
QP state machine frameworks for Microsoft Windows

Application Note
QWinTM GUI Kit for Prototyping
Embedded Systems on Windows

Document Revision K
March 2021

Copyright © Quantum Leaps, LLC
info@ state-machine .com
www.state-machine.com

mailto:info@quantum-leaps.com
http://www.state-machine.com/
mailto:info@quantum-leaps.com
mailto:info@quantum-leaps.com

Copyright © Quantum Leaps, LLC. All Rights Reserved.

Table of Contents

1 Introduction.. 1
1.1 About the QWinTM GUI.. 1
1.2 About the Development Tools...1
1.3 Licensing... 1

2 Getting Started... 2
2.1 Downloading and Installing QWin from QTools Collection..2
2.2 Building the QWin Demo with the Visual Studio C++Toolset..3
2.3 Running the QWin GUI Demo on Windows..4
2.4 Running the QWin GUI Demo on the EK-LM3S811 Board...5

2.4.1 GNU-ARM Toolset.. 5
2.4.2 IAR-ARM Toolset..6

3 Developing Embedded Code on Windows...7
3.1 Dual Targeting... 7
3.2 General Software Structure... 7
3.3 Dialog Box GUI... 9
3.1 Main Steps for Creating an Embedded Front Panel GUI..9
3.2 The Dialog Box Resource... 10

3.2.1 The Background Image... 11
3.3 Owner-Drawn Buttons... 12
3.4 Graphic Displays... 15
3.5 Segment Displays... 18
3.6 LEDs... 20

4 The Board Support Package... 21
4.1 The BSP Interface (bsp.h)... 21
4.2 BSP for QWin GUI (WinMain)...22
4.3 BSP for QWin GUI (WndProc)..24
4.4 The Application Thread... 28

5 The main() Function (“Superloop”)..29

6 Internal QWin GUI Implementation...30
6.1 The qwin_gui.h Header File.. 30
6.1 The qwin_gui.c Source File... 32

7 Contact Information... 33

i

Legal Disclaimers

Information in this document is believed to be accurate and reliable. However, Quantum Leaps does not give any
representations or warranties, expressed or implied, as to the accuracy or completeness of such information and shall have
no liability for the consequences of use of such information.

Quantum Leaps reserves the right to make changes to information published in this document, including without limitation
specifications and product descriptions, at any time and without notice. This document supersedes and replaces all
information supplied prior to the publication hereof.

All designated trademarks are the property of their respective owners.

Copyright © Quantum Leaps, LLC. All Rights Reserved.

1 Introduction
This Application Note describes a simple, free software GUI
toolkit, called QWinTM, for prototyping embedded systems on
Windows in the C or C++ programming language, including
building realistic embedded front panels consisting of buttons,
LEDs, and LCD displays (both segmented and graphic). The
described implementation is based on the raw Win32 API to
provide direct mapping to C for easy integration with embedded
code.

1.1 About the QWinTM GUI

The QWin GUI is available as part of the QTools Collection and is also included in the QP Frameworks
(in the Win32 ports). QWin consists of just two files: qwin_gui.h containing the interface and
qwin_gui.c providing the implementation. Currently these files provide the following facilities:

 Graphic displays (pixel-addressable) such as graphical LCDs, OLEDs, etc. with up to 24-bit color

 Segmented displays such as segment LCDs, and segment LEDs with generic, custom bitmaps for
the segments.

 Owner-drawn buttons with custom “depressed” and “released” bitmaps and capable of generating
separate events when depressed and when released.

Additionally, the provided code shows how to handle input sources:

 Keyboard events

 Mouse move events and mouse-wheel events

1.2 About the Development Tools

The QWin GUI kit components have been prepared and tested with the following free Windows tools:

 Microsoft Visual C++ Community Edition

 Additionally, to demonstrate that the same code runs both in the Win32 emulation and in a deeply
embedded target, the example code uses the free GNU-ARM toolset (included in the QTools
Collection).

1.3 Licensing

The QWin GUI Kit is licensed under the permissive open source MIT license as endorsed by the Open
Source Initiative.

1 of 33

https://opensource.org/licenses/GPL-3.0
https://opensource.org/licenses/GPL-3.0
https://opensource.org/licenses/MIT
http://www.state-machine.com/products/index.html#QP
http://www.state-machine.com/products/index.html#Qtools

Copyright © Quantum Leaps, LLC. All Rights Reserved.

Application Note
QWin GUI Kit for Prototyping

Embedded Systems on Windows

2 Getting Started
The QWin GUI Kit is part of the QTools Collection and is also included in the QP distributions (in the
Win32 ports). This section describes how to install the QWin GUI Kit, as it is packaged in the QTools
Collection for Windows, and how to build, run, and debug the example demo application included in the
toolkit.

2.1 Downloading and Installing QWin from QTools Collection

You can download QTools collection for Windows it from GitHub. You can install QTools into any
directory on your hard drive, but the recommended default is C:\qp\qtools. In any case, it is
recommended not to use directories with spaces or special characters. The following Listing 1 shows
directories and files included in this ZIP file.

Listing 1: Selected directories and files in the QTools Collection

qtools\
 +-bin\ - executables (e.g., make.exe, qspy.exe, etc.)
 +- . . .
 +-qspy - QSPY software tracing system (host support)
 +- . . .
 +-qwin\ - QWin GUI Toolkit
 | +-. . .
 | +-ek-lm3s811\ - Directory for testing the demo on EK-LM3S811
 | | +-bsp_lm3s811.c - Board Support Package implementation for LM3S811 board
 | | +-display96x16x1.c - Implementation of the OLED display of LM3S811 board
 | | +-display96x16x1.h - Interface of the OLED display of LM3S811 board
 | | +-Makefile – Makefile for GNU-ARM
 | | +-qwin_demo.ewp – IAR Embedded Workbench project file
 | | +-qwin_demo.eww – IAR Embedded Workbench workspace (open in IAR EWARM)
 | | +-. . .
 | |
 | +-bsp.h - Board Support Package interface
 | +-bsp_win32.c - Board Support Package implementation for Win32
 | +-main.c - main function (the same for embedded and Win32 app)
 | +-qwin_demo.sln - Visual Studio C++ solution
 | +-qwin_demo.vcxproj - Visual Studio C++ project
 | +-qwin_gui.h - Interface for the QWin GUI
 | +-qwin_gui.c - Implementation of the QWin GUI
 | +-Resource.rc - Resource file for the example
 | +-resource.h - Resource header file

2 of 33

https://github.com/QuantumLeaps/qtools/releases
https://www.state-machine.com/qtools/
https://www.state-machine.com/qtools/
https://www.state-machine.com/qtools/

Copyright © Quantum Leaps, LLC. All Rights Reserved.

Application Note
QWin GUI Kit for Prototyping

Embedded Systems on Windows

2.2 Building the QWin Demo with the Visual Studio C++Toolset

To build the project with Visual Studio C++ toolset (needs to be downloaded from Microsoft), open the
Visual Studio IDE and load the provided solution file qwin_demo.sln. Build it by pressing F7. This should
build the code in the sub-directory Debug.

Figure 1: Building the qwin_demo project with Visual Studio 2019

3 of 33

Copyright © Quantum Leaps, LLC. All Rights Reserved.

Application Note
QWin GUI Kit for Prototyping

Embedded Systems on Windows

2.3 Running the QWin GUI Demo on Windows

After the build, the Windows qwin_demo.exe is located in the directory qtools\qwin\Debug\. At this
point you can either launch the application from the Visual Studio debugger (toolbar button “Local
Windows Debugger”) or you can double-click on the executable in the Windows Explorer. When the
program starts running, you should see the application shown in the following screen shot:

Figure 2: QWin GUI demo of the EK-LM3S811 board running in Windows (qwin_demo.exe)

As shown in Figure 2, the QWin GUI demo shows the picture of the Texas Instruments EK-LM3S811
board with a small graphic display (monochrome OLED, 96x16 pixels), an owner-drawn button, an LED,
and an additional segment display in the corner. The OLED display shows the scrolling waveform, which
moves from right to left at a frame rate of 30 frames per second. Also the segment display counts the
frames (30 increments per second) and stops counting when the application is “Paused” (see the next
paragraph).

The demo is interactive. When you click on the USER button and hold the left mouse button depressed,
the application enters the PAUSED mode in which the display shows the text “PAUSED”, the segment
display stops counting, and the STATUS LED in the corner lights up. When you release the mouse
button, the application gets back to the RUNNING mode, in which it continues to scroll the waveform.

The demo demonstrates also the keyboard interface. By pressing the SPACE bar on your PC, you enter
the PAUSED state and pressing SPACE again you go back to RUNNING.

Finally, the demo demonstrates the mouse-wheel interface. By scrolling the mouse-wheel forward you
enter the PAUSED state and by scrolling the mouse-wheel backward you go back to RUNNING.

NOTE: The QWin GUI demo for Windows uses the exact same application code (main.c) as the
embedded project running on the actual target board EK-LM3S811, as described in Section 2.4.

4 of 33

Segment
 Display

Graphic
 Display

Owner-drawn
button

LED
Regular
 Button

Static
Text

Copyright © Quantum Leaps, LLC. All Rights Reserved.

Application Note
QWin GUI Kit for Prototyping

Embedded Systems on Windows

2.4 Running the QWin GUI Demo on the EK-LM3S811 Board

The code accompanying this App Note contains also the GNU-ARM Makefile and IAR-ARM workspace
and project to run on the actual EK-LM3S811 board (see directory ek-lm3s811\ in Listing 1).

2.4.1 GNU-ARM Toolset
To build the project with GNU-ARM toolset (included in the QTools collection for Windows), open
Command-Prompt and change to the directory directory ek-lm3s811\. Type make. This chouild build the
code in the sub-directory gnu-arm_dbg. Once you build the code, you can upload it to the EK=LM3S811
board by means of the LMFlash utility (available from TI).

Figure 3: Building qwin_demo with GNU-ARM

5 of 33

Copyright © Quantum Leaps, LLC. All Rights Reserved.

Application Note
QWin GUI Kit for Prototyping

Embedded Systems on Windows

Figure 4: Uploading qwin_demo.bin to the EK-LM3S811 with LMFlash

As shown in the picture of the EK-LM3S811 below, you can interact with the application by means of the
USER button. Depressing the button enters the PAUSED mode, while releasing the button goes back to
the RUNNING mode.

Figure 5: QWin Demo running on the actual EK-LM3S811 board

2.4.2 IAR-ARM Toolset
To download the project to the board, you need to open the workspace ek-lm3s811\qwin_demo.eww in
the IAR EWARM IDE and after attaching the EK-LM3S811 board to the USB input of your host computer
you can download the code to the board

6 of 33

Copyright © Quantum Leaps, LLC. All Rights Reserved.

Application Note
QWin GUI Kit for Prototyping

Embedded Systems on Windows

3 Developing Embedded Code on Windows
The main purpose of this QWin GUI is to enable embedded engineers developing the embedded C or
C++ code as much as possible on a Windows PC with fast and powerful tools, such as Visual Studio C++
in order to avoid the “target hardware bottleneck”.

NOTE: This section assumes that you have installed Visual Studio C++ on your Windows PC.

3.1 Dual Targeting

The general strategy for developing software on one platform and running it on another is known as Dual
Targeting. This strategy is getting increasingly popular in the Test Driven Development (TDD)
community, as described in the book “Test Driven Development for Embedded C” by James Grenning.

NOTE: Generally, the TDD community is mostly interested in unit testing of individual components,
which works best with simple console applications without a GUI. However, the QWin GUI kit
addresses a different need, which is developing the complete embedded applications, not just
components, with non-trivial user interfaces.

Dual targeting means that from day one, your embedded code is designed to run on at least two
platforms: the final target hardware and your PC. This in turn requires a specific way of designing the
embedded software such that any target dependencies are handled through a well-defined interface often
called the Board Support Package (BSP). This interface has at least two implementations: one for the
actual target and one for the PC, such as Win32 API. With such interface in place, the remaining bulk of
the embedded code can remain completely unaware which BSP implementation it is linked to and so it
can be developed quickly on the PC, but can also run on the target hardware without any changes.

While some embedded programmers can view dual targeting as a self-inflicted burden, the more
experienced developers generally agree that paying attention to the boundaries between software and
hardware is actually beneficial, because it results in more modular, more portable, and more maintainable
software with much longer useful lifetime. The investment in dual targeting has also an immediate
payback in the vastly accelerated compile-run-debug cycle, which is much faster and more productive on
the powerful PC compared to much slower, recourse-constrained deeply embedded target with limited
visibility into the running code.

3.2 General Software Structure

The general software structure of a Windows emulation of an embedded device consists of at least two
Win32 threads. The primary thread executes the traditional Windows message loop (the WinMain()
function), while the simulated embedded application executes in a secondary Win32 thread spawned
from the original thread after the initialization. This multithreaded architecture allows the embedded code
to be exactly the same as in the embedded target. For example, the embedded code typically defines the
main() function, which is executed in the secondary Win32 thread.

For simplicity, the main() function of the provided QWin GUI demo (see file main.c) is structured as the
venerable “superloop”. The primitive “superloop” structure is actually not the best way of executing code
on the desktop, because a “superloop” tends to take all the CPU cycles that it gets, which means that the
CPU core (in a multi-core Windows PC) assigned to the secondary thread will run at 100% CPU capacity.
A simple remedy to reduce this CPU usage is inserting a time delay into the “superloop” (which in the
BSP for Windows calls the Sleep() Win32 API), and the provided example demonstrates just this. Also,
the communication between the Win32 GUI thread (which plays the role of the interrupt level) with the
background “superloop” occurs through global variables, which is not very robust.

7 of 33

Copyright © Quantum Leaps, LLC. All Rights Reserved.

Application Note
QWin GUI Kit for Prototyping

Embedded Systems on Windows

However, the Windows emulation can also execute embedded code based on an RTOS or a real-time
framework. For this to work, you need to have a Windows emulation of the RTOS or the framework, in
which RTOS tasks are mapped to the Win32 threads with the proper mutual exclusion mechanisms for
protecting any shared resources. Such architectures work actually better for Windows emulations.

NOTE: The QP real-time embedded frameworks provide an example of architecture ideal for
prototyping on Windows. To this end, all QP frameworks (QP/C, QP/C++ and QP-nano) come with
QWin GUI examples that run on Windows with almost no loading of the CPU. The screen shot below
shows an interactive prototype of a “Fly ‘n’ Shoot” game included in all QP distributions, which runs
also both on Windows and on the actual embedded board (EFM32-SLSTK from Silicon Labs in this
case).

Figure 6: “Fly ‘n’ Shoot” game included in the QP frameworks

8 of 33

https://www.state-machine.com/products/#QP

Copyright © Quantum Leaps, LLC. All Rights Reserved.

Application Note
QWin GUI Kit for Prototyping

Embedded Systems on Windows

3.3 Dialog Box GUI

The general structure of a GUI application for building embedded front panels is based on a dialog box,
which can be designed graphically within Visual Studio IDE. To provide a wider range of inputs, the
dialog box is not serviced by the traditional dialog procedure (DialogProc), but rather by a generic Window
Procedure (WindProc). This is achieved by assigning a custom “Windows Class” to the dialog box at
design time (see Section 4.2).

3.1 Main Steps for Creating an Embedded Front Panel GUI

The recommended steps for developing embedded software with realistic GUI front panel on Windows
are as follows:

NOTE: The described procedure is based on copying and modifying the existing example to preserve
the project settings, such as graphical resources (file Resource.rc). The described procedure
assumes that you have installed Visual Studio C++ Community Edition.

1. Copy the example GUI application directory (e.g., qwin\) and rename the copy to your own project.

2. Remove *.sdf, *.suo, and *.vxproj.user files from the project directory (if present).

3. Rename the .sln (solution) file to the desired name of your project (leave the .sln extension). Open
the renamed solution file in a text editor and replace all occurrences of the original example name with
the your project name. Save the solution file.

4. Rename the .vcxproj (project) file to the desired name of your project (leave the .vcxproj
extension). Open the renamed project file in a text editor and automatically replace all occurrences of
the original example name with the your project name. Save the project file.

5. Open the solution file in Visual Studio C++.

6. Open the resource file in the resource editor (Resource.rc) and modify the front panel to your project.
This step typically requires working with bitmaps, which you can either generate from digital pictures of
your embedded front panel, or from your sketches. The upcoming Section describes the design of the
front panel in the Visual Studio Resource Editor.

7. Adapt the bsp_win32.c file to handle the GUI events from your dialog box (in the WindProc()).

9 of 33

Copyright © Quantum Leaps, LLC. All Rights Reserved.

Application Note
QWin GUI Kit for Prototyping

Embedded Systems on Windows

3.2 The Dialog Box Resource

The structure of a GUI application for building embedded front panels is assumed to be based on a
dialog box, which can be designed in a resource editor included in Visual Studio.

NOTE: Due to the limitations of the Visual Studio resource editor, some necessary design steps need
to be performed by editing the Resource.rc file manually in a text editor, as shown in Figure 7.

Figure 7: Viewing the Resource.rc file in a text editor.

10 of 33

Copyright © Quantum Leaps, LLC. All Rights Reserved.

Application Note
QWin GUI Kit for Prototyping

Embedded Systems on Windows

3.2.1 The Background Image
First, you typically want to add a background image of your embedded system to the dialog box, such as
the EK-LM3S811 board shown in Figure 2. The easiest way to use your own background image is to
change the bitmap file associated with the IDB_BACKGROUND bitmap resource in the Resource.rc file:

///
//
// Bitmap
//
IDB_BACKGROUND BITMAP "Res\\EK-LM3S811.bmp"
. . .

The most important aspect of preparing the background image is the proper scaling. You should scale
the image carefully such that any graphic display present on the panel contains the desired number of
pixels. Please note that to accommodate small pixel-count embedded displays, the provided GUI facilities
for rendering graphic displays allow you to scale the pixels independently in the horizontal and vertical
directions. For example, the OLED display of the EK-LM3S811 board has resolution of 96 x 16 pixels,
which is a very small area on the modern high-resolution monitors. Therefore, the image of the board has
been scaled such that the OLED display contains 192 x 32 pixels, which is exactly two times bigger than
the original resolution.

NOTE: The background image needs to be converted to the BMP format, which can be done by a
number of programs, for example the Paint utility bundled in every version of Windows. Save the
image as a bitmap in the Res\ directory of your project.

NOTE: Unfortunately, the Visual Studio resource editor does not allow you to control the stacking
order (a.k.a. z-order) of the elements in the dialog box, so your background image might show in
front of some other elements of your dialog box. However, the final stacking order is determined by
the order of elements in the in the Dialog resource code (see Listing 7), regardless of how Visual
Studio resource editor shows it.

11 of 33

Copyright © Quantum Leaps, LLC. All Rights Reserved.

Application Note
QWin GUI Kit for Prototyping

Embedded Systems on Windows

3.3 Owner-Drawn Buttons

Owner-drawn buttons have two critical advantages over the regular buttons when it comes to embedded
front panels. (1) they can look exactly as your physical buttons on your panel and, more importantly, (2)
they generate events when they are depressed and when they are released. In contrast, the regular
buttons are always rectangular-gray and they generate only the “clicked” event, which appears as
WM_COMMAND in the WndProc.

To add an owner-drawn button to the dialog box, select the “Button” control from the Toolbox and place in
the desired spot. Next, change the property “Owner drawn” to True.

Figure 8: Adding an Owner-Drawn button in Visual Studio resource editor

NOTE: The design of a front panel requires quite precise placement of the controls. To achieve the
fine control of placement. The final fine-tuning of the position and size of the owner-drawn button
can be adjusted in the Dialog resource code (see Listing 7).

The owner-drawn button requires also some code. which is illustrated in Listing 2.

Listing 2: Implementing an owner-drawn button (file bsp_win32.c)

 #include "qwin_gui.h"

 (1) static OwnerDrawnButton l_userBtn; /* USER button of the EK-LM3S811 board */
 . . .

12 of 33

Copyright © Quantum Leaps, LLC. All Rights Reserved.

Application Note
QWin GUI Kit for Prototyping

Embedded Systems on Windows

 static LRESULT CALLBACK WndProc(HWND hWnd, UINT iMsg,
 WPARAM wParam, LPARAM lParam)
 {
 switch (iMsg) {
 case WM_CREATE: {
 . . .
 (2) OwnerDrawnButton_init(&l_userBtn, IDC_USER,
 LoadBitmap(l_hInst, MAKEINTRESOURCE(IDB_BTN_UP)),
 LoadBitmap(l_hInst, MAKEINTRESOURCE(IDB_BTN_DWN)),
 LoadCursor(NULL, IDC_HAND));
 return 0;
 }

 /* commands from child controls and menus... */
 case WM_COMMAND: {
 . . .
 switch (wParam) {
 case IDC_USER: { /* owner-drawn button(s) */
 (3) SetFocus(hWnd);
 break;
 }
 }
 return 0;
 }

 /* drawing owner-drawn buttons... */
 case WM_DRAWITEM: {
 LPDRAWITEMSTRUCT pdis = (LPDRAWITEMSTRUCT)lParam;
 switch (pdis->CtlID) {
 case IDC_USER: { /* USER owner-drawn button */
 (4) switch (OwnerDrawnButton_draw(&l_userBtn, pdis)) {
 case BTN_DEPRESSED: {
 BSP_playerTrigger();
 SegmentDisplay_setSegment(&l_userLED, 0U, 1U);
 break;
 }
 case BTN_RELEASED: {
 SegmentDisplay_setSegment(&l_userLED, 0U, 0U);
 break;
 }
 default {
 break;
 }
 }
 break;
 }
 }
 return 0;
 }
 . . .
 }

(1) You need to provide an instance of the OwnerDrawnButton struct for each owner-drawn button
you have added to the Dialog box.

13 of 33

Copyright © Quantum Leaps, LLC. All Rights Reserved.

Application Note
QWin GUI Kit for Prototyping

Embedded Systems on Windows

(2) You need to call OwnerDrawnButton_init() in the WM_CREATE message handler with the bitmaps
for the “Released” state, “Depressed” state, and the mouse cursor when the mouse hovers above
the button. You can specify the cursor shape to NULL, in which case the standard arrow cursor is
used.

(3) You need to call SetFocus(hWnd) in the WM_COMMAND message handler to set the keyboard focus
for the parent window of the owner-draw button.

(4) You need to call OwnerDrawButton_draw() in the WM_DRAWITEM message handler to render the
button in the current state.

14 of 33

Copyright © Quantum Leaps, LLC. All Rights Reserved.

Application Note
QWin GUI Kit for Prototyping

Embedded Systems on Windows

3.4 Graphic Displays

Graphic displays of various types (LCDs, OLED, etc.) become increasingly popular in embedded
systems. The QWin GUI kit provides a generic, efficient implementation of a pixel-addressable graphic
display with up to 24-bit color (RGB).

The use model of the provided graphic display is to perform multiple, efficient pixel updates in-memory
and then render the updated bitmap to the screen. Also, to accommodate low-resolution displays, the
graphic facility allows scaling the display independently in horizontal and vertical directions. For example,
the OLED display of the EK-LM3S811 board has been scaled up by factor of 2 horizontally and 2
vertically, to the total size of 192 x 32 pixels (each original pixel corresponding to 2x2 pixels on the
graphic display.) Of course, the 2x2 scaling is just an example and you can use other scaling factors.

Under the hood, the implementation is based on the Device-Independent Bitmap (DIB) section of an in-
memory bitmap (CreateDIBSection() Win32 API, see qwin_gui.c source file in the QWin GUI.) The
GraphicDisplay bitmap uses the standard coordinate system, in which the origin (0,0) is placed in the
top-left corner, the x-coordinate extends horizontally and grows to the right, while the y-coordinate
extends vertically and grows down.

To add a graphic display to the dialog box in the resource editor, select the “Picture Control” from the
Toolbox and place in the desired spot. In the Property Editor of the newly added Picture Control, you
change the type to “Bitmap” and the ID to the carefully scaled LCD bitmap prepared in the pervious step.

Figure 9: Adding an an LCD as a Bitmap to the dialog ox

15 of 33

Copyright © Quantum Leaps, LLC. All Rights Reserved.

Application Note
QWin GUI Kit for Prototyping

Embedded Systems on Windows

The graphic display requires also some code. which is illustrated in Listing 3.

Listing 3: Implementing a graphic display

 #include "qwin_gui.h"

 (1) static GraphicDisplay l_oled; /* the OLED display of the EK-LM3S811 board */
 /* (R,G,B) colors for the OLED display */
 (2) static BYTE const c_onColor [3] = { 255U, 255U, 0U }; /* yellow */
 (3) static BYTE const c_offColor[3] = { 15U, 15U, 15U }; /* very dark gray */
 . . .
 /*..*/
 static LRESULT CALLBACK WndProc(HWND hWnd, UINT iMsg,
 WPARAM wParam, LPARAM lParam)
 {
 switch (iMsg) {
 /* Perform initialization after all child windows have been created */
 case WM_INITDIALOG: {
 (4) GraphicDisplay_init(&l_oled,
 BSP_SCREEN_WIDTH, BSP_SCREEN_HEIGHT,
 IDC_LCD, c_offColor);
 . . .
 }
 /*..*/
 (5) void BSP_drawBitmap(uint8_t const *bitmap) {
 UINT x, y;
 /* map the EK-LM3S811 OLED pixels to the GraphicDisplay pixels... */
 for (y = 0; y < BSP_SCREEN_HEIGHT; ++y) {
 for (x = 0; x < BSP_SCREEN_WIDTH; ++x) {
 uint8_t bits = bitmap[x + (y/8)*BSP_SCREEN_WIDTH];
 if ((bits & (1U << (y & 0x07U))) != 0U) {
 (6) GraphicDisplay_setPixel(&l_oled, x, y, c_onColor);
 }
 else {
 (7) GraphicDisplay_clearPixel(&l_oled, x, y);
 }
 }
 }
 (8) GraphicDisplay_redraw(&l_oled); /* re-draw the updated display */
 }

(1) You need to provide an instance of the GraphicDisplay struct for each graphic display you have
added to the Dialog box.

(2-3) To simulate a monochrome display, the colors for the “on” and “off” pixel states are defined.

(4) You need to call GraphicDisplay_init() in the WM_INITDIALOG message handler with the
dimensions of the display and the color of the blank pixels.

(5) The BSP_drawBitmap() function renders the whole 96x16 pixel OLED display of the EK-LM3S811
board. This function performs a re-mapping of the specific pixel representation for the OLED display
to the pixels of the GraphicDisplay device-independent bitmap. In this particular case, the
monochrome pixels are represented as tightly-packed bitmasks of 8-pixels per byte arranged
vertically.

16 of 33

Copyright © Quantum Leaps, LLC. All Rights Reserved.

Application Note
QWin GUI Kit for Prototyping

Embedded Systems on Windows

NOTE: The particular pixel re-mapping is just a demonstration here. You need to adapt it for your
specific display. Also, you don't need to always update the whole pixel array. You might choose to
update only a part of it, as is illustrated in the function BSP_drawString() in bsp.c (not shown in
Listing 3).

(6) The macro GraphicDisplay_setPixel() very efficiently sets a given pixel at (x, y) to the given
color.

(7) The macro GraphicDisplay_clearPixel() very efficiently clears a given pixel at (x, y) by setting it
to the blank color specified in GraphicDisplay_init().

NOTE: The pixels are set/cleared only in memory and do not appear on the screen until the call to
GraphicDisplay_redraw().

(8) The function GraphicDisplay_redraw() re-draws the current state of the in-memory bitmap on the
screen.

NOTE: You can use the function GraphicDisplay_clear() to clear the entire internal device-
independent bitmap by setting all the pixels of the to the blank color.

17 of 33

Copyright © Quantum Leaps, LLC. All Rights Reserved.

Application Note
QWin GUI Kit for Prototyping

Embedded Systems on Windows

3.5 Segment Displays

The QWin GUI kit provides also a generic facility for rendering segment displays, such as found in digital
watches, calculators, thermostats, microwave ovens, washing machines, digital meters, etc.

The chosen implementation is based on selective displaying bitmaps representing the various states of
the related groups of segments. In this design, you need to provide all the bitmaps for all states of
segment groups that you anticipate in your application, but the advantage is that the bitmaps can be very
realistic and match exactly your specific display.

To add a segment display to the dialog box in the resource editor, you add all the bitmaps for the
segments and a “Picture Control” for each segment group. You also need to place the Picture Controls at
the exact locations of the segments. Please note that you add one Picture Control for the whole group of
segments not for every individual segment. For example, as illustrated in Figure 10, a single picture
control represents a whole 7-segment digit. Also, as you keep adding the segment groups to the dialog
box, you don't need to make sure that the resource IDs assigned to them are consecutive or in any
specific order. The provided implementation of the Segment Display does not require any specific order.

Figure 10: Adding a segment display in the resource editor

NOTE: The design of a segment display requires quite precise placement of the bitmaps. To achieve
the fine control of placement. The final fine-tuning of the position and size of the segments can be
adjusted in the Dialog resource code (see Listing 7).

The segment display requires also some code. which is illustrated in Listing 4.

18 of 33

Copyright © Quantum Leaps, LLC. All Rights Reserved.

Application Note
QWin GUI Kit for Prototyping

Embedded Systems on Windows

Listing 4: Implementing a segment display

 #include "qwin_gui.h"

 (1) static SegmentDisplay l_scoreBoard; /* segment display for the score */
 /*..*/
 static LRESULT CALLBACK WndProc(HWND hWnd, UINT iMsg,
 WPARAM wParam, LPARAM lParam)
 {
 switch (iMsg) {
 /* Perform initialization after all child windows have been created */
 case WM_INITDIALOG: {
 . . .
 (2) SegmentDisplay_init(&l_scoreBoard,
 4U, /* 4 "segments" (digits 0-3) */
 10U); /* 10 bitmaps (for 0-9 states) */
 (3) SegmentDisplay_initSegment(&l_scoreBoard, 0U, IDC_SEG0);
 (4) SegmentDisplay_initSegment(&l_scoreBoard, 1U, IDC_SEG1);
 . . .
 (5) SegmentDisplay_initBitmap(&l_scoreBoard,
 0U, LoadBitmap(l_hInst, MAKEINTRESOURCE(IDB_SEG0)));
 (6) SegmentDisplay_initBitmap(&l_scoreBoard,
 1U, LoadBitmap(l_hInst, MAKEINTRESOURCE(IDB_SEG1)));
 . . .
 . . .
 }
 /*..*/
 void BSP_updateScore(uint16_t score) {
 /* update the score in the l_scoreBoard SegmentDisplay */
 (7) SegmentDisplay_setSegment(&l_scoreBoard, 0U, (UINT)(score % 10U));
 score /= 10U;
 (8) SegmentDisplay_setSegment(&l_scoreBoard, 1U, (UINT)(score % 10U));
 score /= 10U;
 (9) SegmentDisplay_setSegment(&l_scoreBoard, 2U, (UINT)(score % 10U));
 score /= 10U;
(10) SegmentDisplay_setSegment(&l_scoreBoard, 3U, (UINT)(score % 10U));
 }

(1) You need to provide an instance of the SegmentDisplay struct for each segment display you
have added to the Dialog box.

(2) You need to call SegmentDisplay_init() in the WM_INITDIALOG message handler with the total
number of segment groups and the total number of bitmaps associated with the display. For
instance, the 4-digit l_scoreBoard display used in the game example uses 4 segment groups and
10 bitmaps (for digits 0..9).

(3-4) For each segment group, you need to call SegmentDisplay_initSegment() with the index of the
segment group and the dialog control corresponding to this segment group. This way, you establish
a consecutive numbering of segments (by the index number).

(5-6) For each bitmap, you need to call SegmentDisplay_initBitmap() with the index of the bitmap
and the bitmap itself loaded from the resource pool. This way, you establish a consecutive
numbering of bitmaps (by the index number).

(7-10) You change the bitmaps in the segments by calling SegmentDisplay_setSegment() with the
index of the segment and index of the bitmap.

19 of 33

Copyright © Quantum Leaps, LLC. All Rights Reserved.

Application Note
QWin GUI Kit for Prototyping

Embedded Systems on Windows

3.6 LEDs

LEDs can be efficiently handled as segment displays with just one “segment group” (the LED itself) and
two bitmaps (“off” and “on” states of the bitmap). This way, it is also very easy to build groups of LEDs
and multi-color LEDs just by increasing the number of “segment groups” and bitmaps for each color.

Figure 11: Adding an LED in the resource editor

20 of 33

Copyright © Quantum Leaps, LLC. All Rights Reserved.

Application Note
QWin GUI Kit for Prototyping

Embedded Systems on Windows

4 The Board Support Package
As described in the earlier Section 3.1, the best practice of “dual targeting” is to handle any target
dependencies through a well-defined interface often called the Board Support Package (BSP). This
interface has at least two implementations: one for the actual target and one for the PC, such as Win32
API. With such interface in place, the remaining bulk of the embedded code can remain completely
unaware which BSP implementation it is linked to and so it can be developed quickly on the PC, but can
also run on the target hardware without any changes.

4.1 The BSP Interface (bsp.h)

The bsp.h header file specifies the BSP interface, which is the same for the embedded target and for the
Windows emulation. The following Listing shows the

Listing 5: The BSP interface for the demo application (file bsp.h).

(1) #define BSP_TICKS_PER_SEC 33U
 #define BSP_SCREEN_WIDTH 96U
 #define BSP_SCREEN_HEIGHT 16U

 void BSP_init(void);
 (2) void BSP_sleep(uint32_t ticks);
 . . .

 /* special adaptations for QWin GUI applications */
 (3) #ifdef QWIN_GUI
 /* replace main() with main_gui() as the entry point to a GUI app. */
 (4) #define main() main_gui()
 (5) int main_gui(); /* prototype of the GUI application entry point */
 #endif

(1) The ticks-per-second constant defines how fast the “superloop” goes through each pass. This
constant is convenient to implement timing delays in the application.

(2) The actual implementation of the sleep() function depends on the environment. It can be
implemented with polling in the “superloop” on the embedded target, but on Windows it can be
efficient blocking, so that the Windows application won’t hog the CPU on your desktop machine.

(3) The macro QWIN_GUI indicates that the BSP is for the Windows GUI application.

NOTE: The macro QWIN_GUI must be defined in the Windows GUI build, preferably on the
command-line to the compiler.

(4) When this macro is defined, the main() function is aliased to main_gui().

(5) The prototype of main_gui() is provided.

NOTE: Please note that the BSP interface avoids any explicit dependency on the Win32 API. This
has a very nice side effect of very fast compilation of the platform-neutral source code, as the huge
<windows.h> header file does not need to be processed in that portion of the project.

21 of 33

Copyright © Quantum Leaps, LLC. All Rights Reserved.

Application Note
QWin GUI Kit for Prototyping

Embedded Systems on Windows

4.2 BSP for QWin GUI (WinMain)

In case of a Windows emulation, the Board Support Package implementation is located in the
bsp_win32.c module. This module encapsulates completely the QWin GUI.

This section describes the WinMain(), which starts the Windows GUI application and executes the main
event loop, as well as the Windows Procedure for the dialog box (WindProc), which handles the GUI
events, such as button presses, mouse moves, etc. Listing 6 shows the relevant fragment of the
bsp_win32.c file. This section describes the WinMain() function.

Listing 6: WinMain() (file bsp_win32.c).

 (1) #include <stdint.h>
 (2) #include "bsp.h"

 (3) #include "qwin_gui.h" /* QWin GUI */
 (4) #include "resource.h" /* GUI resource IDs generated by the resource editor */

 /* local variables ---*/
 static HINSTANCE l_hInst; /* this application instance */
 (5) static HWND l_hWnd; /* main window handle */
 static LPSTR l_cmdLine; /* the command line string */

 (6) static GraphicDisplay l_oled; /* the OLED display of the EK-LM3S811 board */
 (7) static SegmentDisplay l_userLED; /* USER LED of the EK-LM3S811 board */
 (8) static SegmentDisplay l_scoreBoard; /* segment display for the score */
 (9) static OwnerDrawnButton l_userBtn; /* USER button of the EK-LM3S811 board */

 /* (R,G,B) colors for the OLED display */
 static BYTE const c_onColor [3] = { 255U, 255U, 0U }; /* yellow */
 static BYTE const c_offColor[3] = { 15U, 15U, 15U }; /* very dark gray */
 . . .
 /* Local functions ---*/
 static LRESULT CALLBACK WndProc(HWND hWnd, UINT iMsg,
 WPARAM wParam, LPARAM lParam);

 /*..*/
(10) int WINAPI WinMain(HINSTANCE hInst, HINSTANCE hPrevInst,
 LPSTR cmdLine, int iCmdShow)
 {
 HWND hWnd;
 MSG msg;

 (void)hPrevInst; /* avoid compiler warning about unused parameter */

(11) l_hInst = hInst; /* save the application instance */
(12) l_cmdLine = cmdLine; /* save the command line string */

 /* create the main custom dialog window */
(13) hWnd = CreateCustDialog(hInst, IDD_APPLICATION, NULL,
 &WndProc, "MY_CLASS");
(14) ShowWindow(hWnd, iCmdShow); /* show the main window */

 /* enter the message loop... */
(15) while (GetMessage(&msg, NULL, 0, 0)) {
 TranslateMessage(&msg);

22 of 33

Copyright © Quantum Leaps, LLC. All Rights Reserved.

Application Note
QWin GUI Kit for Prototyping

Embedded Systems on Windows

 DispatchMessage(&msg);
 }
 return msg.wParam;
 }

(1-2) The module starts with including the standard integer types and board support package (BSP)
interface bsp.h.

(3-4) The GUI application includes the header file qwin_gui.h discussed in Section 6.1 and resource.h
generated by the resource editor (such as ResEdit).

(5) The main window handle is one of the most important local variables.

(6-9) The GUI elements specific for your embedded panel, such as graphic displays, segmented displays,
LEDs, and owner-drawn buttons are allocated statically. You can have any number of instances of
each component type.

(10) As in every Win32 GUI application, you need the WinMain() function, which is the main entry point
to every GUI application on Windows.

NOTE: The structure of WinMain() is very standard as for any other typical Windows GUI
application. In particular, the WinMain() function contains the standard “message pump”.

(11-12) The current instance handle and the command line are saved in static variables.

(13) The function CreateCustDialog() creates the main application dialog box window with the
customized Windows class and regular window procedure (WndProc) as opposed to the dialog
box procedure typical for dialog boxes.

NOTE: The created dialog box is based on a customized Windows class with the name specified as
the last parameter ("MY_CLASS" in this case). For this to work, the dialog box resource must be
associated with the same Windows class in the “Class Name” property of the resource editor, as
shown in .

(14) The created dialog box window must be shown.

(15) The WinMain() function enters the standard “message pump”, in which it processes all messages
until the application is closed.

NOTE: The “message pump” can be extended to handle keyboard accelerators and perhaps other
events.

The Windows Class Name can also be visible directly in the resource file. Listing 7 shows the definition of
the dialog box resource in the Resource.rc resource file. Please note the highlighted definition of the
CLASS "MY_CLASS".

Listing 7: The dialog resource in the QWin demo project (file Resouce.rc).

///
//
// Dialog
//

IDD_APPLICATION DIALOGEX 0, 0, 571, 230
STYLE DS_SETFONT | DS_MODALFRAME | DS_FIXEDSYS | WS_POPUP | WS_CAPTION | WS_SYSMENU
CAPTION "Fly 'n' Shoot game"

23 of 33

Copyright © Quantum Leaps, LLC. All Rights Reserved.

Application Note
QWin GUI Kit for Prototyping

Embedded Systems on Windows

CLASS "MY_CLASS"
FONT 8, "MS Shell Dlg", 400, 0, 0x1
BEGIN
 CONTROL IDB_BACKGROUND,IDB_BACKGROUND,"Static",SS_BITMAP,7,7,533,181
 DEFPUSHBUTTON "Quit",IDOK,514,7,50,20
 CONTROL "USER",IDC_USER,"Button",BS_OWNERDRAW | WS_TABSTOP,374,132,28,27
 CONTROL IDB_LCD,IDC_LCD,"Static",SS_BITMAP,287,85,128,20
 CONTROL IDB_SEG,IDC_STATIC,"Static",SS_BITMAP,7,169,97,54
 CONTROL IDB_SEG8,IDC_SEG3,"Static",SS_BITMAP,16,177,19,36
 CONTROL IDB_SEG8,IDC_SEG2,"Static",SS_BITMAP,36,177,19,36
 CONTROL IDB_SEG8,IDC_SEG1,"Static",SS_BITMAP,56,177,19,36
 CONTROL IDB_SEG8,IDC_SEG0,"Static",SS_BITMAP,76,177,19,36
 CONTROL IDB_LED_OFF,IDC_LED,"Static",SS_BITMAP,417,36,19,18
 LTEXT "RUNNING",IDC_PAUSED,254,193,65,8
 CTEXT "https://www.state-machine.com",IDC_STATIC,153,214,232,10
END
~ ~ ~

4.3 BSP for QWin GUI (WndProc)

The WinMain() function creates the main dialog box window and associates the Window Procedure
(traditionally called WndProc) with it (see Listing 6(13)). The main job of the WndProc is processing
windows messages such as mouse clicks, button presses, or menu commands.

NOTE: Even though the QWin GUI example is based on a dialog box as the main window, the
application uses a custom Windows class with a regular Window Procedure rather than a Dialog
Procedure typically associated with dialog boxes. A standard Dialog Procedure is not used, because
it is too specialized, which would be too limiting for the embedded front panels (e.g., the Dialog
Procedure contains a specialized message loop that processes keyboard input, tab order, etc. and
does not allow to override these aspects easily.)

Listing 8: WndProc() (file bsp_win32.c).

 (1) static LRESULT CALLBACK WndProc(HWND hWnd, UINT iMsg,
 WPARAM wParam, LPARAM lParam)
 {
 switch (iMsg) {
 /* Perform initialization upon creation of the main dialog window
 * NOTE: Any child-windows are NOT created yet at this time, so
 * the GetDlgItem() function can't be used (it will return NULL).
 */
 (2) case WM_CREATE: {
 (3) l_hWnd = hWnd; /* save the window handle */

 /* initialize the owner-drawn buttons...
 * NOTE: must be done *before* the first drawing of the buttons,
 * so WM_INITDIALOG is too late.
 */
 (4) OwnerDrawnButton_init(&l_userBtn, IDC_USER,
 LoadBitmap(l_hInst, MAKEINTRESOURCE(IDB_BTN_UP)),
 LoadBitmap(l_hInst, MAKEINTRESOURCE(IDB_BTN_DWN)),
 LoadCursor(NULL, IDC_HAND));
 return 0;
 }

24 of 33

Copyright © Quantum Leaps, LLC. All Rights Reserved.

Application Note
QWin GUI Kit for Prototyping

Embedded Systems on Windows

 /* Perform initialization after all child windows have been created */
 (5) case WM_INITDIALOG: {
 (6) GraphicDisplay_init(&l_oled,
 BSP_SCREEN_WIDTH, BSP_SCREEN_HEIGHT,
 IDC_LCD, c_offColor);

 (7) SegmentDisplay_init(&l_scoreBoard,
 4U, /* 4 "segments" (digits 0-3) */
 10U); /* 10 bitmaps (for 0-9 states) */
 SegmentDisplay_initSegment(&l_scoreBoard, 0U, IDC_SEG0);
 SegmentDisplay_initSegment(&l_scoreBoard, 1U, IDC_SEG1);
 . . .
 SegmentDisplay_initBitmap(&l_scoreBoard,
 0U, LoadBitmap(l_hInst, MAKEINTRESOURCE(IDB_SEG0)));
 SegmentDisplay_initBitmap(&l_scoreBoard,
 1U, LoadBitmap(l_hInst, MAKEINTRESOURCE(IDB_SEG1)));
 . . .
 SegmentDisplay_initBitmap(&l_scoreBoard,
 9U, LoadBitmap(l_hInst, MAKEINTRESOURCE(IDB_SEG9)));

 BSP_updateScore(0U);

 (8) SegmentDisplay_init(&l_userLED,
 1U, /* 1 "segment" (the LED itself) */
 2U); /* 2 bitmaps (for LED OFF/ON states) */
 SegmentDisplay_initSegment(&l_userLED, 0U, IDC_LED);
 SegmentDisplay_initBitmap(&l_userLED,
 0U, LoadBitmap(l_hInst, MAKEINTRESOURCE(IDB_LED_OFF)));
 SegmentDisplay_initBitmap(&l_userLED,
 1U, LoadBitmap(l_hInst, MAKEINTRESOURCE(IDB_LED_ON)));

 /* --> Spawn the application thread to run main_gui() */
 (9) CreateThread(NULL, 0, &appThread, NULL, 0, NULL);
 return 0;
 }

(10) case WM_DESTROY: {
 BSP_terminate(0);
 return 0;
 }

 /* commands from child controls and menus... */
(11) case WM_COMMAND: {
 switch (wParam) {
 case IDOK:
 case IDCANCEL: {
 BSP_terminate(0);
 break;
 }
 case IDC_USER: { /* owner-drawn button(s) */
 SetFocus(hWnd);
 break;
 }
 }
 return 0;
 }

25 of 33

Copyright © Quantum Leaps, LLC. All Rights Reserved.

Application Note
QWin GUI Kit for Prototyping

Embedded Systems on Windows

 /* drawing owner-drawn buttons... */
(12) case WM_DRAWITEM: {
(13) LPDRAWITEMSTRUCT pdis = (LPDRAWITEMSTRUCT)lParam;
(14) switch (pdis->CtlID) {
(15) case IDC_USER: { /* USER owner-drawn button */
(16) switch (OwnerDrawnButton_draw(&l_userBtn, pdis)) {
(17) case BTN_DEPRESSED: {
 BSP_playerTrigger();
 SegmentDisplay_setSegment(&l_userLED, 0U, 1U);
 break;
 }
(18) case BTN_RELEASED: {
 SegmentDisplay_setSegment(&l_userLED, 0U, 0U);
 break;
 }
 }
 break;
 }
 }
 return 0;
 }

 /* mouse input... */
(19) case WM_MOUSEWHEEL: {
 if ((HIWORD(wParam) & 0x8000U) == 0U) {/* wheel turned forward? */
 BSP_moveShipUp();
 }
 else { /* the wheel was turned backwards */
 BSP_moveShipDown();
 }
 return 0;
 }

 /* keyboard input... */
(20) case WM_KEYDOWN: {
 switch (wParam) {
 case VK_UP:
 BSP_moveShipUp();
 break;
 case VK_DOWN:
 BSP_moveShipDown();
 break;
 case VK_SPACE:
 BSP_playerTrigger();
 break;
 }
 return 0;
 }

 }
(21) return DefWindowProc(hWnd, iMsg, wParam, lParam) ;
 }

(1) The standard WndProc is made static here, because it is not used outside the bsp.c module.

26 of 33

Copyright © Quantum Leaps, LLC. All Rights Reserved.

Application Note
QWin GUI Kit for Prototyping

Embedded Systems on Windows

(2) The WM_CREATE Windows message is sent to the WndProc upon the creation of the associated
window.

(3) The main window handle is copied to the static variable to use in other BSP functions.

(4) Any owner-drawn buttons must be initialized before they are drawn, which happens after WM_CREATE
is sent to the WndProc. Please see the Windows message WM_DRAWITEM at label (12) and the
upcoming Section 3.3 for more information about the owner-drawn buttons.

(5) The WM_INITDIALOG Windows message is not typically sent to regular WndProcs, but it is
specifically generated in the CreateCustDialog() function (see Listing 6(13)) after all the child
window controls have been created. The WM_INITDIALOG message is very useful to initialize any
dialog controls, such as buttons, bitmaps, text labels, etc.

(6) The WndProc for the game example initializes the graphic display l_oled. Please see the upcoming
Section 3.4 for more information about graphic displays.

(7) The WndProc for the game example initializes also the segment display l_scoreBoard. Please see
the upcoming Section 3.5 for more information about segment displays.

(8) Finally, the WndProc for the game example initializes the LED (l_userLED) as a segment display.
An LED is treated here as a simple 1-segment display with two states LED-off and LED-on.

(9) After all initialization is done, the WndProc creates a Win32 thread to run the embedded application.
The thread routine passed to the CreateThread() function is just a thin wrapper around the
main_gui() function. In other words, you call the same main_gui() function as the one used in
the embedded target and is “unaware” that it executes in Windows. See also the next Section 4.4.

NOTE: The function main_gui() is an alias for the main() function when the symbol QWin_GUI
is defined. This alias is created in bsp.h as described in the following Section 4.4).

(10) The WM_DESTROY Windows message is sent to the WndProc when the main window is closed or the
application is forced to quit by the operating system. The BSP_terminate() calls
PostQuiteMessage() function as well as BSP_terminate(), which causes termination of the
application thread.

(11) The WM_COMMAND Windows message is generated by users clicking on regular buttons or activating
menus. The game example contains one such button “Quit”.

(12) Owner-drawn buttons are treated differently than regular buttons such as “Quit”. They produce the
WM_DRAWITEM Windows messages, which is sent when an owner-drawn button is pressed and again
when it is released. In simulating real buttons in embedded front panels this is typically exactly what
you want.

NOTE: The Win32 API for owner-drawn controls is a bit complicated, because it covers not just
buttons but owner-drawn menus, combo-boxes, and many others. However, for owner-drawn buttons
most of the complexities are hidden inside the OwnerDrawnButton_draw() function provided in
the QWin GUI kit.

(13) The DRAWITEMSTRUCT pointer is extracted from the Windows message parameter.

(14) The switch statement discriminates based on the ID of the child-window control. Here, you decide
which owner-drawn button you want to service.

(15) For example, to service the USER button of the EK-LM3S811 board (see Error: Reference source
not found), you provide a case statement labeled with IDC_USER, which is the ID of the owner-drawn
button set in the resource editor.

27 of 33

Copyright © Quantum Leaps, LLC. All Rights Reserved.

Application Note
QWin GUI Kit for Prototyping

Embedded Systems on Windows

(16) The function OwnerDrawnButton_draw(), which is provided in the QWin GUI kit, performs the
“heavy lifting” of painting the button in the current state and returns the status of the button.

(17) When the button is in the BTN_DEPRESSED state, the game example calls BSP_playerTrigger(),
which publishes the PLAYER_TRIGGER event to the active objects and also turns the USER LED on.

(18) When the button is in the BTN_RELEASED state, the game example turns the USER LED off.

(19) The WM_MOUSEWHEEL Windows message is generated by the mouse wheel. This code demonstrates
how to handle the mouse-wheel input.

(20) The WM_KEYDOWN Windows message is generated by pressing keys on the keyboard. This code
demonstrates how to provide keyboard input to your application.

4.4 The Application Thread

Upon receiving the WM_INITDIALOG message, the WinMain() function creates the application thread that
executes the user's main_gui() function, while WinMain() keeps executing the Windows event loop.
The thread routine appThread() is defined as follows:

NOTE: The function main_gui() is an alias for the main() function when the symbol QWin_GUI
is defined. This alias is created in bsp.h as follows (see also the following Section 4.4):

/* special adaptations for QWin GUI applications */
#ifdef QWin_GUI
 /* replace main() with main_gui() as the entry point to a GUI app.*/
 #define main() main_gui()
 int main_gui(); /* prototype of the GUI application entry point */
#endif

static DWORD WINAPI appThread(LPVOID par) {
 (void)par; /* unused parameter */
 return main_gui(); /* run the GUI application */
}

28 of 33

Copyright © Quantum Leaps, LLC. All Rights Reserved.

Application Note
QWin GUI Kit for Prototyping

Embedded Systems on Windows

5 The main() Function (“Superloop”)
The main() function intended to run both on the embedded target and in the Windows emulation, is
located in the main.c source file (see Listing 9). As described before, for simplicity this code is structured
as a primitive “superloop” with a time delay. The most important design element exemplified by the
main.c module is that it accesses the hardware only though the BSP interface (bsp.c header file) and
does not use Win32 API in any way.

NOTE: The avoidance any Win32 API dependencies in the code intended for the target has a very
nice side effect of very fast compilation of the embedded source code, as the huge <windows.h>
header file does not need to be processed in that portion of the project.

Listing 9: Example embedded code (file main.c).

 #include <stdint.h>
 #include <string.h> /* for memset(), memmove() */
 #include <math.h>
 #include "bsp.h"

 /* Local-scope objects ---*/
 static uint8_t l_frameBuf[BSP_SCREEN_WIDTH * BSP_SCREEN_HEIGHT/8U];
 . . .
 /*..*/
 int main() {
 uint32_t n = 0U;

 BSP_init(); /* initialize the Board Support Package */

 /* clear the frame buffer */
 memset(l_frameBuf, 0U, (BSP_SCREEN_WIDTH * BSP_SCREEN_HEIGHT/8U));

 for (;;) { /* for-ever */
 /* generate the new pixel column in the display based on the count */
 uint32_t pixCol = (1U << fun(n));

 /* advance the frame buffer by 1 pixel to the left */
 memmove(l_frameBuf, l_frameBuf + 1U,
 (BSP_SCREEN_WIDTH * BSP_SCREEN_HEIGHT/8U) - 1U);

 /* add the new column to the buffer at the right */
 l_frameBuf[BSP_SCREEN_WIDTH - 1U] = (uint8_t)pixCol;
 l_frameBuf[BSP_SCREEN_WIDTH + BSP_SCREEN_WIDTH - 1U] =
 (uint8_t)(pixCol >> 8);

 if (!BSP_isPaused()) { /* not paused? */
 BSP_drawBitmap(l_frameBuf); /* draw the bitmap on the display */
 BSP_drawCount(n);
 ++n; /* advance the count */
 }

 BSP_sleep(1); /* sleep for 1 clock tick */
 }
 return 0;
 }

29 of 33

Copyright © Quantum Leaps, LLC. All Rights Reserved.

Application Note
QWin GUI Kit for Prototyping

Embedded Systems on Windows

6 Internal QWin GUI Implementation
This section briefly describes the qwin_gui.h interface and qwin_gui.c implementation.

6.1 The qwin_gui.h Header File

The qwin_gui.h header file specifies the interface for GUI programming, which includes creating the
main custom dialog box for the front panel as well as various useful facilities for owner-drawn buttons,
graphic displays, segment displays, and LEDs.

Listing 10: qwin_gui.h header file.

 #define WIN32_LEAN_AND_MEAN
 (1) #include <windows.h> /* Win32 API */

 /* create the custom dialog hosting the embedded front panel*/
 (2) HWND CreateCustDialog(HINSTANCE hInst, int iDlg, HWND hParent,
 WNDPROC lpfnWndProc, LPCTSTR lpWndClass);

 /* OwnerDrawnButton "class" ..*/
 (3) typedef struct {
 HBITMAP hBitmapUp;
 HBITMAP hBitmapDown;
 HCURSOR hCursor;
 } OwnerDrawnButton;

 enum OwnerDrawnButtonAction {
 BTN_NOACTION,
 BTN_PAINTED,
 BTN_DEPRESSED,
 BTN_RELEASED
 };

 void OwnerDrawnButton_init(OwnerDrawnButton * const me,
 UINT itemID,
 HBITMAP hBitmapUp, HBITMAP hBitmapDwn,
 HCURSOR hCursor);
 void OwnerDrawnButton_xtor(OwnerDrawnButton * const me);
 enum OwnerDrawnButtonAction OwnerDrawnButton_draw(
 OwnerDrawnButton * const me,
 LPDRAWITEMSTRUCT lpdis);

 /* GraphicDisplay "class" for drawing graphic displays
 * with up to 24-bit color...
 */
 (4) typedef struct {
 HDC src_hDC;
 int src_width;
 int src_height;
 HDC dst_hDC;
 int dst_width;
 int dst_height;
 HWND hItem;
 HBITMAP hBitmap;

30 of 33

Copyright © Quantum Leaps, LLC. All Rights Reserved.

Application Note
QWin GUI Kit for Prototyping

Embedded Systems on Windows

 BYTE *bits;
 BYTE bgColor[3];
 } GraphicDisplay;

 void GraphicDisplay_init(GraphicDisplay * const me,
 UINT width, UINT height,
 UINT idemID, BYTE const bgColor[3]);
 void GraphicDisplay_xtor(GraphicDisplay * const me);
 void GraphicDisplay_clear(GraphicDisplay * const me);

 #define GraphicDisplay_setPixel(me_, x_, y_, color_) do { \
 BYTE *pixelRGB = &(me_)->bits[3*((x_) \
 + (me_)->src_width * ((me_)->src_height - 1U - (y_)))]; \
 pixelRGB[0] = (color_)[0]; \
 pixelRGB[1] = (color_)[1]; \
 pixelRGB[2] = (color_)[2]; \
 } while (0)

 #define GraphicDisplay_clearPixel(me_, x_, y_) do { \
 BYTE *pixelRGB = &(me_)->bits[3*((x_) \
 + (me_)->src_width * ((me_)->src_height - 1U - (y_)))]; \
 pixelRGB[0] = (me_)->bgColor[0]; \
 pixelRGB[1] = (me_)->bgColor[1]; \
 pixelRGB[2] = (me_)->bgColor[2]; \
 } while (0)

 void GraphicDisplay_redraw(GraphicDisplay * const me);

 /* SegmentDisplay "class" for drawing segment displays, LEDs, etc...........*/
 (5) typedef struct {
 HWND *hSegment; /* array of segment controls */
 UINT segmentNum; /* number of segments */
 HBITMAP *hBitmap; /* array of bitmap handles */
 UINT bitmapNum; /* number of bitmaps */
 } SegmentDisplay;

 void SegmentDisplay_init(SegmentDisplay * const me,
 UINT segNum, UINT bitmapNum);
 void SegmentDisplay_xtor(SegmentDisplay * const me);
 BOOL SegmentDisplay_initSegment(SegmentDisplay * const me,
 UINT segmentNum, HWND hSegment);
 BOOL SegmentDisplay_initBitmap(SegmentDisplay * const me,
 UINT bitmapNum, HBITMAP hBitmap);
 BOOL SegmentDisplay_setSegment(SegmentDisplay * const me,
 UINT segmentNum, UINT bitmapNum);

 /* generic helper functions ..*/
 void DrawBitmap(HDC hdc, HBITMAP hBitmap, int xStart, int yStart);

(1) The <windows.h> header file provides the APIs used in the Win32-GUI programming.

(2) The CreateCustDialog() function creates the custom dialog box for the main application window.

(3) The OwnerDrawnButton struct and functions form a “class” for owner-drawn buttons.

31 of 33

Copyright © Quantum Leaps, LLC. All Rights Reserved.

Application Note
QWin GUI Kit for Prototyping

Embedded Systems on Windows

(4) The GraphicDisplay struct and functions form a “class” for graphic displays (such as LCDs,
OLEDs, etc) with up to 24-bit color. The GraphicDisplay “class” provides efficient pixel-level
interface to a 24-bit “Device Independent Bitmap”.

(5) The SegmentDisplay struct and functions form a “class” for segment displays. The
SegmentDisplay “class” provides generic solution for managing multiple segment groups and
multiple bitmaps corresponding to the specific configurations of the segments.

6.1 The qwin_gui.c Source File

The qwin_gui.c source file implements the facilities for rendering various GUI elements, such as LCD
displays, owner-drawn buttons, and LEDs.

The implementation used in the qwin_gui.c source file is intentionally low-level, with raw Win32 API,
which does not require any higher-level software layers (such as MFC, .NET/C#, Qt, or wxWidgets). The
main advantages of this approach are: simplicity of use and deployment, pure C interface, and
unbeatable efficiency. The following Listing 11 shows the implementation of the CreateCustDialog()
function, which must be called from WinMain() in the GUI applications.

Listing 11: CreateCustDialog() function (file qwin_gui.c).

 (1) HWND CreateCustDialog(HINSTANCE hInst, int iDlg, HWND hParent,
 WNDPROC lpfnWndProc, LPCTSTR lpWndClass)
 {
 WNDCLASSEX wndclass;
 HWND hWnd;

 wndclass.cbSize = sizeof(wndclass);
 wndclass.style = CS_HREDRAW | CS_VREDRAW;
 (2) wndclass.lpfnWndProc = lpfnWndProc;
 wndclass.cbClsExtra = 0;
 wndclass.cbWndExtra = DLGWINDOWEXTRA;
 wndclass.hInstance = hInst;
 wndclass.hIcon = NULL;
 wndclass.hCursor = LoadCursor(NULL, IDC_ARROW);
 wndclass.hbrBackground = (HBRUSH)COLOR_WINDOW;
 wndclass.lpszMenuName = NULL;
 (3) wndclass.lpszClassName = lpWndClass;
 wndclass.hIconSm = NULL;

 (4) RegisterClassEx(&wndclass);

 (5) hWnd = CreateDialog(hInst, MAKEINTRESOURCE(iDlg), hParent, NULL);

 /* NOTE: WM_INITDIALOG provides stimulus for initializing dialog controls.
 * Dialog box procedures typically use this message to initialize controls
 * and carry out any other initialization tasks that affect the appearance
 * of the dialog box.
 */
 (6) SendMessage(hWnd, WM_INITDIALOG, (WPARAM)0, (LPARAM)0);

 return hWnd;
 }

32 of 33

Copyright © Quantum Leaps, LLC. All Rights Reserved.

Application Note
QWin GUI Kit for Prototyping

Embedded Systems on Windows

(1) The CreateCustDialog() function creates a custom dialog box based on the custom Windows
class and must be called from WinMain(). The main job of the CreateCustDialog() function is
registering the custom Window class for your application.

(2) The window procedure (WndProc) of the custom Window class for QP is set from the parameter
provided to the CreateCustDialog() function.

NOTE: The QP-Win32 port associates the customized dialog box with a regular Window Procedure
rather than a standard Dialog Procedure. This is necessary for greater flexibility.

(3) The name of the custom Window class for your application is is set from the parameter provided to
the CreateCustDialog() function.

NOTE: The dialog box resource must explicitly set the CLASS property and the name of this property
must be passed to the CreateCustDialog() function.

(4) The custom Window class is registered with Windows.

(5) The main Dialog window is created from the iDlg resource provided by the application as
parameter to the CreateCustDialog() function.

(6) The WM_INITDIALOG message is sent to the WndProc associated with the dialog box. This message
indicates the end of initialization and provides a convenient stimulus for starting your application.

The qwin_gui.c source file provides also the implementation of all the interesting and hard to find GUI
facilities, such as the GraphicDisplay “class” for efficient rendering of graphic, pixel-addressable
displays, SegmentDisplay “class” for segment displays of all kinds as well as LEDs, and
OwnerDrawnButton “class” for rendering buttons with owner-defined look at both the “depressed” and
“released” states and generating separate “depressed” and “released” events.

7 Contact Information

Quantum Leaps, LLC

https://www.state-machine.com
info@state-machine.com

+1 919 360-5668 (9-5 EST)

33 of 33

mailto:info@state-machine.com
https://www.state-machine.com/

	1 Introduction
	1.1 About the QWinTM GUI
	1.2 About the Development Tools
	1.3 Licensing

	2 Getting Started
	2.1 Downloading and Installing QWin from QTools Collection
	2.2 Building the QWin Demo with the Visual Studio C++Toolset
	2.3 Running the QWin GUI Demo on Windows
	2.4 Running the QWin GUI Demo on the EK-LM3S811 Board
	2.4.1 GNU-ARM Toolset
	2.4.2 IAR-ARM Toolset

	3 Developing Embedded Code on Windows
	3.1 Dual Targeting
	3.2 General Software Structure
	3.3 Dialog Box GUI
	3.1 Main Steps for Creating an Embedded Front Panel GUI
	3.2 The Dialog Box Resource
	3.2.1 The Background Image

	3.3 Owner-Drawn Buttons
	3.4 Graphic Displays
	3.5 Segment Displays
	3.6 LEDs

	4 The Board Support Package
	4.1 The BSP Interface (bsp.h)
	4.2 BSP for QWin GUI (WinMain)
	4.3 BSP for QWin GUI (WndProc)
	4.4 The Application Thread

	5 The main() Function (“Superloop”)
	6 Internal QWin GUI Implementation
	6.1 The qwin_gui.h Header File
	6.1 The qwin_gui.c Source File

	7 Contact Information

