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Presentation Outline

● A quick introduction to RTOS
and the perils of blocking

● Active objects

● State machines 

● Active object frameworks for
deeply embedded systems

● Demonstrations

● Q&A

~40 min

~10 min

~10 min
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In the beginning was the “Superloop”

// adapted from the Arduino Blink Tutorial (*)
void main() {
    pinMode(LED_PIN, OUTPUT); // setup: set the LED pin as output
    while (1) {  // endless loop
        digitalWrite(LED_PIN, HIGH); // turn LED on
        delay(1000); // wait for 1000ms
        digitalWrite(LED_PIN, LOW); // turn LED off
        delay(1000); // wait for 1000ms
    }
} 

(*) Arduino Blink Tutorial: http://www.arduino.cc/en/Tutorial/Blink 

http://www.arduino.cc/en/Tutorial/Blink
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void thread_blink() {         // RTOS thread routine
    pinMode(LED_PIN, OUTPUT); // setup: set the LED pin
    while (1) {               // endless loop
        digitalWrite(LED_PIN, HIGH); // turn the LED on
        RTOS_delay(1000);     // wait for 1000ms
        digitalWrite(LED_PIN, LOW);  // turn the LED off
        RTOS_delay(1000);     // wait for 1000ms
    }
}

 

RTOS Multithreading: Multiple “Superloops”

void thread_alarm() {        // RTOS thread routine
    pinMode(SW_PIN, INPUT);  // setup: set the Switch pin as input
    while (1) {              // endless loop
        if (digitalRead(SW_PIN) == HIGH) { // is the switch depressed?
           digitalWrite(ALARM_PIN, HIGH); // start the alarm     
        }
        else {
           digitalWrite(ALARM_PIN, LOW);  // stop the alarm      
        }
        RTOS_delay(100);     // wait for 100ms
    }
} 

void thread_blink() {         // RTOS thread routine
    pinMode(LED_PIN, OUTPUT); // setup: set pin as output
    while (1) {               // endless loop
        digitalWrite(LED_PIN, HIGH); // turn the LED on
        RTOS_delay(1000);     // wait for 1000ms
        digitalWrite(LED_PIN, LOW);  // turn the LED off
        RTOS_delay(1000);     // wait for 1000ms
    }
} 
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void thread_blink() {
    pinMode(LED_PIN, OUTPUT);
    While (1) { // endless loop
        digitalWrite(LED_PIN, HIGH);
        RTOS_delay(1000);
        digitalWrite(LED_PIN, LOW);
        RTOS_delay(1000);
    }
} 

Thread Context & Context Switch
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Thread Blocking
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RTOS Benefits

1) Divide and conquer strategy

→ Multiple threads are easier to develop than one “kitchen sink” superloop

2) More efficient CPU use

→ Threads that are efficiently blocked don't consume CPU cycles

3) Threads can be decoupled in the time domain

→ Under a preemptive, priority-based scheduler, changes in low-priority 
threads have no impact on the timing of high-priority threads (Rate 
Monotonic Analysis (RMA))
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Perils of Blocking
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Best Practices of Concurrent Programming(*)

● Don't block inside your code

→ Communicate and synchronize threads asynchronously
via event objects

● Don't share data or resources among threads

→ Keep data isolated and bound to threads (strict encapsulation)

● Structure your threads as “message pumps”

(*) Herb Sutter “Prefer Using Active Objects Instead of Naked Threads”
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Event
queuePrivate thread

Best Practices: RTOS Implementation

start
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Process
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Event
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Event
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Event object ISR

void thread_handler(AO_Type *ao) { // AO thread routine
    ... // setup
    while (1) { // event loop
        // pend on the event queue (BLOCKING!)
        Event e = RTOS_queuePend(ao->queue);
        ao->handle(e); // handle event (NON-BLOCKING!) 
    }
} 

Event
loop

NO
BLOCKING

BLOCKING
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Active Object (Actor) Design Pattern

● Active Objects (Actors) are event-driven, strictly encapsulated 
software objects running in their own threads and communicating 
asynchronously by means of events.

● Not a novelty. Carl Hewitt's actors 1970s. ROOM actors 1990s. 

● Adapted from ROOM into UML as active objects

→ ROOM actors and UML active objects use hierarchical state machines 
(UML statecharts) to specify the behavior of event-driven active objects.
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Active Object Framework
● Implement the Active Object pattern as a framework

● Inversion of control (main difference from RTOS)

→ automates and enforces the best practices (safer design)

→ brings conceptual integrity and consistency to the applications

void thread_handler(AO_Type *ao) { // AO thread routine
    ... // setup
    while (1) { // event loop
        // pend on the event queue (BLOCKING!)
        Event e = RTOS_queuePend(ao->queue);
        ao->handle(e); // handle event (NON-BLOCKING!) 
    }
} 
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void thread_blink() {
    pinMode(LED_PIN, OUTPUT);
    while (1) {
        digitalWrite(LED_PIN, HIGH);
        RTOS_delay(1000); // NOT allowed!
        ...
    }
} 

 Paradigm Shift: Sequential → Event-Driven

● No blocking

→ No use for most RTOS
mechanisms!
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Reduce “Spaghetti Code” with State Machines
● Finite State Machines—the best known “spaghetti reducers”

→ “State” captures only the relevant aspects of the system's history

→ Natural fit for event-driven programming, where the code cannot block and 
must return to the event-loop after each event 

→ Minimal context (a single state-variable) instead of the whole call stack

ANY_KEY / send_lower_case_scan_code();
default

ANY_KEY / send_upper_case_scan_code();
caps_locked

CAPS_LOCK CAPS_LOCK

trigger list of actions

internal
transitions
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State Machines are not Flowcharts

s1

(a)

s2

s3

do X

do Y do Z

(b)

E1 / action1();

E2 / action2();

E3 / action3(); do W

Statechart (event-driven)
→ represents all states of a system
→ driven by explicit events
→ processing happens on arcs (transitions)
→ no notion of “progression” 

Flowchart (sequential)
→ represents stages of processing in a system
→ gets from node to node upon completion
→ processing happens in nodes
→ progresses from start to finish
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Hierarchical State Machines

Traditional FSMs “explode”
due to repetitions
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State hierarchy eliminates repetitions
→ programming-by-difference 
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AO Frameworks for Deeply Embedded Systems
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AO Frameworks vs. RTOS kernels
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AO Framework – “Software Bus”
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Coding Hierarchical State Machines
QState Calc_on(Calc * const me, QEvt const *e) {
    QState status;
    switch (e->sig) {
        case Q_ENTRY_SIG:   /* entry action */
            . . .
            status = Q_HANDLED();
            break;
        case Q_EXIT_SIG:     /* exit action */
            . . .
            status = Q_HANDLED();
            break;
        case Q_INIT_SIG:     /* initial transition */
            status = Q_TRAN(&Calc_ready);
            break;
        case C_SIG:          /* state transition */
            BSP_clear();     /* clear the display */
            status = Q_TRAN(&Calc_on);
            break;
        case OFF_SIG:        /* state transition */
            status = Q_TRAN(&Calc_final);
            break;
        default:
            status = Q_SUPER(&QHsm_top);  /* superstate */
            break;
    }
    return status;
} 

top

entry /
exit /

on

C
ready

OFF
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Cooperative Kernel (QV)

“vanilla” scheduler

. . .

. . .dispatch(e);

e = queue.get();

dispatch(e);

e = queue.get();

dispatch(e);

e = queue.get();. . .

find highest-priority 
non-empty queue

all queues empty 
(idle condition)

idle
processing

priority = 1priority = n-1priority = n priority = 0
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Preemptive, Non-Blocking Kernel (QK)
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Graphical Modeling and Code Generation
● Active Objects enable you to effectively apply UML modeling 
● A modeling tool needs an AO framework as a target for automatic 

code generation 
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Summary

● Experts use the Active Object design pattern instead of naked RTOS
● AO framework is an ideal fit for deeply embedded real-time systems
● AO framework requires a paradigm shift (sequential→event-driven)
● Compared to RTOS, AO framework opens new possibilities:

→ Safer architecture and state-machine design method (functional safety)  

→ Simpler, more efficient kernels (lower-power applications)

→ Easier unit testing and software tracing (V&V)

→ Higher level of abstraction suitable for modeling and code generation

● Welcome to the 21st century!
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Demo: Blinky on Arduino



state-machine.com 26

Demo: PELICAN on Arduino
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Demo: Dining Philosophers with Q-SPY

QF Philo[n] Table

TIMEOUT
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Demo: “Fly 'n' Shoot” game on Windows
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