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In today’s world of battery-op-
erated devices, the proper use 
of the low-power/sleep modes 
provided in most embedded 
microcontrollers (MCUs) is criti-
cal. At the same time, most high-
volume MCU applications, such 
as home appliances, vending 
machines, motor controllers, and 
electronic toys, are organised as 
foreground/background systems 
(super-loops or main + ISRs). 

The foreground/background 
architecture consists of two main 
parts—the foreground comprises 
the interrupt service routines 
(ISRs) that handle asynchronous 
external events in a timely fash-
ion, and the background is an 
infinite loop that uses all remain-
ing CPU cycles to perform the less 
time-critical processing. 

The foreground typically com-
municates with the background 
through shared memory. The 
background loop protects this 
memory from potential corrup-
tion by disabling interrupts when 
accessing the shared variables. 

To employ a low-power MCU 
mode, the background loop must 
first determine that all external 
and internal events have been 
processed so that the CPU clock 
can be stopped until the next 
external event (an interrupt) will 
wake the CPU up. This situation 
is called the idle condition and is 
illustrated in Figure 1. 

Because the determination of 
the idle condition involves testing 
the variables shared with the fore-
ground (ISRs), the background 
loop must disable interrupts 
before detecting the idle condi-
tion. Moreover, the idle condition 
remains valid only as long as 
interrupts remain disabled. If the 
interrupts were enabled after the 
background loop determines that 
all its work is done for now, but 

before actually switching to the 
low-power mode, an interrupt 
could preempt the background 
loop at this point and an ISR 
could produce new work for the 
background loop, thus invalidat-
ing the idle condition.

By the simplistic nature of the 
foreground/background process-
ing, the background loop always 
resumes at the point it was inter-
rupted, so the background loop 

would enter the low-power sleep 
mode while the MCU would 
have urgent work to do. The 
MCU will be stopped for a non-
deterministic time period until 
the next interrupt wakes it up. 
Thus, enabling interrupts before 
transitioning to a low-power 
state opens a time window for 
a race condition between any 
enabled interrupt and the transi-
tion to the low-power mode. 

Entering a sleep mode while 
interrupts are disabled poses a 
chicken-and-egg problem for 
waking the system up, because 
only an interrupt can terminate the 
low-power sleep mode. To oper-
ate in the foreground/background 
architecture, the MCU must allow 
entering the low-power sleep 
mode and enabling the inter-
rupts at the same time, without 
creating this race condition. 

Figure 1: Foreground/background system with a low-power sleep mode.

Listing 1: Code for the CodeWarrior HCO8 C-compiler shows a background loop with the atomic trasntions to the 
WAIT mode.

Listing 2: Code for the GNU MSP430 gcc compiler shows how to atomically transition to the LPM1 low-power mode 
and simultaneously enable the interrupts.

Listing 3: The ISR example for the GNU gcc compiler for MSP430.
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Many MCUs indeed allow 
such an atomic transition to the 
sleep mode. Other MCUs support 
multiple levels of disabling inter-
rupts and can accomplish low-
power transitions with interrupts 
disabled at one level. Yet other 
MCUs don’t provide any way to 
enter the low-power mode with 
interrupts disabled and require 
some different approaches. 

HC08
HC08 is an 8-bit MCU family from 
Freescale Semiconductors. The 
HC(S)08 instruction set includes 
two special instructions—WAIT 
and STOP—for transitioning to 
the low-power wait and stop 
modes, respectively.1 The HC08 
documentation states very 
clearly that both WAIT and STOP 
instructions atomically enable 
interrupts as a side effect of en-
tering the sleep mode. Clearly, 
the HC08 designers anticipated 
that the transition to the low-
power mode must happen with 
interrupts disabled. The code in 
Listing 1 for the CodeWarrior 
HC08 C-compiler shows a back-
ground loop with the atomic 
transition to the WAIT mode. 

MSP430
The MSP430 is an ultra-low-
power, 16-bit MCU from Texas 
Instruments. It allows for a clean 
atomic transition to any of the 
five supported low-power modes 
because the bits controlling the 
various clock domains and the 
general interrupt enable (GIE) bit 
are all located in the same CPU 
status register (SR).2 

The code in Listing 2 for the 
GNU gcc MSP430 compiler shows 
how to atomically transition to 
the LPM1 low-power mode and 
simultaneously enable the inter-
rupts. In particular, the macro 
_bis_SR_register (LPM1_bits | 
GIE) generates a single machine 
instruction BIS.W #0x58,SR, which 
atomically sets bits 0x58 in the 
SR (status register). The bit 0x10 
(CPUOFF) turns the CPU clock off, 
while the bit 0x08 (general inter-
rupt enable) enables interrupts. 

While atomic transition to any 
low-power mode is natural in the 
MSP430, you have the opposite 

problem: in each ISR you must 
explicitly disable the low-power 
mode in the stacked SR, so that 
the machine doesn’t automati-
cally return to the low-power 
mode, but rather the background 
loop can continue after the ISR 
restores the SR from the stack 
as part of the return from the 
interrupt. Luckily, this is quite 
simple with the intrinsic functions 
provided by most C compilers 
for the MSP430. Listing 3 shows 
the ISR example for the GNU gcc 
compiler for MSP430. 

AVR
Atmel’s AVR low-power 8-bit RISC 
also provides a method for atomic 
transition to the sleep mode, but 
it’s less obvious than in the case 
of HC08 or MSP430. The AVR core 
provides a SLEEP instruction to 
stop the CPU clock, but it doesn’t 
enable the interrupts and, in fact, 
must be executed with interrupts 
enabled. This would be a problem, 
if not for the following obscure 
note in the AVR datasheet:3 

“When using the SEI instruc-
tion to enable interrupts, the 
instruction following SEI will 
be executed before any pend-

ing interrupts, as shown in this 
example: 

SEI ; set Global 
Interrupt Enable

SLEEP ; enter sleep, 
waiting for interrupt

 ; note: will 
enter sleep

 ; before any 
pending interrupt(s)

. . .” 

In other words, the pair of 
instructions SEI-SLEEP is guaran-
teed to execute atomically, most 
likely due to the AVR pipeline 
structure. Be careful to always use 
the SEI-SLEEP pair of instructions 
together, never separated by any 
other instruction. 

Listing 4 is a C example for 
the IAR AVR compiler that shows 
how to enter the sleep mode 
from the background loop. The 
same example for the GNU AVR 
(WinAVR) compiler is shown in 
Listing 5. 

ARM
ARM-based MCUs take a different 
approach to the atomic low-
power transition. The ARM silicon 
vendors, such as Atmel, NXP (for-

merly Philips), and TI, integrate 
the standard ARM7 or ARM9 
cores with the set of proprietary 
peripherals, such as the interrupt 
and power-management con-
trollers. The integration is loose in 
that the ARM core’s internal state 
doesn’t impact the peripherals. 
In particular, the core can disable 
interrupts internally by setting 
the I and F bits in the current 
program status register (CPSR), 
but it doesn’t effect the external 
power-management or interrupt 
controller, which provide another 
layer for disabling and enabling 
interrupts. 

Because of this design, the 
ARM-based MCUs allow transi-
tioning to a low-power mode 
with interrupts disabled at the 
ARM-core level. Upon such a tran-
sition, the power-management 
controller stops the CPU clock for 
the ARM core, but any interrupt 
enabled at the interrupt control-
ler level can start the CPU clock. 
As soon as the core starts running 
again, it can enable interrupts to 
achieve low interrupt latency. 

Listing 6 shows the gen-
eral strategy of transitioning 
to a low-power mode for ARM-

Listing 4: A C example for the IAR AVR compiler shows hos to enter the sleep mode from the background loop.

Listing 5: A C example for the GNU AVR (WinAVR) compiler that shows how to enter the sleep mode from the 
backgound loop.

Listing 6: The general strategy of transitioning to a low-power mode for ARM-based MCUs (IAR ARM compiler, AT-
91SAM MCU)4.
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based MCUs (IAR ARM compiler, 
AT91SAM MCU).4 The power-
management controller stops 
the CPU clock (AT91C_BASE_
PMC->PMC_SCDR = 1) while 
the interrupts are disabled at 
the core. The interrupts are en-
abled only after the CPU wakes 
up again and executes the 
__enable_interrupt() intrinsic 
function. You can see this be-
haviour if you try to break into 
a running application with a 
JTAG-based debugger. Usually, 
the code will stop at the __en-
able_interrupt() line. 

Speaking of debugging, the 
sleep mode can interfere with 
many on-chip debuggers be-
cause it stops the CPU clock. 
Therefore, you must use con-
ditional compilation to include 
the low-power transition only 
in the nondebug (production) 
version of the code.

Cortex-M3
Cortex-M3 is ARM’s 32-bit RISC 
architecture designed for low-
cost and low-power mobile 
applications. It differs from 
the traditional ARM7 or ARM9 
cores in a few ways. The main 
difference relevant to this 
discussion is a tighter integra-
tion of the MCU core with the 
system power management and 
the nested vectored interrupt 
controller (NVIC). 

The Thumb-2 instruction set, 
used exclusively in the Cortex-M3, 
provides a special instruction 
WFI (wait for interrupt) for stop-
ping the CPU clock. Unfortu-
nately, the reference manuals (the 
ARMv7-M Reference Manual, the 
Cortex-M3 Technical Reference, 
or the LM3Sxxx data sheets)5,6,7 
don’t describe whether the WFI 
instruction can be used with 
interrupts disabled. 

Given this lack of information, 
I was forced to experiment with 
the actual Cortex-M3 MCU. Using 
the LM3S811 Cortex-M3 MCU 
from Luminary Micro, I discov-
ered that the WFI instruction 
can be used while interrupts are 
locked (the PRIMASK register set 
to one). As expected, after the 
WFI instruction, the LM3S811 
stops executing code, but any 

interrupt enabled in the NVIC 
wakes the CPU up. Listing 7 
shows the atomic transition to 
the sleep mode for the Cortex-M3 
(IAR ARM compiler). 

8051
The 8051 architecture supports 
two low-power levels (idle and 
power down). These modes are 
activated by setting the IDL or PD 
bits in the power control register 
PCON at the address 0x87. Writing 
to the IDL or PD bit stops the CPU 
immediately and must happen 
with interrupts enabled, otherwise 
the 8051 locks-up. This means that 
it’s impossible to transition to one 
of these modes atomically. Any 
enabled interrupt can preempt 
the idle processing after the inter-
rupts are enabled, but before the 
idle mode is entered. Clearly, the 
8051 requires a different tech-
nique than those discussed so far. 

This other technique is to in-
validate the idle mode transition 
in every interrupt. So, if an inter-
rupt preempts the background 
loop just before the indented 
transition to idle, the ISR will 
disable the transition. After the 
interrupt returns, the idle mode 
is not entered. 

One way of implementing this 
technique on the 8051 is to shad-
ow the PCON register allocated 
in the 8051’s bit-addressable 

memory (bdata). Let’s call this 
variable PCON_shadow. Listing 8 
(for the Keil C51 compiler) shows 
how the background loop uses 
the PCON_shadow variable. 

The background loop sets 
the IDL bit only in the PCON_
shadow variable when the in-
terrupts are still disabled. Then, 
interrupts get enabled and 
the register PCON is restored 
from the shadow. It’s impor-
tant that the PCON register’s 
update occurs in one machine 
instruction. As it turns out, the 
simple assignment of a bit-ad-
dressable variable to the special 
register, such as PCON, can be 
accomplished in one instruc-
tion—MOV 87H,20H. 

The PCON shadow must be 
updated in every ISR that can 
produce work for the back-
ground loop, as shown in Listing 
9. Note that the 8051 clears the 
IDL/PD bits in the PCON register 
before entering any interrupt, so 
these bits are guaranteed to be 
cleared in the shadow register 
when it’s updated from PCON in 
the interrupt context. 

With this design, an interrupt 
can occur at any machine instruc-
tion between enabling interrupts 
until restoring the PCON register 
from the shadow PCON_shadow. 
Any such interrupt will clear the 
IDL/PD bits in the PCON_shad-

ow variable, so the bits won’t 
survive to the point when the 
background loop actually re-
stores PCON from the shadow. 
Thus, any interrupt that preempts 
the idle loop disables the idle 
mode, which accomplishes the 
goal of an interrupt-safe transi-
tion to idle mode. 

M16C
The M16C 16-bit processor from 
Renesas supports the low-power 
wait mode, which is entered us-
ing a special WAIT instruction. 
However, the M16C datasheet is 
very specific that interrupts must 
be enabled before executing the 
WAIT instruction, so clearly the 
M16C doesn’t support an atomic 
transition to the wait mode.8 
The M16C datasheet contains 
no side notes similar to the AVR 
note about atomic execution of 
the SLEEP-SEI instruction pair, 
so I assume that the interrupt-
disable instruction (FCLR I) is 
effective immediately. 

Like the 8051, the only op-
tion for the M16C is to somehow 
disarm the transition to the wait 
mode in the ISRs, to prevent the 
background loop from entering 
the wait mode just after an in-
terrupt. In contrast to the 8051, 
however, the M16C accomplishes 
the low-power mode transition 
using a special instruction, not 

Listing 7: The atomic transition to the sleep mode for the Cortex-M3 (IAR ARM compiler).

Listing 8: How the background loop uses the PCON_shadow variable (for the Keil C51 compiler).

Listing 9: The PCON shadow must be updated in every ISR that can produce work for the back-ground loop.
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through a write to a register, so 
the shadow register technique 
doesn’t apply. The idea of dis-
arming the wait-mode transi-
tion from ISRs can be made to 
work in the M16C, but it requires 
replacing the WAIT instruction 
with something else (such as 
NOP or RTS). Yes, I am talking 
about self-modifying code, but 
I don’t know of any other option 
for the M16C. Luckily, the M16C 
is a von Neumann architecture, 
so it can execute code from the 
RAM address space. 

The piece of self-modifying 
machine code can be quite small. 
You define a 4-byte array in RAM, 
as in Listing 10. This machine 
code represents a tiny C-callable 
function that executes the WAIT 
instruction and returns to the 
caller. In the background loop, 
you modify this code and call it 
using a pointer-to-function, as 
in Listing 11. 

You must disable the transition 
in every interrupt to wait mode 
by replacing the WAIT instruction 
at Wait_code[0], as in Listing 12. 
With this design, an interrupt can 
occur at any machine instruction 
between FSET I (enabling inter-
rupts) and executing the instruc-
tion at Wait_code[0]. Any such 
interrupt will replace the code in 
Wait_code[0] with the RTS,NOP 
instruction pair that immediately 
returns to the background loop, 
so the WAIT instruction won’t 
survive to the point when the 
background loop actually comes 
around to execute it. Thus, any 
interrupt that preempts the idle 
loop disables the wait mode, 
which accomplishes the goal of 
an interrupt-safe transition to 
idle mode. 

Atomic low-power states
Running the MCU at full-speed 
all the time will never lead to a 
truly low-power design, even if 
you use the lowest-power MCU 
available. The biggest power 
savings are only possible by fre-
quently switching the MCU to 
a low-power sleep state under 
the software control. 

The simplest foreground/
background software design re-
quires that the transition to a low-
power state be atomic, or at least 
interrupt-safe. This requirement 
does not apply when you use a 
more sophisticated architecture, 
such as a preemptive kernel or 
a real-time operating system. A 
preemptive kernel executes a 
special idle task when no other 
tasks are ready to run because all 
are blocked waiting for events. 

Most kernels provide a way to 
customise the idle task (using call-
back functions or macros), so that 

you can conveniently implement 
the transition to a low-power 
state inside the idle task. The main 
difference between a preemptive 
kernel and a foreground/back-
ground system is that as long as 
tasks are ready to run, the kernel 
doesn’t switch the context back 
to the idle task. Consequently 
the transition to a low-power 
mode is much simpler, because 
it doesn’t need to occur with in-
terrupts disabled.9 Unfortunately, 
a preemptive RTOS isn’t always 
an option for a low-end MCU, 
which simply might not have 
enough RAM to accommodate a 
preemptive RTOS.
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Listing 12: Disable the transition in every interrupt to wait mode by replacing the WAIT instruction at Mait_code(0).

Listing 10: Define a 4-byte array in RAM. This machine code represents a tiny C-callable function that executes the 
WAIT instruction and returns to the caller.

Listing 11: A pointer-to-function that calls code in Listing 10.
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