
to a low-power mode for ARM-

Listing 4: A C example for the IAR AVR compiler shows hos to enter the sleep mode from the background loop.

Listing 5: A C example for the GNU AVR (WinAVR) compiler that shows how to enter the sleep mode from the
backgound loop.

Listing 6: The general strategy of transitioning to a low-power mode for ARM-based MCUs (IAR ARM compiler, AT-
91SAM MCU)4.

2 eetindia.com | October 2007 | EE Times-India

http://www.eetindia.co.in

based MCUs (IAR ARM compiler,
AT91SAM MCU).4 The power-
management controller stops
the CPU clock (AT91C_BASE_
PMC->PMC_SCDR = 1) while
the interrupts are disabled at
the core. The interrupts are en-
abled only after the CPU wakes
up again and executes the
__enable_interrupt() intrinsic
function. You can see this be-
haviour if you try to break into
a running application with a
JTAG-based debugger. Usually,
the code will stop at the __en-
able_interrupt() line.

Speaking of debugging, the
sleep mode can interfere with
many on-chip debuggers be-
cause it stops the CPU clock.
Therefore, you must use con-
ditional compilation to include
the low-power transition only
in the nondebug (production)
version of the code.

Cortex-M3
Cortex-M3 is ARM’s 32-bit RISC
architecture designed for low-
cost and low-power mobile
applications. It differs from
the traditional ARM7 or ARM9
cores in a few ways. The main
difference relevant to this
discussion is a tighter integra-
tion of the MCU core with the
system power management and
the nested vectored interrupt
controller (NVIC).

The Thumb-2 instruction set,
used exclusively in the Cortex-M3,
provides a special instruction
WFI (wait for interrupt) for stop-
ping the CPU clock. Unfortu-
nately, the reference manuals (the
ARMv7-M Reference Manual, the
Cortex-M3 Technical Reference,
or the LM3Sxxx data sheets)5,6,7
don’t describe whether the WFI
instruction can be used with
interrupts disabled.

Given this lack of information,
I was forced to experiment with
the actual Cortex-M3 MCU. Using
the LM3S811 Cortex-M3 MCU
from Luminary Micro, I discov-
ered that the WFI instruction
can be used while interrupts are
locked (the PRIMASK register set
to one). As expected, after the
WFI instruction, the LM3S811
stops executing code, but any

interrupt enabled in the NVIC
wakes the CPU up. Listing 7
shows the atomic transition to
the sleep mode for the Cortex-M3
(IAR ARM compiler).

8051
The 8051 architecture supports
two low-power levels (idle and
power down). These modes are
activated by setting the IDL or PD
bits in the power control register
PCON at the address 0x87. Writing
to the IDL or PD bit stops the CPU
immediately and must happen
with interrupts enabled, otherwise
the 8051 locks-up. This means that
it’s impossible to transition to one
of these modes atomically. Any
enabled interrupt can preempt
the idle processing after the inter-
rupts are enabled, but before the
idle mode is entered. Clearly, the
8051 requires a different tech-
nique than those discussed so far.

This other technique is to in-
validate the idle mode transition
in every interrupt. So, if an inter-
rupt preempts the background
loop just before the indented
transition to idle, the ISR will
disable the transition. After the
interrupt returns, the idle mode
is not entered.

One way of implementing this
technique on the 8051 is to shad-
ow the PCON register allocated
in the 8051’s bit-addressable

memory (bdata). Let’s call this
variable PCON_shadow. Listing 8
(for the Keil C51 compiler) shows
how the background loop uses
the PCON_shadow variable.

The background loop sets
the IDL bit only in the PCON_
shadow variable when the in-
terrupts are still disabled. Then,
interrupts get enabled and
the register PCON is restored
from the shadow. It’s impor-
tant that the PCON register’s
update occurs in one machine
instruction. As it turns out, the
simple assignment of a bit-ad-
dressable variable to the special
register, such as PCON, can be
accomplished in one instruc-
tion—MOV 87H,20H.

The PCON shadow must be
updated in every ISR that can
produce work for the back-
ground loop, as shown in Listing
9. Note that the 8051 clears the
IDL/PD bits in the PCON register
before entering any interrupt, so
these bits are guaranteed to be
cleared in the shadow register
when it’s updated from PCON in
the interrupt context.

With this design, an interrupt
can occur at any machine instruc-
tion between enabling interrupts
until restoring the PCON register
from the shadow PCON_shadow.
Any such interrupt will clear the
IDL/PD bits in the PCON_shad-

ow variable, so the bits won’t
survive to the point when the
background loop actually re-
stores PCON from the shadow.
Thus, any interrupt that preempts
the idle loop disables the idle
mode, which accomplishes the
goal of an interrupt-safe transi-
tion to idle mode.

M16C
The M16C 16-bit processor from
Renesas supports the low-power
wait mode, which is entered us-
ing a special WAIT instruction.
However, the M16C datasheet is
very specific that interrupts must
be enabled before executing the
WAIT instruction, so clearly the
M16C doesn’t support an atomic
transition to the wait mode.8
The M16C datasheet contains
no side notes similar to the AVR
note about atomic execution of
the SLEEP-SEI instruction pair,
so I assume that the interrupt-
disable instruction (FCLR I) is
effective immediately.

Like the 8051, the only op-
tion for the M16C is to somehow
disarm the transition to the wait
mode in the ISRs, to prevent the
background loop from entering
the wait mode just after an in-
terrupt. In contrast to the 8051,
however, the M16C accomplishes
the low-power mode transition
using a special instruction, not

Listing 7: The atomic transition to the sleep mode for the Cortex-M3 (IAR ARM compiler).

Listing 8: How the background loop uses the PCON_shadow variable (for the Keil C51 compiler).

Listing 9: The PCON shadow must be updated in every ISR that can produce work for the back-ground loop.

3EE Times-India | October 2007 | eetindia.com

http://www.eetindia.co.in

through a write to a register, so
the shadow register technique
doesn’t apply. The idea of dis-
arming the wait-mode transi-
tion from ISRs can be made to
work in the M16C, but it requires
replacing the WAIT instruction
with something else (such as
NOP or RTS). Yes, I am talking
about self-modifying code, but
I don’t know of any other option
for the M16C. Luckily, the M16C
is a von Neumann architecture,
so it can execute code from the
RAM address space.

The piece of self-modifying
machine code can be quite small.
You define a 4-byte array in RAM,
as in Listing 10. This machine
code represents a tiny C-callable
function that executes the WAIT
instruction and returns to the
caller. In the background loop,
you modify this code and call it
using a pointer-to-function, as
in Listing 11.

You must disable the transition
in every interrupt to wait mode
by replacing the WAIT instruction
at Wait_code[0], as in Listing 12.
With this design, an interrupt can
occur at any machine instruction
between FSET I (enabling inter-
rupts) and executing the instruc-
tion at Wait_code[0]. Any such
interrupt will replace the code in
Wait_code[0] with the RTS,NOP
instruction pair that immediately
returns to the background loop,
so the WAIT instruction won’t
survive to the point when the
background loop actually comes
around to execute it. Thus, any
interrupt that preempts the idle
loop disables the wait mode,
which accomplishes the goal of
an interrupt-safe transition to
idle mode.

Atomic low-power states
Running the MCU at full-speed
all the time will never lead to a
truly low-power design, even if
you use the lowest-power MCU
available. The biggest power
savings are only possible by fre-
quently switching the MCU to
a low-power sleep state under
the software control.

The simplest foreground/
background software design re-
quires that the transition to a low-
power state be atomic, or at least
interrupt-safe. This requirement
does not apply when you use a
more sophisticated architecture,
such as a preemptive kernel or
a real-time operating system. A
preemptive kernel executes a
special idle task when no other
tasks are ready to run because all
are blocked waiting for events.

Most kernels provide a way to
customise the idle task (using call-
back functions or macros), so that

you can conveniently implement
the transition to a low-power
state inside the idle task. The main
difference between a preemptive
kernel and a foreground/back-
ground system is that as long as
tasks are ready to run, the kernel
doesn’t switch the context back
to the idle task. Consequently
the transition to a low-power
mode is much simpler, because
it doesn’t need to occur with in-
terrupts disabled.9 Unfortunately,
a preemptive RTOS isn’t always
an option for a low-end MCU,
which simply might not have
enough RAM to accommodate a
preemptive RTOS.

Endnotes:
1. Freescale Semiconductors,

MC68HC908QY4/D datasheet,
2003.

2. T e x a s I n s t r u m e n t s ,
MSP430x1xx Family User’s
Guide, 2006.

3. Atmel, ATmega169 Datasheet,
2005.

4. Atmel, AT91SAM7S32 Data-
sheet, 2005.

5. ARM Ltd., ARM v7-M Archi-
tecture Application Level
Reference Manual, 2006.

6. ARM Ltd., Cortex-M3 Technical
Reference Manual, 2006.

7. Luminary Micro, LM3S811
Microcontroller datasheet,
2006.

8. Renesas, M16C/62 Group
(M16C/62P) Hardware Manu-
al, 2003.

9. Samek, Miro and Robert
Ward, “Build a Super Sim-
ple Tasker,” Embedded Sys-
tems Design, July 2006, p.
18. http//:www.embedded.
com/columns/technicalin-
sights/190302110.

Email Send inquiry.

Listing 12: Disable the transition in every interrupt to wait mode by replacing the WAIT instruction at Mait_code(0).

Listing 10: Define a 4-byte array in RAM. This machine code represents a tiny C-callable function that executes the
WAIT instruction and returns to the caller.

Listing 11: A pointer-to-function that calls code in Listing 10.

4 eetindia.com | October 2007 | EE Times-India

http://www.embedded.com/design/multicore/http/:www.embedded.com/columns/technicalinsights/190302110
http://www.embedded.com/design/multicore/http/:www.embedded.com/columns/technicalinsights/190302110
http://www.embedded.com/design/multicore/http/:www.embedded.com/columns/technicalinsights/190302110
http://www.eetindia.co.in/article/email_friend.php3?article_id=8800499168&type=TA&cat_id=1800001&back_url=%2Farticle%2Farticle_content.php3%3Fin_param%3D8800499168_1800001_TA_fe239ee7%26
http://www.eetindia.co.in/inquiry/send_inquiry.php3?article_id=8800499168&type=TA&title=Use+an+MCU%27s+low-power+modes+in+foreground%2Fbackground&cat_id=1800001
http://www.eetindia.co.in

