
state-machine.com 1

Modern Embedded
 Systems Programming:

Beyond the RTOS

Miro SamekMiro Samek
Quantum Leaps, LLCQuantum Leaps, LLC



state-machine.com 2

Presentation Outline

● A quick introduction to RTOS
and the perils of blocking

● Active objects

● State machines 

● Active object frameworks for
deeply embedded systems

● Demonstrations

● Q&A

~40 min

~10 min

~10 min



state-machine.com 3

In the beginning was the “Superloop”

// adapted from the Arduino Blink Tutorial (*)
void main() {
    pinMode(LED_PIN, OUTPUT); // setup: set the LED pin as output
    while (1) {  // endless loop
        digitalWrite(LED_PIN, HIGH); // turn LED on
        delay(1000); // wait for 1000ms
        digitalWrite(LED_PIN, LOW); // turn LED off
        delay(1000); // wait for 1000ms
    }
} 

(*) Arduino Blink Tutorial: http://www.arduino.cc/en/Tutorial/Blink 

http://www.arduino.cc/en/Tutorial/Blink


state-machine.com 4

void thread_blink() {         // RTOS thread routine
    pinMode(LED_PIN, OUTPUT); // setup: set the LED pin
    while (1) {               // endless loop
        digitalWrite(LED_PIN, HIGH); // turn the LED on
        RTOS_delay(1000);     // wait for 1000ms
        digitalWrite(LED_PIN, LOW);  // turn the LED off
        RTOS_delay(1000);     // wait for 1000ms
    }
}

 

RTOS Multithreading: Multiple “Superloops”

void thread_alarm() {        // RTOS thread routine
    pinMode(SW_PIN, INPUT);  // setup: set the Switch pin as input
    while (1) {              // endless loop
        if (digitalRead(SW_PIN) == HIGH) { // is the switch depressed?
           digitalWrite(ALARM_PIN, HIGH); // start the alarm     
        }
        else {
           digitalWrite(ALARM_PIN, LOW);  // stop the alarm      
        }
        RTOS_delay(100);     // wait for 100ms
    }
} 

void thread_blink() {         // RTOS thread routine
    pinMode(LED_PIN, OUTPUT); // setup: set pin as output
    while (1) {               // endless loop
        digitalWrite(LED_PIN, HIGH); // turn the LED on
        RTOS_delay(1000);     // wait for 1000ms
        digitalWrite(LED_PIN, LOW);  // turn the LED off
        RTOS_delay(1000);     // wait for 1000ms
    }
} 



state-machine.com 5

void thread_blink() {
    pinMode(LED_PIN, OUTPUT);
    While (1) { // endless loop
        digitalWrite(LED_PIN, HIGH);
        RTOS_delay(1000);
        digitalWrite(LED_PIN, LOW);
        RTOS_delay(1000);
    }
} 

Thread Context & Context Switch

. . .

Memory

CPU registers

Thread Control
Blocks (TCBs)

per-thread stacks
stack stack

sr

. . .

sp

pc

TCB

. . .

sp
TCB

. . .

sp

 context restore  context save 

program counter

stack pointer
status register

pc

pc



state-machine.com 6

Thread Blocking

 time 

context switch

context switch

(6b)

pr
io

ri
ty

Thread-B blocked

Thread-A blockedThread-A runs Thread-A runsK

Thread-B blocked

RTOS kernel

Thread makes a 
blocking call, e.g,
RTOS_delay()

Clock tick 
interrupt

ISR K RTOS kernel

Thread-B runs



state-machine.com 7

RTOS Benefits

1) Divide and conquer strategy

→ Multiple threads are easier to develop than one “kitchen sink” superloop

2) More efficient CPU use

→ Threads that are efficiently blocked don't consume CPU cycles

3) Threads can be decoupled in the time domain

→ Under a preemptive, priority-based scheduler, changes in low-priority 
threads have no impact on the timing of high-priority threads (Rate 
Monotonic Analysis (RMA))



state-machine.com 8

Perils of Blocking

Synchronization
by blocking

Deadlock

Priority
inversion

Missed
deadlines

Starvation

Unresponsive
threads

Architectural
decay

Failure

Blocking

More
threads

Mutual
Exclusion

Shared-state
 concurrency

Race
conditions



state-machine.com 9

Best Practices of Concurrent Programming(*)

● Don't block inside your code

→ Communicate and synchronize threads asynchronously
via event objects

● Don't share data or resources among threads

→ Keep data isolated and bound to threads (strict encapsulation)

● Structure your threads as “message pumps”

(*) Herb Sutter “Prefer Using Active Objects Instead of Naked Threads”



state-machine.com 10

Event
queuePrivate thread

Best Practices: RTOS Implementation

start

Wait
for event

Process
event

Event
queue

Private
data
and

resources

Event
queue

Event object
Event object

Event object ISR

void thread_handler(AO_Type *ao) { // AO thread routine
    ... // setup
    while (1) { // event loop
        // pend on the event queue (BLOCKING!)
        Event e = RTOS_queuePend(ao->queue);
        ao->handle(e); // handle event (NON-BLOCKING!) 
    }
} 

Event
loop

NO
BLOCKING

BLOCKING



state-machine.com 11

Active Object (Actor) Design Pattern

● Active Objects (Actors) are event-driven, strictly encapsulated 
software objects running in their own threads and communicating 
asynchronously by means of events.

● Not a novelty. Carl Hewitt's actors 1970s. ROOM actors 1990s. 

● Adapted from ROOM into UML as active objects

→ ROOM actors and UML active objects use hierarchical state machines 
(UML statecharts) to specify the behavior of event-driven active objects.



state-machine.com 12

Active Object Framework
● Implement the Active Object pattern as a framework

● Inversion of control (main difference from RTOS)

→ automates and enforces the best practices (safer design)

→ brings conceptual integrity and consistency to the applications

void thread_handler(AO_Type *ao) { // AO thread routine
    ... // setup
    while (1) { // event loop
        // pend on the event queue (BLOCKING!)
        Event e = RTOS_queuePend(ao->queue);
        ao->handle(e); // handle event (NON-BLOCKING!) 
    }
} 



state-machine.com 13

void thread_blink() {
    pinMode(LED_PIN, OUTPUT);
    while (1) {
        digitalWrite(LED_PIN, HIGH);
        RTOS_delay(1000); // NOT allowed!
        ...
    }
} 

 Paradigm Shift: Sequential → Event-Driven

● No blocking

→ No use for most RTOS
mechanisms!

delay()

Sequential
programming

with RTOS

Event-driven
active object
framework

Semaphores

Event
Flags

Callback
Timers

Message
Queues*

Threads

Time
Events

Active
Objects

Events

Publish/
Subscribe

Memory
Pools

Paradigm Shift

State
Machines

Event
Posting

Mutexes



state-machine.com 14

Reduce “Spaghetti Code” with State Machines
● Finite State Machines—the best known “spaghetti reducers”

→ “State” captures only the relevant aspects of the system's history

→ Natural fit for event-driven programming, where the code cannot block and 
must return to the event-loop after each event 

→ Minimal context (a single state-variable) instead of the whole call stack

ANY_KEY / send_lower_case_scan_code();
default

ANY_KEY / send_upper_case_scan_code();
caps_locked

CAPS_LOCK CAPS_LOCK

trigger list of actions

internal
transitions



state-machine.com 15

State Machines are not Flowcharts

s1

(a)

s2

s3

do X

do Y do Z

(b)

E1 / action1();

E2 / action2();

E3 / action3(); do W

Statechart (event-driven)
→ represents all states of a system
→ driven by explicit events
→ processing happens on arcs (transitions)
→ no notion of “progression” 

Flowchart (sequential)
→ represents stages of processing in a system
→ gets from node to node upon completion
→ processing happens in nodes
→ progresses from start to finish



state-machine.com 16

Hierarchical State Machines

Traditional FSMs “explode”
due to repetitions

(a)

operand1

OPER

opEntered operand2

DIGIT_0_9, POINT

EQUALS

result

DIGIT_0_9,
 POINT

OPER

C

CC

C

on(b)

operand1

OPER

opEntered

operand2

DIGIT_0_9, POINT

EQUALS

result

DIGIT_0_9, POINT
OPER

C

OFF

OFF

OFF

OFF
OFF

State hierarchy eliminates repetitions
→ programming-by-difference 



state-machine.com 17

AO Frameworks for Deeply Embedded Systems



state-machine.com 18

AO Frameworks vs. RTOS kernels

ROM
(code)1KB

10B
10KB 100KB 1MB 10MB

100B

1KB

10KB

100KB

1MB

R
A

M
(d

at
a)

2KB

QP-nano

QP/C,
QP/C++

A typical
small preemptive RTOS

VxWorks

Linux,
Windows XP

Windows CE

AO Frameworks can be 
smaller than RTOS 
kernels, because they 
don't need blocking



state-machine.com 19

AO Framework – “Software Bus”

ISR_1() ISR_2()

Active 
Object 1

Active 
Object 2

Active 
Object N

direct
event posting

publish-subscribe 
“software bus”

. . .

multicasting a 
published event



state-machine.com 20

Coding Hierarchical State Machines
QState Calc_on(Calc * const me, QEvt const *e) {
    QState status;
    switch (e->sig) {
        case Q_ENTRY_SIG:   /* entry action */
            . . .
            status = Q_HANDLED();
            break;
        case Q_EXIT_SIG:     /* exit action */
            . . .
            status = Q_HANDLED();
            break;
        case Q_INIT_SIG:     /* initial transition */
            status = Q_TRAN(&Calc_ready);
            break;
        case C_SIG:          /* state transition */
            BSP_clear();     /* clear the display */
            status = Q_TRAN(&Calc_on);
            break;
        case OFF_SIG:        /* state transition */
            status = Q_TRAN(&Calc_final);
            break;
        default:
            status = Q_SUPER(&QHsm_top);  /* superstate */
            break;
    }
    return status;
} 

top

entry /
exit /

on

C
ready

OFF



state-machine.com 21

Cooperative Kernel (QV)

“vanilla” scheduler

. . .

. . .dispatch(e);

e = queue.get();

dispatch(e);

e = queue.get();

dispatch(e);

e = queue.get();. . .

find highest-priority 
non-empty queue

all queues empty 
(idle condition)

idle
processing

priority = 1priority = n-1priority = n priority = 0



state-machine.com 22

Preemptive, Non-Blocking Kernel (QK)

0

low
 pr

ior
ity

 ta
sk

time5 10 15 20 25

hig
h p

rio
rity

 ta
sk

(3)

(4)

priority

task preempted(1) (5)

function
call

interrupt 
entry/exit

RTC 
scheduler

(2)

Synchronous Preemption

0

low
 pr

ior
ity

 ta
sk

time5 10 15 20 25

hig
h p

rio
rity

 ta
sk

(8)

(7)

priority

task preempted(1) (11)

(2)

interrupt 
call

interrupt 
return

function
call

(4)(3)

interrupt 
entry/exit

RTC 
scheduler

(10)

(6)

(9)

(5)

int
err

up
t Asynchronous Preemption



state-machine.com 23

Graphical Modeling and Code Generation
● Active Objects enable you to effectively apply UML modeling 
● A modeling tool needs an AO framework as a target for automatic 

code generation 



state-machine.com 24

Summary

● Experts use the Active Object design pattern instead of naked RTOS
● AO framework is an ideal fit for deeply embedded real-time systems
● AO framework requires a paradigm shift (sequential→event-driven)
● Compared to RTOS, AO framework opens new possibilities:

→ Safer architecture and state-machine design method (functional safety)  

→ Simpler, more efficient kernels (lower-power applications)

→ Easier unit testing and software tracing (V&V)

→ Higher level of abstraction suitable for modeling and code generation

● Welcome to the 21st century!



state-machine.com 25

Demo: Blinky on Arduino



state-machine.com 26

Demo: PELICAN on Arduino



state-machine.com 27

Demo: Dining Philosophers with Q-SPY

QF Philo[n] Table

TIMEOUT
(2)

Philo[m]

thinking thinking serving

hungry
HUNGRY(m)

eating
EAT(m)

TIMEOUT
hungry

HUNGRY(n)

TIMEOUT DONE(m)

eating

(3)

(4)

(6)

(7)

(8) (9)

(10)

(1)

(5)

thinking EAT(n)



state-machine.com 28

Demo: “Fly 'n' Shoot” game on Windows


	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28

