

QP state machine framework pattern

Design Pattern
Reminder

Document Revision B
September 2008

Copyright © Quantum Leaps, LLC

www.quantum-leaps.com
www.state-machine.com

http://www.state-machine.com/psicc2
http://www.quantum-leaps.com/
http://www.state-machine.com/

The following excerpt comes from the book
Practical UML Statecharts in C/C++, 2nd Ed:
Event-Driven Programming for Embedded
Systems by Miro Samek, Newnes 2008.

ISBN-10: 0750687061
ISBN-13: 978-0750687065

Copyright © Miro Samek, All Rights Reserved.
Copyright © Quantum Leaps, All Rights Reserved.

 Reminder

 Intent
Make the statechart topology more flexible by inventing an event and posting it to self.

 Problem
Often in state modeling, loosely related functions of a system are strongly coupled by a common event. Consider,
for example, periodic data acquisition, in which a sensor producing the data needs to be polled at a predetermined
rate. Assume that a periodic TIMEOUT event is dispatched to the system at the desired rate to provide the stimu-
lus for polling the sensor. Because the system has only one external event (the TIMEOUT event), it seems that
this event needs to trigger both the polling of the sensor and the processing of the data. A straightforward but
suboptimal solution is to organize the state machine into two distinct orthogonal regions (for polling and process-
ing)1. However, orthogonal regions increase the cost of dispatching events (see the “Orthogonal Component” pat-
tern) and require complex synchronization between the regions because polling and processing are not quite inde-
pendent.

 Solution
A simpler and more efficient solution is to invent a stimulus (DATA_READY) and to propagate it to self as a re-
minder that the data is ready for processing (Figure 5.2). This new stimulus provides a way to decouple polling
from processing without using orthogonal regions. Moreover, you can use state nesting to arrange these two func-
tions in a hierarchical relation2, which gives you even more control over the behavior.

1 This example illustrates an alternative design for the Polling state pattern described in [Douglass 99].
2 Using state hierarchy in this fashion is typically more efficient than using orthogonal regions.

1 of 6 Copyright © Quantum Leaps, LLC. All Rights Reserved.

Design Pattern
Reminder

www.state-machine.com/devzone/patterns.htm

In the most basic arrangement, the “processing” state can be a substate of “polling” and can simply inherit
the “polling” behavior so that polling occurs in the background to processing. However, the processing state
might also choose to override polling. For instance, to prevent flooding the CPU with sensor data, processing
might inhibit polling occasionally. The statechart in Figure 5.2 illustrates this option. The “busy” substate of proc-
essing overrides the TIMEOUT event and thus prevents this event from being handled in the higher level polling
superstate.

Figure 5.3 The Reminder state pattern.

Further flexibility of this solution entails fine control over the generation of the invented DATA_READY

event, which does not have to be posted at every occurrence of the original TIMEOUT event. For example, to im-
prove performance, the polling state could buffer the raw sensor data and generate the DATA_READY event only
when the buffer fills up, Figure 5.2 illustrates this option with the if(…) condition, which precedes the
postFIFO(me, DATA_READY) action in the “polling” state.

 Sample Code
The sample code for the Reminder state pattern is found in the directory
qpc\examples\80x86\dos\tcpp101\l\reminder\. You can execute the application by double-
clicking on the file REMINDER.EXE file in the dbg\ subdirectory. Figure 5.4 shows the output generated by the
REMINDER.EXE application. The application prints every state entry (to “busy” or “idle”), as well as the number
of times the TIMEOUT event has been handled in “polling” and “processing”, respectively. Listing 5.2 shows the
example implementation of the Reminder pattern from Figure 5.3.

Figure 5.4 Output generated by REMINDER.EXE.

2 of 6 Copyright © Quantum Leaps, LLC. All Rights Reserved.

3 of 6

Design Pattern
Reminder

www.state-machine.com/devzone/patterns.htm

Copyright © Quantum Leaps, LLC. All Rights Reserved.

The Reminder state pattern posts the reminder event to self. This operation involves event queuing and is
not supported by the raw QEP event processor. Therefore the sample code uses the QEP event processor as well
as the QF real-time framework, which are both components of the QP event-driven framework. The QF compo-
nent provides event queuing as well as the time events, both of which are used in the sample code.

Listing 5.2 The Reminder sample code (file reminder.c).

 (1) #include "qp_port.h" /* QP interface */
 #include "bsp.h" /* board support package */

 enum SensorSignals {
 TIMEOUT_SIG = Q_USER_SIG, /* the periodic timeout signal */
 (2) DATA_READY_SIG, /* the invented reminder signal */
 TERMINATE_SIG /* terminate the application */
 };
 /*..*/
 typedef struct SensorTag { /* the Sensor active object */
 (3) QActive super; /* derive from QActive */

 (4) QTimeEvt timeEvt; /* private time event generator */
 uint16_t pollCtr;
 uint16_t procCtr;
 } Sensor;

 void Sensor_ctor(Sensor *me);
 /* hierarchical state machine ... */
 QState Sensor_initial (Sensor *me, QEvent const *e);
 QState Sensor_polling (Sensor *me, QEvent const *e);
 QState Sensor_processing(Sensor *me, QEvent const *e);
 QState Sensor_idle (Sensor *me, QEvent const *e);
 QState Sensor_busy (Sensor *me, QEvent const *e);
 QState Sensor_final (Sensor *me, QEvent const *e);

 /*..*/
 void Sensor_ctor(Sensor *me) {
 QActive_ctor_(&me->super, (QStateHandler)&Sensor_initial);
 (5) QTimeEvt_ctor(&me->timeEvt, TIMEOUT_SIG); /* time event ctor */
 }
 /* HSM definition --*/
 QState Sensor_initial(Sensor *me, QEvent const *e) {
 me->pollCtr = 0;
 me->procCtr = 0;
 (6) return Q_TRAN(&Sensor_polling);
 }
 /*..*/
 QState Sensor_final(Sensor *me, QEvent const *e) {
 switch (e->sig) {
 case Q_ENTRY_SIG: {
 printf("final-ENTRY;\nBye!Bye!\n");
 BSP_exit(); /* terminate the application */
 return Q_HANDLED();
 }
 }
 return Q_SUPER(&QHsm_top);
 }
 /*..*/

4 of 6

Design Pattern
Reminder

www.state-machine.com/devzone/patterns.htm

Copyright © Quantum Leaps, LLC. All Rights Reserved.

 QState Sensor_polling(Sensor *me, QEvent const *e) {
 switch (e->sig) {
 case Q_ENTRY_SIG: {
 /* periodic timeout every 1/2 second */
 (7) QTimeEvt_postEvery(&me->timeEvt, (QActive *)me,
 BSP_TICKS_PER_SEC/2);
 return Q_HANDLED();
 }
 case Q_EXIT_SIG: {
 QTimeEvt_disarm(&me->timeEvt);
 return Q_HANDLED();
 }
 case Q_INIT_SIG: {
 return Q_TRAN(&Sensor_processing);
 }
 (8) case TIMEOUT_SIG: {
 static const QEvent reminderEvt = { DATA_READY_SIG, 0 };
 ++me->pollCtr;
 printf("polling %3d\n", me->pollCtr);
 if ((me->pollCtr & 0x3) == 0) { /* modulo 4 */
 (9) QActive_postFIFO((QActive *)me, &reminderEvt);
 }
 return Q_HANDLED();
 }
 case TERMINATE_SIG: {
 return Q_TRAN(&Sensor_final);
 }
 }
 return (Q_SUPER(&QHsm_top);
 }
 /*..*/
 QState Sensor_processing(Sensor *me, QEvent const *e) {
 switch (e->sig) {
 case Q_INIT_SIG: {
 return Q_TRAN(&Sensor_idle);
 }
 }
 return Q_SUPER(&Sensor_polling);
 }
 /*..*/
 QState Sensor_idle(Sensor *me, QEvent const *e) {
 switch (e->sig) {
 case Q_ENTRY_SIG: {
 printf("idle-ENTRY;\n");
 return Q_HANDLED();
 }
 case DATA_READY_SIG: {
(10) return Q_TRAN(&Sensor_busy);
 }
 }
 return Q_SUPER(&Sensor_processing);
 }
 /*..*/
 QState Sensor_busy(Sensor *me, QEvent const *e) {
 switch (e->sig) {
 case Q_ENTRY_SIG: {
 printf("busy-ENTRY;\n");

5 of 6

Design Pattern
Reminder

www.state-machine.com/devzone/patterns.htm

Copyright © Quantum Leaps, LLC. All Rights Reserved.

 return Q_HANDLED();
 }
(11) case TIMEOUT_SIG: {
 ++me->procCtr;
 printf("processing %3d\n", me->procCtr);
 if ((me->procCtr & 0x1) == 0) { /* modulo 2 */
 Q_TRAN(&Sensor_idle);
 }
 return Q_HANDLED();
 }
 }
 return Q_SUPER(&Sensor_processing);
 }

(1) The Reminder state pattern posts the reminder event to self. This operation involves event queuing and is

not supported by the raw QEP event processor. The sample code uses the whole QP, which includes the
QEP event processor and the QF real-time framework. QF provides event queuing as well as the time
events, both of which are used in the sample code.

NOTE: Event queuing and event-driven timing services are available in virtually every event-driven infrastruc-

ture. For instance, Windows GUI applications can call the PostMessage() Win32 API to queue mes-
sages and the WM_TIMER message to receive timer updates.

(2) The invented reminder event signal (DATA_READY in this case) is enumerated just like all other sig-

nals in the system.
(3) The Sensor state machine derives from the QF class QActive that combines a HSM, an event queue,

and a thread of execution. The QActive class actually derives from QHsm, which means that Sensor
also indirectly derives from QHsm.

(4) The Sensor state machine declares its own private time event. Time events are managed by the QF
real-time framework. Section 7.7 in Chapter 7 covers the QTimeEvt facility in detail.

(5) The time event must be instantiated, at which time it gets permanently associated with the given signal
(TIMEOUT_SIG in this case).

(6) The top-most initial transition enters the “polling” state, which in turn enters the “idle” substate.
(7) Upon the entry to the “polling” state the time event is armed for generating periodic TIMEOUT_SIG

events twice per second.

NOTE: In QF, as in every other RTOS, the time unit is the “time tick”. The board support package (BSP) defines
the constant BSP_TICKS_PER_SEC that ties the ticking rate to the second.

(8) After being armed, the time event produces the TIMEOUT_SIG events at the programmed rate. Because

neither the “idle” state nor the “processing” state handle the TIMEOUT_SIG signal, the signal is handled
initially in the “polling” superstate.

(9) At a lower rate (every fourth time in this example), the “polling” state generates the reminder event
(DATA_READY), which it posts to self. Event posting occurs by calling QActive_postFIFO()
function provided in the QF real-time framework.

(10) The reminder event causes a transition from “idle” to “busy”.
(11) The “busy” state overrides the DATA_READY_SIG signal and after a few TIMEOUT events transitions

back to “idle”. The cycle then repeats.

Design Pattern
Reminder

www.state-machine.com/devzone/patterns.htm

 Consequences
Although conceptually very simple, the Reminder state pattern has profound consequences. It can address many
more problems than illustrated in the example. You could use it as a Swiss Army knife to fix almost any problem
in the state machine topology.

For example, you also can apply the Reminder idiom to eliminate troublesome completion transitions,
which in the UML specification are transitions without an explicit trigger (they are triggered implicitly by com-
pletion events, a.k.a. anonymous events). The QEP event processor requires that all transitions have explicit trig-
gers; therefore, the pattern does not support completion transitions. However, the Reminder pattern offers a work-
around. You can invent an explicit trigger for every transition and post it to self. This approach actually gives you
much better control over the behavior because you can explicitly specify the completion criteria.

Yet another important application of the Reminder pattern is to break up longer RTC steps into shorter
ones. As explained in more detail in Chapter 6, long RTC steps exacerbate the responsiveness of a state machine
and put more stress on event queues. The Reminder pattern can help you break up CPU-intensive processing (e.g.,
iteration) by inventing a stimulus for continuation in the same way that you stick a Post-It note to your computer
monitor to remind you where you left off on some lengthy task when someone interrupts you. You can also invent
event parameters to convey the context, which will allow the next step to pick up where the previous step left off
(e.g., the index of the next iteration). The advantage of fragmenting lengthy processing in such a way is so that
other (perhaps more urgent) events can “sneak in” allowing the state machine to handle them in a more timely
way.

You have essentially two alternatives when implementing event posting: the first in, first out (FIFO) or
the last in, first out (LIFO) policy, both of which are supported in the QF real-time framework (see Chapter 6).
The FIFO policy is appropriate for breaking up longer RTC steps. You want to queue the reminder event after
other events that have potentially accumulated while the state machine was busy, to give the other events a chance
to sneak in ahead of the reminder. However, in other circumstances, you might want to process an uninterruptible
sequence of posted events (such a sequence effectively forms an extended RTC step3). In this case, you need the
LIFO policy, because a reminder posted with that policy is guaranteed to be the next event to process and no other
event can overtake it.

NOTE: You should always use the LIFO policy with great caution because it changes the order of events. In par-

ticular, if multiple events are posted with the LIFO policy to an event queue and no events are removed
from the queue in the meantime, the order of these events in the queue will get reversed.

6 of 6

3 For example, state-based exception handling (see Section 6.7.4 in Chapter 6) typically requires immediate handling of ex-
ceptional situation, so you don’t want other events to overtake the EXCEPTION event.
Copyright © Quantum Leaps, LLC. All Rights Reserved.

http://www.state-machine.com/
http://www.state-machine.com/

