
QP state machine frameworks for Microsoft Windows

Application Note
QP™ and Win32 (Windows)

Document Revision J
August 2013

Copyright © Quantum Leaps, LLC
info@quantum-leaps.com
www.state-machine.com

http://www.state-machine.com/
mailto:info@quantum-leaps.com

Copyright © Quantum Leaps, LLC. All Rights Reserved.

Table of Contents

1 Introduction ... 1
1.1 About QP™ ... 2
1.2 About QM™ ... 2
1.3 Key Features of this QP on Windows .. 3
1.4 About the Tools .. 4
1.5 Licensing the QP™ .. 4
1.6 Licensing QM™ ... 4

2 Getting Started .. 5
2.1 Installing QP .. 5
2.2 Building the QP Libraries ... 7

2.2.1 Building QP libraries with Visual Studio Express .. 7
2.2.2 Building QP libraries with MinGW ... 8

2.3 Building the Examples ... 8
2.4 Running the DPP-GUI Example ... 9
2.5 Running the “Fly 'n' Shoot” Game Simulation .. 9
2.6 Generating the QP Application Code with the QM™ Modeling Tool .. 10

3 The QP Port to Win32 ... 12
3.1 The qep_port.h Header File ... 12

3.1.1 The Fixed-Width Integer Types .. 12
3.2 The qf_port.h Header File .. 13
3.3 The qf_port.c Source File .. 15
3.4 The win32_gui.h Header File ... 19
3.5 The win32_gui.c Source File ... 21

4 Console Applications ... 23
4.1 Board Support Package (BSP) .. 23

5 GUI Applications ... 25
5.1 General Structure of the QP Application with GUI ... 25
5.2 Main Steps for Creating QP Applications with GUI .. 25
5.3 WinMain() .. 26
5.4 Window Procedure (WndProc) .. 29
5.5 Developing Realistic Embedded Front Panels ... 34

5.5.1 The dialog box resource ... 34
5.5.2 The background image ... 34
5.5.3 Owner-drawn buttons ... 35
5.5.4 Graphic displays ... 37
5.5.5 Segment displays ... 38
5.5.6 LEDs .. 40

6 Related Documents and References ... 41

7 Contact Information .. 42

i

Legal Disclaimers

Information in this document is believed to be accurate and reliable. However, Quantum Leaps does not give any
representations or warranties, expressed or implied, as to the accuracy or completeness of such information and shall
have no liability for the consequences of use of such information.

Quantum Leaps reserves the right to make changes to information published in this document, including without limitation
specifications and product descriptions, at any time and without notice. This document supersedes and replaces all
information supplied prior to the publication hereof.

All designated trademarks are the property of their respective owners.

Copyright © Quantum Leaps, LLC. All Rights Reserved.

1 Introduction
This Application Note describes how to use QP™ state machine frameworks version 5.x.x or higher with
the Microsoft Windows operating system including desktop Windows (e.g., Windows 7) as well as
embedded Windows (Windows CE). This document covers console-style applications (without the GUI),
as well as Windows GUI applications built with the raw Win32 API.

Integrating QP with the Win32 GUI API is interesting for at least two reasons. First, you might use QP to
build highly modular, well structured, multithreaded Windows applications based on the concept of active
objects (a.k.a. Actors) and hierarchical state machines. In this use case, QP complements Windows by
providing the high-level structure, while Windows API renders the GUI and provides various services.
Also, the QP port to Windows enables developers to build efficient, multithreaded Windows applications
at a much higher level than Win32 threads and without fiddling directly with the troublesome low-level
mechanisms such as Win32 critical sections, Win32 event objects, and so on.

The second compelling reason for using QP on Windows is rapid prototyping (virtual prototyping),
simulation, and testing of deeply embedded software on the desktop, including building realistic user
interfaces consisting of buttons, LEDs, and LCD displays (both segmented and graphic). Moving
embedded software development from an embedded target to the desktop eliminates the target system
bottleneck and dramatically shortens the development time while improving the quality of the software.
The Windows-based desktop systems often make excellent platforms to develop, test, and debug
embedded applications. This Application Note has been specifically designed to provide a complete
toolkit with all the needed graphical components tested with the powerful free tools (such as the free
Visual C++ Express Edition and the free ResEdit resource editor).

All these options get especially attractive if you consider using the QM™ modeling tool for designing QP
applications graphically and generating code automatically.

NOTE: This Application Note pertains both to C and C++ versions of the QP™ state machine
frameworks. Most of the code listings in this document refer to the C version. Occasionally the C
code is followed by the equivalent C++ implementation to show the C++ differences whenever such
differences become important.

1 of 42

Copyright © Quantum Leaps, LLC. All Rights Reserved.

Application Note:
QP™/QM™ and Win32 (Windows)

state-machine.com/win32

1.1 About QP™

QP™ is a family of very lightweight, open source, active object frameworks.
QP enable software developers to build well-structured applications as
systems of concurrently executing hierarchical state machines (UML
statecharts) directly in C or C++, or by means of the QM™ graphical UML
modeling tool. QP is described in great detail in the book “Practical UML
Statecharts in C/C++, Second Edition: Event-Driven Programming for
Embedded Systems” [PSiCC2] (Newnes, 2008).

As shown in Figure 1, QP consists of a universal UML-compliant event
processor (QEP), a portable real-time framework (QF), a tiny run-to-
completion kernel (QK), and software tracing instrumentation (QS). Current
versions of QP include: QP/C™ and QP/C++™, which require about 4KB of
code and a few hundred bytes of RAM, and the ultra-lightweight QP-nano,
which requires only 1-2KB of code and just several bytes of RAM. QP can
work with or without a traditional RTOS or OS. In the simplest configuration, QP can completely replace a
traditional RTOS. QP can manage up to 63 concurrently executing tasks structured as state machines
(called active objects in UML).

Figure 1: QP components and their relationship with the target hardware, board support
package (BSP), and the application comprised of state machines

1.2 About QM™

Although originally designed for manual coding, the QP state machine
frameworks make also excellent targets for automatic code generation,
which is provided by a graphical modeling tool called QM™ (QP™ Modeler).

QM™ is a free, cross-platform, graphical UML modeling tool for designing
and implementing real-time embedded applications based on the QP™ state
machine frameworks. QM™ is available for Windows, Linux, and Mac OS X.

QM™ provides intuitive diagramming environment for creating good looking
hierarchical state machine diagrams and hierarchical outline of your entire
application. QM™ eliminates coding errors by automatic generation of
compact C or C++ code that is 100% traceable from your design. Please
visit state-machine.com/qm for more information about QM™.

2 of 42

http://www.state-machine.com/win32
http://www.state-machine.com/qm

Copyright © Quantum Leaps, LLC. All Rights Reserved.

Application Note:
QP™/QM™ and Win32 (Windows)

state-machine.com/win32

Figure 2: The example model opened in the QM™ modeling tool

1.3 Key Features of this QP on Windows

1. The QP™ supports very straightforward development of multithreaded, event-driven application in
the Windows environment (both desktop Windows and Windows CE). No knowledge of Win32 threads
or the multithreading Win32 API is necessary.

2. QP™ allows using the Win32 graphics API, that is, the application can have a GUI.

3. The QP port to Win32 does not force the application-level code to include the extensive <windows.h>
header file. All the dependency on the Win32 API is encapsulated inside the port implementation files.
(NOTE:Obviously, parts of the code, such as BSP that depend on Win32 API need to include
<windows.h> and perhaps other Microsoft include files.)

4. The provided code contains all graphical components for efficient pixel-addressable graphical displays
(LCDs, OLED, etc.), segmented displays, owner-drawn buttons, and LEDs.

5. The provided implementation is based on the raw Win32 API for widest potability and to enable the
developers to use free tools, such as Microsoft Visual C++ Express Edition and the ResEdit resource
editor.

3 of 42

http://www.state-machine.com/win32

Copyright © Quantum Leaps, LLC. All Rights Reserved.

Application Note:
QP™/QM™ and Win32 (Windows)

state-machine.com/win32

1.4 About the Tools

The QP ports have been prepared and tested with the following free tools:

• Microsoft Visual C++ Express 2012 for console and GUI applications (requires “Platform SDK”)

NOTE: The Visual C++ Express editions are pre-configured for development with the .NET
framework. To enable development with the raw Win32 API, you need to search the Microsoft
website for “Express Edition Platform SDK” and install the software to your machine. The search of
the Microsoft website will lead you also to the step-by-step installation instructions.

• Free ResEdit resource editor (www.resedit.net/) for editing GUI resources

NOTE: The Visual C++ Express editions do not include the resource editor and even the resource
editor included in the Professional Visual C++ editions is inferior to ResEdit.

• MinGW (currently only for console applications).

1.5 Licensing the QP™

The Generally Available (GA) distribution of QP™ available for download from the www.state-
machine.com/ downloads website is offered with the following two licensing options:

• The GNU General Public License version 2 (GPL) as published by the Free
Software Foundation and appearing in the file GPL.TXT included in the packaging of
every Quantum Leaps software distribution. The GPL open source license allows
you to use the software at no charge under the condition that if you redistribute the
original software or applications derived from it, the complete source code for your
application must be also available under the conditions of the GPL (GPL Section
2[b]).

• One of several Quantum Leaps commercial licenses, which are designed for
customers who wish to retain the proprietary status of their code and therefore cannot
use the GNU General Public License. The customers who license Quantum Leaps
software under the commercial licenses do not use the software under the GPL and
therefore are not subject to any of its terms.

For more information, please visit the licensing section of our website at: www.state-
machine.com/licensing

1.6 Licensing QM™

The QM™ graphical modeling tool available for download from the www.state-
machine.com/ downloads website is free to use, but is not open source. During the
installation you will need to accept a basic End-User License Agreement (EULA),
which legally protects Quantum Leaps from any warranty claims, prohibits removing
any copyright notices from QM, selling it, and creating similar competitive products.

4 of 42

http://www.state-machine.com/win32
http://www.quantum-leaps.com/%1Fdownloads
http://www.quantum-leaps.com/%1Fdownloads
http://www.state-machine.com/licensing
http://www.state-machine.com/licensing
http://www.quantum-leaps.com/%1Fdownloads
http://www.quantum-leaps.com/%1Fdownloads
http://www.resedit.net/

Copyright © Quantum Leaps, LLC. All Rights Reserved.

Application Note:
QP™/QM™ and Win32 (Windows)

state-machine.com/win32

2 Getting Started
This section describes how to install, execute, build, and debug QP applications on Windows.

NOTE: This application note pertains both to QP/C and QP/C++. Most of the code listings in this
document refer to the C version. The QP/C++ code is shown only when the differences from C
become non-trivial and significant.

2.1 Installing QP

You need to download and install the Generally Available distribution of the QP code (QP/C or QP/C++)
from www.state-machine.com/downloads. QP is distributed in a ZIP archive (e.g., qpc_5.0.0.zip for the
QP/C version, or qpcpp_5.0.0.zip for the QP/C++ version). You can uncompress the QP archive(s) into
any location on your hard drive, but you need to define an environment variable QPC to point to the QP
installation directory. Also, to take advantage of the QSPY software tracing, which is part of the Debug
build configuration of the provided examples, you need to download and install the Qtools collection and
you need to define an environment variable QTOOLS to point to the installation directory. The following
table summarizes the components you need to install and the environment variables you need to define:

Software component Environment Variable Example

QP/C framework QPC C:\qp\qpc

QP/C++ framework QPCPP C:\qp\qpcpp

QP-nano framework QPN C:\qp\qpn

Qtools collection QTOOLS C:\tools\qtools

The following Listing 1 shows selected directories and files after installing the QP baseline code.

Listing 1: Directories and files pertaining to the QP-Win32 port.

<qp>\ - QP-root directory for Quantum Platform (QP/C or QP/C++)
 +-include\ - QP public include files
 | +-qassert.h – Assertions platform-independent public include
 | +-qevt.h – QEvt declaration
 | +-. . .
 |
 +-ports\ - QP ports
 | +-win32\ - ports to Win32
 | | +-vc\ - Visual C++ toolset
 | | | +-Debug\ – Debug build
 | | | | +-qp.lib – QP library
 | | | +-Release\ – Release build
 | | | +-Spy\ – Spy build
 | | | +-qp.sln – Visual Studio solution file to build the QP libraries
 | | | +-qp.vcxproj – Visual Studio project file to build the QP libraries
 | | | +-qep_port.h – QEP platform-dependent public include
 | | | +-qf_port.h – QF platform-dependent public include
 | | | +-qf_port.c – QF platform-dependent implementation
 | | | +-qs_port.h – QS platform-dependent public include
 | | | +-win32_gui.h – Win32 GUI facilities for building embedded front panels
 | | | +-win32_gui.c – Win32 GUI facilities for building embedded front panels
 | | |

5 of 42

http://www.state-machine.com/win32
http://www.state-machine.com/downloads

Copyright © Quantum Leaps, LLC. All Rights Reserved.

Application Note:
QP™/QM™ and Win32 (Windows)

state-machine.com/win32

 | | +-mingw\ - MinGW compiler (GNU on Windows)
 | | | +-debug\ – Debug build
 | | | | +-libqp.a – QP library
 | | | +-release\ – Release build
 | | | +-spy\ – Spy build
 | | | +-Makefile – Makefile to build the QP libraries
 | | | +-qep_port.h – QEP platform-dependent public include
 | | | +-qf_port.h – QF platform-dependent public include
 | | | +-qf_port.c – QF platform-dependent implementation
 | | | +-qs_port.h – QS platform-dependent public include
 |
 +-examples\ - QP examples
 | +-win32\ - examples for Win32
 | | +-vc\ - Visual C++ toolset
 | | | +-dpp\ - Dining Philosophers Problem example (console)
 | | | +-dpp-gui\ - Dining Philosophers Problem example (GUI version)
 | | | | +-Debug\ - directory containing the Debug build
 | | | | +-Release\ - directory containing the Release build
 | | | | +-Spy\ - directory containing the Spy build
 | | | | +-Res\ - directory containing the GUI Resources (bitmaps, etc.)
 | | | | +-qm_code\ - directory containing the code generated by QM
 | | | | | +-dpp.h - the DPP header file
 | | | | | +-phio.c - the Philosopher active objects
 | | | | | +-table.c - the Table active object
 | | | | +-dpp.qm – QM model file for the DPP example
 | | | | +-dpp_gui.sln – Visual Studio solution to build the DPP-GUI example
 | | | | +-dpp_gui.vcxproj – Visual Studio project to build the DPP-GUI example
 | | | | +-bsp.h - Board Support Package header file for DPP-GUI
 | | | | +-bsp.c - Board Support Package implementation for DPP-GUI
 | | | | +-main.c - the main function for DPP-GUI
 | | | | +-dpp_gui.rc - Resource file for the DPP-GUI application
 | | | | +-resource.h - Resource header file updated by ResEdit
 | | | |
 | | | +-game-gui\ - “Fly 'n' Shoot” game example for the EK-LM3S811 board
 | | | | +-Debug\ - directory containing the Debug build
 | | | | +-Release\ - directory containing the Release build
 | | | | +-Spy\ - directory containing the Spy build
 | | | | +-qm_code\ - directory containing the code generated by QM
 | | | | | +-game.h - the game header file
 | | | | | +-missile.c - the Missile active objects
 | | | | | +-ship.c - the Ship active object
 | | | | | +-tunnel.c - the Tunnel active object
 | | | | +-game.qm – QM model file for the game example
 | | | | +-game_gui.sln – Visual Studio solution to build the game-GUI example
 | | | | +-game_gui.vcxproj – Visual Studio project to build the game-GUI example
 | | | | +-bsp.h - Board Support Package header file for the game
 | | | | +-bsp.c - Board Support Package implementation for the game
 | | | | +-gui.h - Qt GUI header header file for the game
 | | | | +-main.c - the main function for the game
 | | | | +-game-gui.rc - Resource file for the game-GUI application
 | | | | +-resource.h - Resource header file updated by ResEdit

6 of 42

http://www.state-machine.com/win32

Copyright © Quantum Leaps, LLC. All Rights Reserved.

Application Note:
QP™/QM™ and Win32 (Windows)

state-machine.com/win32

2.2 Building the QP Libraries

All QP components are deployed as libraries that you statically link to your application. The pre-built QP
libraries are provided inside the <qp>\ports\win32\ directory. Normally, you should have no need to re-
build the QP libraries. However, if you want to modify QP code or you want to apply different settings, this
section describes steps you need to take to rebuild the libraries yourself.

NOTE: The QP libraries and QP applications can be built in the following three build configurations:

Debug - this configuration is built with full debugging information and minimal optimization. When the QP
framework finds no events to process, the framework busy-idles until there are new events to process.

Release - this configuration is built with no debugging information and high optimization. Single-stepping and
debugging is effectively impossible due to the lack of debugging information and optimized code, but the
debugger can be used to download and start the executable. When the QP framework finds no events to
process, the framework puts the CPU to sleep until there are new events to process.

Spy - like the debug variant, this variant is built with full debugging information and minimal optimization.
Additionally, it is build with the QP's Q-SPY trace functionality built in. The on-board serial port and the Q-Spy
host application are used for sending and viewing trace data. Like the Debug configuration, the QP framework
busy-idles until there are new events to process.

2.2.1 Building QP libraries with Visual Studio Express
The build process should produce the QP library in the location: <qp>\ports\win32\vc\Debug\qp.lib.
To build the Release and Spy configurations, please select the desired configuration in the Visual Studio
IDE and repeat the build for each configuration.

Figure 3: Building QP libraries in Visual C++ Express 2012

7 of 42

http://www.state-machine.com/win32

Copyright © Quantum Leaps, LLC. All Rights Reserved.

Application Note:
QP™/QM™ and Win32 (Windows)

state-machine.com/win32

2.2.2 Building QP libraries with MinGW
For the MinGW port, you perform a console build with the provided Makefile in <qp>\ports\win32\-
mingw\Makefile. This Makefile supports three build configurations: Debug, Release, and Spy. You
choose the build configuration by providing the CONF argument to the make. The default configuration is
“dbg”. Other configurations are “rel”, and “spy”. The following table summarizes the commands to invoke
make.

Table 1 Make commands for the Debug, Release, and Spy configurations

Software Version Build command

Debug (default) make

Release make CONF=rel

Spy make CONF=spy

NOTE: The provided Makefile assumes that the MinGW\bin directory is added to the PATH.

2.3 Building the Examples

The QP examples directory (<qp>/examples/win32/vc/, see Listing 1) contains the Visual Studio
solution files for building the examples.

Figure 4: The DPP-GUI example in the Visual C++ Express 2012

For example, to build the DPP-GUI example, you load the project <qp>/examples/win32/vc/dpp-
gui/dpp_gui.sln into the Visual Studio IDE and start the build. Similarly, to build the “Fly 'n' Shoot game
example, you use the project <qp>/examples/win32/vc/game-gui/game_gui.sln.

8 of 42

http://www.state-machine.com/win32

Copyright © Quantum Leaps, LLC. All Rights Reserved.

Application Note:
QP™/QM™ and Win32 (Windows)

state-machine.com/win32

NOTE: The Spy build configuration demonstrates using the direct QSPY software tracing output to
the Visual Studio debug console and requires the Qtools collection to be installed and the QTOOLS
environment variable to be defined.

2.4 Running the DPP-GUI Example

The Dining Philosophers Problem (DPP) example demonstrates multiple active objects collaborating with
each other. Each dining philosopher is represented as an active object (Philo) and there is additional
active object Table for coordinating the shared resources (forks).

NOTE: The design and implementation of the Dining Philosopher Problem application, including state
machines, is described in the Application Note “Dining Philosopher Problem” (see [AN-DPP]).

The DPP example application outputs the QSPY software trace data directly to the Qt console (see
Figure 5). To demonstrate input to the application, the basic DPP example has been extended with the
ability to pause. When the central button is depressed (but not released) the application enters the
“paused” state, in which the Table stops granting permissions to eat to the Philosophers. This causes
Philosophers to transition to the “hungry” state. After releasing the SERVING button, the application
resumes normal execution. The application is terminated either by clicking the Close button.

Figure 5: The DPP example (Spy configuration) running in Visual Studio Express.
Note the human-readable QSPY output in the Application Output window.

2.5 Running the “Fly 'n' Shoot” Game Simulation

The “Fly 'n' Shoot” game example demonstrates simulating embedded target (the EK-LM3S811 board in
this case) on Windows.

NOTE: The design and implementation of the “Fly 'n' Shoot” game application, including state
machines, is described in the Chapter 1 of the “Practical UML Statecharts in C/C++, 2Ed” [PSiCC2].

9 of 42

http://www.state-machine.com/win32

Copyright © Quantum Leaps, LLC. All Rights Reserved.

Application Note:
QP™/QM™ and Win32 (Windows)

state-machine.com/win32

The game simulation on the EK-LM3S811 board can be easily adapted for any other board or embedded
device. The example demonstrates how to simulate a graphic display and a button for generating events
as well as additional output (Score) not available in the real target (see Figure 5). The most interesting
aspect of this simulation is that it runs exactly the same code as the real embedded board, except the
BSP, which is implemented for the Windows GUI.

Once you launch the game simulation, it starts with flashing the “Press Button” text on the OLED display
(just like on the real board). You start playing the game by clicking your mouse on the USER button. At
this point the game transitions to the playing mode. You scroll the mouse wheel to move the ship icon up
and down. You click on the USER button to fire the missile. You score points for surviving and shooting
the mines with the missile. Just like the real thing, the game has a screen saver mode, which activates
after several seconds in the demo mode. When the screen saver is active, the STATUS LED lights up.

Figure 6: The“Fly 'n' Shoot” game launched from Visual Studio 2012.

2.6 Generating the QP Application Code with the QM™ Modeling Tool

Both examples (DPP and the “Fly 'n' Shoot” game) come with the QM™ models of these applications
(look for the files with extension *.qm in Listing 1).

NOTE: To open the models, you need to install the QM™ modeling tool from state-machine.com.
QM™ is currently supported on Windows ,Linux and Mac OS X hosts. QM™ is free to download and
free to use.

10 of 42

http://www.state-machine.com/win32
http://www.state-machine.com/downloads/index.php#QM

Copyright © Quantum Leaps, LLC. All Rights Reserved.

Application Note:
QP™/QM™ and Win32 (Windows)

state-machine.com/win32

After you download and install QM, you open the provided models (e.g., <qp>/examples/win32/-
vc/dpp-gui/dpp.qm) and press the “Generate Code” button. The example models are set up to
generate code into the qm_code/ sub-directory. The generated code is intentionally read-only, because it
is not intended for manual editing. All changes to the generated code must be done by modifying the
underlying model in the QM tool.

Figure 7: The DPP example in QM.

11 of 42

http://www.state-machine.com/win32

Copyright © Quantum Leaps, LLC. All Rights Reserved.

Application Note:
QP™/QM™ and Win32 (Windows)

state-machine.com/win32

3 The QP Port to Win32
This QP Port to Windows with the raw Win32 API is structured as follows:

• A QP application under Windows is a single Win32 process.

• Ever active object executes in a separate Win32 thread.

• The real-time framework (QF) does not use interrupts and handles everything at the task level
(including the QF system clock tick).

• The critical section used in QF and QS is based on the Win32 critical-section object
(CRITICAL_SECTION)

• The active objects use the built-in QF event queue (QEQueue) with the Win32 event object to block on
an empty queue (via the WaitForSingleObject() Win32 API call).

• The port uses the built-in QF memory pools (QMPool) to store the dynamically allocated events.

• The port provides support for Win32-GUI programming, primarily with the intent of building realistic
prototypes of embedded front panels. The general structure of an embedded front panel is set to be a
dialog box with a picture of the front panel as a background bitmap and various controls
corresponding to buttons, knobs, LEDs, and displays in the foreground. The port provides facilities for
dot-matrix graphic displays, segment displays, owner-drawn buttons, LEDs, and custom bitmaps. See
the upcoming Sections for more information.

NOTE: The main advantage of using a dialog box as the main application window is that dialog
boxes can be very conveniently designed graphically with a resource editor. A number of such
resource editors are available for Windows, but this Application Note assumes the excellent free
ResEdit (www.resedit.net), which in many ways exceeds the editors bundled with Visual Studio.

NOTE: Visual Studio Express doesn't include a resource editor, so a third-part editor , such as
ResEdit, is the only option.

3.1 The qep_port.h Header File

The qep_port.h header file determines the configuration of the QEP event processor for hierarchical
state machines. The QEP header file for the Win32 port to Visual C++ is located in <qp>\ports\win32\-
vc\qep_port.h. The Win32 port to MinGW is identical as to VC++ and is located in <qp>\ports\-
win32\mingw\qep_port.h. The following Listing 2 shows the QEP configuration used in the Windows
ports:

Listing 2: The QEP configuration for Windows

 /* Exact-width types. WG14/N843 C99 Standard, Section 7.18.1.1 */
 #include "stdint.h"

 #include "qep.h" /* QEP platform-independent public interface */

3.1.1 The Fixed-Width Integer Types
As described in PSiCC2, QP uses the standard fixed-width integers. The MinGW version uses the C-99
standard <stdint.h> header file defined in the header file. The Visual C++ compilers don’t provide the
<stdint.h> header file. Instead a very rudimentary file "stdint.h" with the six exact-width integer
types actually used in QP is provided in the <qp>\ports\win32\vc port directory.

12 of 42

http://www.state-machine.com/win32
http://www.resedit.net/

Copyright © Quantum Leaps, LLC. All Rights Reserved.

Application Note:
QP™/QM™ and Win32 (Windows)

state-machine.com/win32

3.2 The qf_port.h Header File

As described in Chapter 8 of PSiCC2, porting QF consists of customizing files qf_port.h and
qf_port.c/qf_port.cpp, which are located in the respective directories indicated in <qp>\ports\-
win32\vc or <qp>\ports\win32\mingw.

The most important design principle applied in the qf_port.h header file is to completely encapsulate the
Win32 API (the <windows.h> header file), so that QP applications don't need to include it. The following
Listing 3 shows the entire qf_port.h header file, which consists of two parts: (1) QP customization for
Win32, and (2) platform-specific macros and includes for the QF port to Win32 (not visible to the QP
applications).

NOTE: Avoiding the huge <windows.h> header file dramatically speeds up compilation of the
application level code, even without using the precompiled header file option. This improvement in
efficiency is critical for speeding up the development cycle, which is the most important advantage of
developing embedded code on the desktop.

Listing 3: qf_port.h header file for the QF port to Win32

 /* Win32 event queue and thread types */
 (1) #define QF_EQUEUE_TYPE QEQueue
 (2) #define QF_OS_OBJECT_TYPE void*
 (3) #define QF_THREAD_TYPE void*

 /* The maximum number of active objects in the application */
 (4) #define QF_MAX_ACTIVE 63

 /* various QF object sizes configuration for this port */
 #define QF_EVENT_SIZ_SIZE 4
 #define QF_EQUEUE_CTR_SIZE 4
 #define QF_MPOOL_SIZ_SIZE 4
 #define QF_MPOOL_CTR_SIZE 4
 #define QF_TIMEEVT_CTR_SIZE 4

 /* Win32 critical section, see NOTE01 */
 /* QF_CRIT_STAT_TYPE not defined */
 (5) #define QF_CRIT_ENTRY(dummy) QF_enterCriticalSection_()
 (6) #define QF_CRIT_EXIT(dummy) QF_leaveCriticalSection_()

 #include "qep_port.h" /* QEP port */
 #include "qequeue.h" /* Win32 needs event-queue */
 #include "qmpool.h" /* Win32 needs memory-pool */
 #include "qf.h" /* QF platform-independent public interface */

 void QF_enterCriticalSection_(void);
 void QF_leaveCriticalSection_(void);
 (7) void QF_setTickRate(uint32_t ticksPerSec); /* set clock tick rate */

 /***
 * interface used only inside QF, but not in applications
 */
 (9) #ifdef qf_pkg_h

 /* Win32 OS object object implementation */
(10) #define QACTIVE_EQUEUE_WAIT_(me_) \
 while ((me_)->eQueue.frontEvt == (QEvent *)0) { \

13 of 42

http://www.state-machine.com/win32

Copyright © Quantum Leaps, LLC. All Rights Reserved.

Application Note:
QP™/QM™ and Win32 (Windows)

state-machine.com/win32

 QF_CRIT_EXIT_(); \
 (void)WaitForSingleObject((me_)->osObject, (DWORD)INFINITE); \
 QF_CRIT_ENTRY_(); \
 }

(11) #define QACTIVE_EQUEUE_SIGNAL_(me_) \
 (void)SetEvent((me_)->osObject)

(12) #define QACTIVE_EQUEUE_ONEMPTY_(me_) ((void)0)

 /* native QF event pool operations */
(13) #define QF_EPOOL_TYPE_ QMPool
 #define QF_EPOOL_INIT_(p_, poolSto_, poolSize_, evtSize_) \
 QMPool_init(&(p_), poolSto_, poolSize_, evtSize_)
 #define QF_EPOOL_EVENT_SIZE_(p_) ((p_).blockSize)
 #define QF_EPOOL_GET_(p_, e_) ((e_) = (QEvent *)QMPool_get(&(p_)))
 #define QF_EPOOL_PUT_(p_, e_) (QMPool_put(&(p_), e_))

 #define WIN32_LEAN_AND_MEAN
(14) #include <windows.h> /* Win32 API */

 #endif /* qf_pkg_h */

(1) This QF port to Windows uses the native QF event queue (see PSiCC2).

(2) The QF_OS_OBJECT_TYPE is used to block the calling active object thread when the event queue is
empty. In the Win32 port this will be a handle to the Win32 event object, but to avoid reference to
Win32 handles, it is defined as an opaque void* pointer.

(3) The QF_THREAD_TYPE is used to refer to a Win32 thread. In the Win32 port this is a handle to the
Win32 thread, but to avoid reference to Win32 handles, it is defined as an opaque void* pointer.

(4) The Win32 port is configured to the maximum sizes of parameters.

(5-6) QF, like all real-time frameworks needs to execute certain sections of code indivisibly to avoid data
corruption. The most straightforward way of protecting such critical sections of code is disabling and
enabling interrupts, which Win32 API really does not allow. Instead, this QF port to Win32 uses a
single Win32 critical section object CRITICAL_SECTION. The Win32 critical section has the ability
to nest, so the QF mechanism of “saving and restoring interrupt status” is not used. To avoid direct
reference to the CRITICAL_SECTION object, the critical section entry/exit is encapsulated in the
functions QF_enterCriticalSection_() and QF_leaveCriticalSection_(), respectively.

NOTE: The Win32 critical section implementation behaves differently than interrupt locking. A single
global Win32 critical section ensures that only one thread at a time can execute a critical section, but
it does not guarantee that a context switch cannot occur within the critical section. In fact, such
context switches probably will happen, but they should not cause concurrency hazards because the
critical section eliminates all race conditions.

(7) The function QF_setTickRate() allows you to adjust the tick rate within the granularity provided by
the hardware system clock tick.

(8) The callback function QF_onClockTick() is called at every clock tick and needs to be defined in the
QP application. At the very minimum the function must call QF_TICK(), but may perform some other
work as well.

14 of 42

http://www.state-machine.com/win32

Copyright © Quantum Leaps, LLC. All Rights Reserved.

Application Note:
QP™/QM™ and Win32 (Windows)

state-machine.com/win32

(9) The code enclosed with #ifdef qp_pkg_h/#endif is visible and used only in the QF port, and is
not visible to the application level.

(10) The actual blocking of the active object thread to wait on an empty queue is implemented through
the macro QACTIVE_OSOBJECT_WAIT_() that the QActive_get_() function invokes when the
event queue is empty. As described in Chapter 7 of PSiCC2, the macro
QACTIVE_OSOBJECT_WAIT_() is called within a critical section.

NOTE: The WaitForsingleObject() Win32 API is called within a do-while loop rather than
being called only once. The reason is that the event-queue object osObject can be occasionally
signaled more than once between successive invocations of the QActive_get_().
Consider the following scenario. Active object A calls QActive_get_() to retrieve an event from its
event queue that holds one event (most typical case). The queue becomes empty, which is indicated
by setting the “front event” eQueue.frontEvt to NULL. After retrieving the event, active object A
starts processing the event. However, active object B preempts A and posts a new event for active
object A. QActive_postFIFO() signals the osObject (QActive_postFIFO() invokes
QACTIVE_OSOBJECT_SIGNAL_() macro). When active object A comes to retrieve the next event,
the queue is not empty (the “front event” eQueue.frontEvt is not NULL), so the queue does not
attempt to block, but instead QActive_get_() returns the event immediately. This time around,
active object A processes the event to completion without any additional events being posted to its
event queue. When active object A comes to retrieve yet another event (its thread calls
QActive_get_() again), it attempts to block because the “front event” correctly indicates that the
event queue is empty. However, the Win32 event object osObject is signaled, and
WaitForSingleObject() in macro QACTIVE_OSOBJECT_WAIT_() does not block! The do-
while loop in the QACTIVE_OSOBJECT_WAIT_() macro saves the day, because it causes another
call to WaitForSingleObject() to truly block the active object A until it receives an event to
process.

(11) The signaling of the active object thread blocked on the empty event queue is implemented through
the Win32 API call SetEvent((me_)->osObject)

(12) There is nothing to do in this port when the queue becomes empty.

3.3 The qf_port.c Source File

The QF implementation file for the Win32 port is located in <qp>\qf\win32\vc\src\qf_port.c. This file
contains only facilities for executing QP applications and is independent on the use of GUI. In other
words, the same QP port to Win32 can be used in console and GUI applications. However, the QP
applications with Win32 GUI require additional support, which is provided in the files win32_gui.h and
win32_gui.c, which are discussed in the upcoming Sections 3.4 and 3.5, respectively.

Listing 4: qf_port.c implementation file for the QF port to Windows.

 #include "qf_pkg.h"
 #include "qassert.h"

 Q_DEFINE_THIS_MODULE("qf_port")

 /* Local objects ---*/
 (1) static CRITICAL_SECTION l_win32CritSect;
 static DWORD l_tickMsec = 10; /* clock tick in msec (argument for Sleep()) */
 static uint8_t l_running;

 static DWORD WINAPI thread_function(LPVOID arg);

15 of 42

http://www.state-machine.com/win32

Copyright © Quantum Leaps, LLC. All Rights Reserved.

Application Note:
QP™/QM™ and Win32 (Windows)

state-machine.com/win32

 /*..*/
 void QF_init(void) {
 (2) InitializeCriticalSection(&l_win32CritSect);
 }
 /*..*/
 void QF_enterCriticalSection_(void) {
 (3) EnterCriticalSection(&l_win32CritSect);
 }
 /*..*/
 void QF_leaveCriticalSection_(void) {
 (4) LeaveCriticalSection(&l_win32CritSect);
 }
 /*..*/
 void QF_stop(void) {
 l_running = (uint8_t)0;
 }
 /*..*/
 (5) int16_t QF_run(void) {
 (6) QF_onStartup(); /* startup callback */

 /* raise the priority of this (main) thread to tick more timely */
 (7) SetThreadPriority(GetCurrentThread(), THREAD_PRIORITY_HIGHEST);
 l_running = (uint8_t)1;
 while (l_running) {
 (8) Sleep(l_tickMsec); /* wait for the tick interval */
 (9) QF_onClockTick(); /* clock tick callback (must call QF_TICK()) */
 }
(10) QF_onCleanup(); /* cleanup callback */
 QS_EXIT(); /* cleanup the QSPY connection */
 //DeleteCriticalSection(&l_win32CritSect);
 return (int16_t)0; /* return success */
 }
 /*..*/
 void QF_setTickRate(uint32_t ticksPerSec) {
 l_tickMsec = 1000UL / ticksPerSec;
 }
 /*..*/
(11) void QActive_start(QActive * const me, uint8_t prio,
 QEvt const *qSto[], uint32_t qLen,
 void *stkSto, uint32_t stkSize,
 QEvt const *ie)
 {
 DWORD threadId;
 int p;

 Q_REQUIRE((qSto != (QEvt const **)0) /* queue storage must be provided */
 && (stkSto == (void *)0)); /* Windows allocates stack internally */

 me->prio = prio;
 QF_add_(me); /* make QF aware of this active object */

(12) QEQueue_init(&me->eQueue, qSto, (QEQueueCtr)qLen);
(13) me->osObject = CreateEvent(NULL, FALSE, FALSE, NULL);
(14) QF_ACTIVE_INIT_(&me->super, ie); /* execute initial transition */

16 of 42

http://www.state-machine.com/win32

Copyright © Quantum Leaps, LLC. All Rights Reserved.

Application Note:
QP™/QM™ and Win32 (Windows)

state-machine.com/win32

 /* NOTE: if stkSize==0, Windows allocates default stack size */
(15) me->thread = CreateThread(NULL, stkSize,
 &thread_function, me, 0, &threadId);
 Q_ASSERT(me->thread != (HANDLE)0); /* thread must be created */

(16) switch (me->prio) { /* remap QF priority to Win32 priority */
 case 1:
 p = THREAD_PRIORITY_IDLE;
 break;
 case 2:
 p = THREAD_PRIORITY_LOWEST;
 break;
 case 3:
 p = THREAD_PRIORITY_BELOW_NORMAL;
 break;
 case (QF_MAX_ACTIVE - 1):
 p = THREAD_PRIORITY_ABOVE_NORMAL;
 break;
 case QF_MAX_ACTIVE:
 p = THREAD_PRIORITY_HIGHEST;
 break;
 default:
 p = THREAD_PRIORITY_NORMAL;
 break;
 }
(17) SetThreadPriority(me->thread, p);
 }
 /*..*/
 void QActive_stop(QActive * const me) {
(18) me->thread = (HANDLE)0; /* stop the event loop in thread_function() */
 }
 /*..*/
(19) static DWORD WINAPI thread_function(LPVOID arg) { /* for CreateThread() */
 do { /* QActive_stop() stops the loop */
(20) QEvt const *e = QActive_get_((QActive *)arg); /* wait for event */
(21) QF_ACTIVE_DISPATCH_((QHsm *)arg, e); /* dispatch to the AO's SM */
(22) QF_gc(e); /* check if the event is garbage, and collect it if so */
(23) } while (((QActive *)arg)->thread != (HANDLE)0);
(24) QF_remove_((QActive *)arg);/* remove this object from any subscriptions */
 CloseHandle(((QActive *)arg)->osObject); /* cleanup the OS event */
 return 0; /* return success */
 }

(1) The static (local) variable l_win32CritSect is the Win32 CRITICAL_SECTION object for
implementing the QF critical section.

(2) The initialization of the framework consists of calling InitializeCriticalSection() Win32 API to
initialize the global critical section object l_win32CritSect.

(3-4) The pair of functions QF_enterCriticalSection_()/QF_leaveCriticalSection_() implement
the QF critical section with the l_win32CritSect object.

(5) QF_run() provides the system clock tick thread (“ticker thread”).

(6) Before entering the endless loop, QF_run() invokes the QF_onStartup() callback.

(7) The priority of the “ticker thread” is raised to maximum, in order to provide timely clock tick with
minimal jitter.

17 of 42

http://www.state-machine.com/win32

Copyright © Quantum Leaps, LLC. All Rights Reserved.

Application Note:
QP™/QM™ and Win32 (Windows)

state-machine.com/win32

(8) The “ticker thread” is throttled by the Sleep() Win32 API call. Typically, the hardware clock tick in
Windows is 10ms (100 Hz), and the “ticker thread” uses this rate.

NOTE: You can adjust the argument of Sleep() by calling the function QF_setTickRate().
Please note, however, that the actual granularity of the delay depends on the hardware rate of the
system clock-tick interrupt for a given Windows platform (typically 10ms on 80x86).

(9) QF_run() invokes the QF_onClockTick() callback by every clock tick.

NOTE: You need to implement the QF_onClickTick() in you application code. At the minimum,
QF_onClickTick() needs to call QF_TICKX(), but might perform other work as well.

(10) After the ticker thread terminates (by clearing the l_running flag), the callback QF_onCleanup() is
called to perform any application-level cleanup.

(11) The QActive_start() parameter stkSto must be NULL to avoid double-allocation of per-thread
stack since Windows allocates the stack internally.

(12) The native QF event queue structure must be initialized.

(13) The Win32 event object is initialized with the CreateEvent() Win32 API.

(14) The initial transition inside the active object’s state machine is triggered. The macro
QF_ACTIVE_INIT_() resolves to QHsm_init() when QActive is derived from QHsm and to
QFsm_init() if its derived from QFsm.

(15) The Win32 API CreateThead() is used to create the private Win32 thread of the active object.

(16) The QF priority (numbered 1..QF_MAX_ACTIVE) is mapped to the Windows priority. Note that the
default priority is “THREAD_PRIORITY_ABOVE_NORMAL”. The QF priorities 1..3 are mapped to the
lowest Windows priority levels, while the two highest QF priorities (QF_MAX_ACITVE-1,
QF_MAX_ACTIVE) are mapped to the highest Windows priority levels.

(17) The priority of the active object thread just created is set with the call to SetThreadPrioritity()
Win32 API.

(18) The function QActive_stop() clears the active object’s running flag. Clearing this flag causes exit
from the active object event loop and a natural termination of the active object’s thread.

(19) The static function thread_function() is the active object’s thread routine.

(20) The event loop blocks until an event is posted to the active object’s event queue.

(21) The event is dispatched to the state machine of the active object. The macro
QF_ACTIVE_DISPATCH_() resolves to QHsm_dispatch() if the base class for QActive is QHsm
(default), or to QFsm_dispatch() if the base class is QFsm. The dispatch() function returns only
after complete processing of the event, which constitutes the Run-To-Completion step.

18 of 42

http://www.state-machine.com/win32

Copyright © Quantum Leaps, LLC. All Rights Reserved.

Application Note:
QP™/QM™ and Win32 (Windows)

state-machine.com/win32

3.4 The win32_gui.h Header File

The win32_gui.h header file specifies the interface for GUI programming, which includes creating the
main custom dialog box for the front panel as well as various useful facilities for owner-drawn buttons,
graphical displays, segment displays, and LEDs.

Listing 5: win32_gui.h header file.

 #ifndef win32_gui_h
 #define win32_gui_h

 #define WIN32_LEAN_AND_MEAN
 (1) #include <windows.h> /* Win32 API */

 /* create the custom dialog hosting the embedded front panel*/
 (2) HWND CreateCustDialog(HINSTANCE hInst, int iDlg, HWND hParent,
 WNDPROC lpfnWndProc, LPCTSTR lpWndClass);

 /* OwnerDrawnButton "class" ..*/
 (3) typedef struct OwnerDrawnButtonTag {
 HBITMAP hBitmapUp;
 HBITMAP hBitmapDown;
 HCURSOR hCursor;
 } OwnerDrawnButton;

 enum OwnerDrawnButtonAction {
 BTN_NOACTION,
 BTN_PAINTED,
 BTN_DEPRESSED,
 BTN_RELEASED
 };

 void OwnerDrawnButton_init(OwnerDrawnButton * const me,
 HBITMAP hBitmapUp, HBITMAP hBitmapDwn,
 HCURSOR hCursor);
 void OwnerDrawnButton_xtor(OwnerDrawnButton * const me);
 enum OwnerDrawnButtonAction OwnerDrawnButton_draw(
 OwnerDrawnButton * const me,
 LPDRAWITEMSTRUCT lpdis);

 /* GraphicDisplay class for drawing graphic displays with up to 24-bit color*/
 (4) typedef struct GraphicDisplay Tag {
 UINT width;
 UINT xScale;
 UINT height;
 UINT yScale;
 HBITMAP hBitmap;
 HWND hItem;
 BYTE *bits;
 BYTE bgColor[3];
 } GraphicDisplay;

 void GraphicDisplay_init(GraphicDisplay * const me,
 UINT width, UINT xScale,
 UINT height, UINT yScale,

19 of 42

http://www.state-machine.com/win32

Copyright © Quantum Leaps, LLC. All Rights Reserved.

Application Note:
QP™/QM™ and Win32 (Windows)

state-machine.com/win32

 HWND hItem, BYTE const bgColor[3]);
 void GraphicDisplay_xtor(GraphicDisplay * const me);
 void GraphicDisplay_clear(GraphicDisplay * const me);
 void GraphicDisplay_setPixel(GraphicDisplay * const me, UINT x, UINT y,
 BYTE const color[3]);
 void GraphicDisplay_clearPixel(GraphicDisplay * const me, UINT x, UINT y);
 void GraphicDisplay_redraw(GraphicDisplay * const me);

 /* SegmentDisplay "class" for drawing segment displays, LEDs, etc...........*/
 (5) typedef struct SegmentDisplayTag {
 HWND *hSegment; /* array of segment controls */
 UINT segmentNum; /* number of segments */
 HBITMAP *hBitmap; /* array of bitmap handles */
 UINT bitmapNum; /* number of bitmaps */
 } SegmentDisplay;

 void SegmentDisplay_init(SegmentDisplay * const me,
 UINT segNum, UINT bitmapNum);
 void SegmentDisplay_xtor(SegmentDisplay * const me);
 BOOL SegmentDisplay_initSegment(SegmentDisplay * const me,
 UINT segmentNum, HWND hSegment);
 BOOL SegmentDisplay_initBitmap(SegmentDisplay * const me,
 UINT bitmapNum, HBITMAP hBitmap);
 BOOL SegmentDisplay_setSegment(SegmentDisplay * const me,
 UINT segmentNum, UINT bitmapNum);

 /* generic helper functions ..*/
 void DrawBitmap(HDC hdc, HBITMAP hBitmap, int xStart, int yStart);

 #endif /* win32_gui_h */

(1) The <windows.h> header file provides the APIs used in the Win32-GUI programming.

(2) The CreateCustDialog() function creates the custom dialog box for the main application window.

(3) The OwnerDrawnButton struct and functions form a “class” for owner-drawn buttons.

NOTE: OwnerDrawnButton is a proper class in the QP/C++ port to Win32.

(4) The GraphicDisplay struct and functions form a “class” for graphic displays (such as LCDs,
OLEDs, etc) with up to 24-bit color. The GraphicDisplay “class” provides efficient pixel-level
interface to a 24-bit “Device Independent Bitmap”.

NOTE: GraphicDisplay is a proper class in the QP/C++ port to Win32.

(5) The SegmentDisplay struct and functions form a “class” for segment displays. The
SegmentDisplay “class” provides generic solution for managing multiple segment groups and
multiple bitmaps corresponding to the specific configurations of the segments.

NOTE: SegmentDisplay is a proper class in the QP/C++ port to Win32.

The actual use of the provided GUI facilities is explained in the upcoming Section 5.

20 of 42

http://www.state-machine.com/win32

Copyright © Quantum Leaps, LLC. All Rights Reserved.

Application Note:
QP™/QM™ and Win32 (Windows)

state-machine.com/win32

3.5 The win32_gui.c Source File

The qf_port_gui.c source file implements the facilities for rendering various GUI elements, such as
LCD displays, owner-drawn buttons, and LEDs, which have been declared in the qf_port.h header file
(see Listing 3(16-31)).

The implementation used in the win32_gui.c source file is intentionally low-level, with raw Win32 API,
which does not require any higher-level software layers (such as MFC, .NET/C#, Qt, or wxWidgets). The
main advantages of this approach are: simplicity of use and deployment, pure C interface, and
unbeatable efficiency. The following Listing 6 shows the implementation of the CreateCustDialog()
function, which must be called from WinMain() in the GUI applications with QP.

Listing 6: CreateCustDialog() function (file win32_gui.c).

 (1) HWND CreateCustDialog(HINSTANCE hInst, int iDlg, HWND hParent,
 WNDPROC lpfnWndProc, LPCTSTR lpWndClass)
 {
 WNDCLASSEX wndclass;
 HWND hWnd;

 wndclass.cbSize = sizeof(wndclass);
 wndclass.style = CS_HREDRAW | CS_VREDRAW;
 (2) wndclass.lpfnWndProc = lpfnWndProc;
 wndclass.cbClsExtra = 0;
 wndclass.cbWndExtra = DLGWINDOWEXTRA;
 wndclass.hInstance = hInst;
 wndclass.hIcon = NULL;
 wndclass.hCursor = LoadCursor(NULL, IDC_ARROW);
 wndclass.hbrBackground = (HBRUSH)COLOR_WINDOW;
 wndclass.lpszMenuName = NULL;
 (3) wndclass.lpszClassName = lpWndClass;
 wndclass.hIconSm = NULL;

 (4) RegisterClassEx(&wndclass);

 (5) hWnd = CreateDialog(hInst, MAKEINTRESOURCE(iDlg), hParent, NULL);

 /* NOTE: WM_INITDIALOG provides stimulus for initializing dialog controls.
 * Dialog box procedures typically use this message to initialize controls
 * and carry out any other initialization tasks that affect the appearance
 * of the dialog box.
 */
 (6) SendMessage(hWnd, WM_INITDIALOG, (WPARAM)0, (LPARAM)0);

 return hWnd;
 }

(1) The CreateCustDialog() function creates a custom dialog box based on the custom Windows
class and must be called from WinMain(). The main job of the CreateCustDialog() function is
registering the custom Window class for QP.

(2) The window procedure (WndProc) of the custom Window class for QP is set from the parameter
provided to the CreateCustDialog() function.

NOTE: The QP-Win32 port associates the customized dialog box with a regular Window Procedure
rather than a standard Dialog Procedure. This is necessary for greater flexibility.

21 of 42

http://www.state-machine.com/win32

Copyright © Quantum Leaps, LLC. All Rights Reserved.

Application Note:
QP™/QM™ and Win32 (Windows)

state-machine.com/win32

(3) The name of the custom Window class for QP is is set from the parameter provided to the
CreateCustDialog() function.

NOTE: The dialog box resource must explicitly set the CLASS property and the name of this property
must be passed to the CreateCustDialog() function.

(4) The custom Window class is registered with Windows.

(5) The main Dialog window is created from the iDlg resource provided by the application as
parameter to the CreateCustDialog() function.

(6) The WM_INITDIALOG message is sent to the WndProc associated with the dialog box. This message
indicates the end of initialization and provides a convenient stimulus for starting active objects (see
also the upcoming Section 5.5).

The win32_gui.c source file provides also the implementation of all the interesting and hard to find GUI
facilities, such as the GraphicDisplay “class” for efficient rendering of graphic, pixel-addressable
displays, SegmentDisplay “class” for segment displays of all kinds as well as LEDs, and
OwnerDrawnButton “class” for rendering buttons with owner-defined look at both the “depressed” and
“released” states and generating separate “depressed” and “released” events. The upcoming Section 5.5
discusses the use of the provided GUI toolkit by means of the “Fly 'n' Shoot” game example.

22 of 42

http://www.state-machine.com/win32

Copyright © Quantum Leaps, LLC. All Rights Reserved.

Application Note:
QP™/QM™ and Win32 (Windows)

state-machine.com/win32

4 Console Applications
An example of a Win32 console application (application without a GUI) is provided in <qp>\examples\-
win32\vc\dpp\. This application is the Dining Philosophers Problem (DPP) example described in
Chapter 9 of PSiCC as well as in the Application Note “Dining Philosophers Application” [QP AN-DPP 08].

Due to the careful design of the QP port to Win32, the actual structure of the application is exactly the
same in the Win32 simulation as it is in an embedded target. Specifically, the files: dpp.h, main.c,
philo.c, and table.c are exactly the same. The only difference is the Board Support Package (BSP),
implemented in the bsp.c source file.

4.1 Board Support Package (BSP)

The “Board Support Package” consists of initialization and platform-specific callbacks used in the DPP
application to display the status of Dining Philosophers.

Listing 7: BSP for the console DPP application.

 #include "qp_port.h"
 #include "dpp.h"
 #include "bsp.h"

 #include <conio.h>
 #include <stdio.h>

 Q_DEFINE_THIS_FILE

 /* local variables ---*/
 static uint32_t l_rnd; /* random seed */
 . . .
 /*..*/
 void QF_onStartup(void) {
 (1) QF_setTickRate(BSP_TICKS_PER_SEC); /* set the desired tick rate */
 }
 /*..*/
 void QF_onCleanup(void) {
 }
 /*..*/
 void QF_onClockTick(void) {
 (2) QF_TICKX(0U, &l_clock_tick); /* perform the QF clock tick processing */
 (3) if (_kbhit()) { /* any key pressed? */
 int ch = _getch();
 if (ch == '\33') { /* see if the ESC key pressed */
 QF_PUBLISH(Q_NEW(QEvt, TERMINATE_SIG), &l_clock_tick);
 }
 else if (ch == 'p') {
 QF_PUBLISH(Q_NEW(QEvt, PAUSE_SIG), &l_clock_tick);
 }
 }
 }
 /*..*/
 void Q_onAssert(char const Q_ROM * const Q_ROM_VAR file, int line) {
 fprintf(stderr, "Assertion failed in %s, line %d", file, line);
 QF_stop();

23 of 42

http://www.state-machine.com/win32

Copyright © Quantum Leaps, LLC. All Rights Reserved.

Application Note:
QP™/QM™ and Win32 (Windows)

state-machine.com/win32

 }
 /*..*/
 (4) void BSP_init(void) {
 printf("Dining Philosopher Problem example"
 "\nQEP %s\nQF %s\n"
 "Press 'p' to pause/un-pause\n"
 "Press ESC to quit...\n",
 QEP_getVersion(),
 QF_getVersion());

 BSP_randomSeed(1234U);
 Q_ALLEGE(QS_INIT((void *)0));
 QS_OBJ_DICTIONARY(&l_clock_tick); /* must be called *after* QF_init() */
 QS_USR_DICTIONARY(PHILO_STAT);
 }
 /*..*/
 void BSP_terminate(int16_t result) {
 (void)result;
 #ifdef Q_SPY
 l_running = (uint8_t)0; /* stop the QS output thread */
 #endif
 (5) QF_stop(); /* stop the main "ticker thread" */
 }
 /*..*/
 (6) void BSP_displayPhilStat(uint8_t n, char const *stat) {
 printf("Philosopher %2d is %s\n", (int)n, stat);

 QS_BEGIN(PHILO_STAT, AO_Philo[n]) /* application-specific record begin */
 QS_U8(1, n); /* Philosopher number */
 QS_STR(stat); /* Philosopher status */
 QS_END()
 }
 /*..*/
 (7) void BSP_displayPaused(uint8_t paused) {
 printf("Paused is %s\n", paused ? "ON" : "OFF");
 }
 . . .

(1) The QF_onStartup() callback sets the desired system clock tick.

NOTE: The clock tick period can really be adjusted only with the system time slice granularity
(“quantum”). Currently in desktop Windows, 3 quantums are equal to either 10 milliseconds (single
processor) or 15 milliseconds (multiple-processor Pentium), see http://support.microsoft.com/ -
kb/259025 for more information.

(2-3) The QF_onClockTick() callback function invokes the QF_TICK() and polls the keyboard to
generate keyboard events to the application.

(4) The BSP_init() function prints out the opening string and initializes the QS facility (only effective in
the Spy build configuration).

(5) The BSP_terminate() function calls QF_stop() to terminate the “ticker thread”.

(6) In case of a console application, the display of the Philosopher status is simple printout to the
console.

(7) In case of a console application, the display of the Paused status is simple printout to the console.

24 of 42

http://www.state-machine.com/win32
http://support.microsoft.com/kb/259025
http://support.microsoft.com/kb/259025

Copyright © Quantum Leaps, LLC. All Rights Reserved.

Application Note:
QP™/QM™ and Win32 (Windows)

state-machine.com/win32

5 GUI Applications
Perhaps the trickiest part of integrating QP with any GUI system is reconciling the event-driven
multitasking models used in QP and the GUI system. Since both the GUI system and QP are in fact
event-driven frameworks, it is crucial to carefully avoid potential conflicts of authority (who’s controlling
CPU, events, event queuing, event processing, and so on).

5.1 General Structure of the QP Application with GUI

Generally, when QP is combined with a GUI system, the control should reside in QP, because QP
operates at the higher level of abstraction than the GUI system. The GUI “callbacks”, “message maps” or
other mechanisms should generally be used only for generating QP events, but not for actual processing
of the events. Event processing should occur in the active objects.

Also, the most recommended design is to encapsulate all screen updates inside a dedicated active
object, which will be henceforth called generically the “GUI-Manager”. All other active objects in the
application should not call GUI library to manipulate the screen directly, but rather should send events to
the GUI-Manager to perform the screen updates. That way, the GUI-Manager can coordinate concurrent
access to the screen and resolve potential conflicts among independent active objects.

NOTE: It is also possible to perform output to the GUI from several active objects, because the
Win32 graphical functions are reentrant from many Win32 threads ([Petzold 96]). However, this
structure of an application is not recommended because concurrent output to the screen can easily
lead to inconsistencies.

This section describes how to add GUI to the “Fly 'n' Shoot” game example, where the front panel of the
EK-LM3S811 board is displayed a dialog box. Compared to the real embedded target, the GUI version of
the “Fly 'n' Shoot” game has been extended to demonstrate a segmented LCD display (used for the
score) and interaction with the application by means of the mouse and the keyboard.

The examples of GUI applications for the plain Win32 API are located in <qp>\examples\-
win32\vc\game-gui\ as well as the GUI version of the DPP example at <qp>\examples\-
win32\vc\dpp-gui\. The structure of these GUI applications is intentionally very close to the structure of
the embedded QP applications. In particular, the application uses the exact same main() function, which
runs in a separate Win32-thread. The GUI subsystem, centered around the WinMain() function, is
loosely coupled with the QP application via events.

NOTE: To properly add the GUI functionality to the Express Editions of the Visual C++ toolsets you
can download and install the separate “Microsoft Platform SDK”, which will provide the standard
header files and the MFC libraries. You will still need a resource editor, such as ResEdit
(http://www.resedit.net/).

5.2 Main Steps for Creating QP Applications with GUI

The recommended steps for creating QP Applications with GUI on Windows are as follows:

NOTE: The described procedure is based on copying and modifying the existing examples to
preserve the compiler and linker options as well as other project settings. The described procedure
assumes that you have installed Visual C++ Express Edition, Platform SDK, and ResEdit resource
editor.

1. Copy the example GUI application directory (e.g., <qp>\examples\win32\vc\dpp-gui\) and rename
the copy to your own project.

25 of 42

http://www.state-machine.com/win32
http://www.resedit.net/

Copyright © Quantum Leaps, LLC. All Rights Reserved.

Application Note:
QP™/QM™ and Win32 (Windows)

state-machine.com/win32

2. Remove *.sdf, *.suo, and *.vxproj.user files from the project directory.

3. Rename the .sln (solution) file to the desired name of your project (leave the .sln extension). Open
the renamed solution file in a text editor and replace all occurrences of the original example name with
the your project name. Save the solution file.

4. Rename the .vcxproj (project) file to the desired name of your project (leave the .vcxproj
extension). Open the renamed project file in a text editor and automatically replace all occurrences of
the original example name with the your project name. Save the project file.

5. Rename the .rc (resource) file to the desired name of your project (leave the .rc extension).

6. Open the solution file in Visual C++ Express.

7. Remove any unused files from the project and add any of your own files into the project. Don not
forget the resource file.

8. Open the resource file in ResEdit and modify the front panel to your project. This step typically
requires working with bitmaps, which you can either generate from digital pictures of your embedded
front panel, or from your sketches. The upcoming Section ?? describes the design of the “Fly 'n' Shoot”
front panel with ResEdit.

9. Adapt the bsp.c file to generate QP events from your GUI and to implement actions to modify the GUI
in response to QP events.

NOTE: Even though this section goes into some details of the Win32 API, you don't necessarily need
to know all these details to use the provided example code as a template for your own front panels.
The code is thoroughly commented to help you identify sections that you need to customize.

5.3 WinMain()

In case of a GUI application, the GUI subsystem is located in the Board Support Package (the bsp.c
module). For the “Fly 'n' Shoot” game example, the BSP is located in <qp>\examples\win32\vc\game-
gui\bsp.c. Listing 8 shows the relevant fragment of the bsp.c file. This section describes the
WinMain() function.

Listing 8: WinMain() (file bsp.c).

 (1) #include "qp_port.h"
 (2) #include "game.h"
 (3) #include "bsp.h"

 (4) #include "win32_gui.h" /* Win32 GUI elements for embedded front panels */
 (5) #include "resource.h" /* GUI resource IDs generated by the resource editior */

 #include <stdio.h> /* for _snprintf_s() */

 Q_DEFINE_THIS_FILE

 /* local variables ---*/
 static HINSTANCE l_hInst; /* this application instance */
 static HWND l_hWnd; /* main window handle */
 static LPSTR l_cmdLine; /* the command line string */

 (6) static GraphicDisplay l_oled; /* the OLED display of the EK-LM3S811 board */
 (7) static SegmentDisplay l_userLED; /* USER LED of the EK-LM3S811 board */
 (8) static SegmentDisplay l_scoreBoard; /* segment display for the score */

26 of 42

http://www.state-machine.com/win32

Copyright © Quantum Leaps, LLC. All Rights Reserved.

Application Note:
QP™/QM™ and Win32 (Windows)

state-machine.com/win32

 (9) static OwnerDrawnButton l_userBtn; /* USER button of the EK-LM3S811 board */

 /* (R,G,B) colors for the OLED display */
 static BYTE const c_onColor [3] = { 255U, 255U, 0U }; /* yellow */
 static BYTE const c_offColor[3] = { 15U, 15U, 15U }; /* very dark grey */
 . . .
 /* Local functions ---*/
 static LRESULT CALLBACK WndProc(HWND hWnd, UINT iMsg,
 WPARAM wParam, LPARAM lParam);

 /*..*/
(10) int WINAPI WinMain(HINSTANCE hInst, HINSTANCE hPrevInst,
 LPSTR cmdLine, int iCmdShow)
 {
 HWND hWnd;
 MSG msg;

 (void)hPrevInst; /* avoid compiler warning about unused parameter */

(11) l_hInst = hInst; /* save the application instance */
(12) l_cmdLine = cmdLine; /* save the command line string */

 /* create the main custom dialog window */
(13) hWnd = CreateCustDialog(hInst, IDD_APPLICATION, NULL,
 &WndProc, "QP_APP");
(14) ShowWindow(hWnd, iCmdShow); /* show the main window */

 /* enter the message loop... */
(15) while (GetMessage(&msg, NULL, 0, 0)) {
 TranslateMessage(&msg);
 DispatchMessage(&msg);
 }
 return msg.wParam;
 }

(1-3) The module starts with including the platform-specific QP header file qp_port.h followed by the
application header file game.h, followed by the board support package (BSP) bsp.h.

(4-5) The GUI application includes the header file win32_gui.h discussed in Section 3.4 and
resource.h generated by the resource editor (such as ResEdit).

(6-9) The GUI elements specific for your embedded panel, such as dot-matrix displays, segmented
displays, LEDs, and owner-drawn buttons are allocated statically. You can have any number of
instances of each component type.

(10) As in every Win32 GUI application, you need the WinMain() function, which is the main entry point
to every GUI application on Windows.

NOTE: The structure of WinMain() is very standard as for any other typical Windows GUI
application. In particular, the WinMain() function contains the standard “message pump”.

(11-12) The current instance handle and the command line are saved in static variables.

(13) The function CreateCustDialog() creates the main application dialog box window with the
customized Windows class and regular window procedure (WndProc) as opposed to the dialog
box procedure typical for dialog boxes.

27 of 42

http://www.state-machine.com/win32

Copyright © Quantum Leaps, LLC. All Rights Reserved.

Application Note:
QP™/QM™ and Win32 (Windows)

state-machine.com/win32

NOTE: The created dialog box is based on a customized Windows class with the name specified as
the last parameter ("QP_APP" in this case). For this to work, the dialog box resource must be
associated with the same Windows class in the “Class Name” property of the resource editor, as
shown in Figure 8.

(14) The created dialog box window must be shown.

(15) The WinMain() function enters the standard “message pump”, in which it processes all messages
until the application is closed.

NOTE: The “message pump” can be extended to handle keyboard accelerators and perhaps other
events.

Figure 8: Setting the Windows Class Name of the Dialog Box in ResEdit.

The Windows Class Name can also be visible directly in the resource file. Listing 9 shows the definition of
the dialog box resource in the game-gui.rc resource file generated by the resource editor. Please note
the highlighted definition of the CLASS “QP_APP”.

Listing 9: Definition of the “Fly 'n' Shoot” dialog box resource (file game-gui.rc).

 //
 // Dialog resources
 //
 LANGUAGE LANG_ENGLISH, SUBLANG_ENGLISH_US
 IDD_APPLICATION DIALOGEX 0, 0, 580, 227
 STYLE DS_ABSALIGN | DS_MODALFRAME | DS_SHELLFONT | WS_CAPTION
 | WS_VISIBLE | WS_POPUP | WS_SYSMENU
 CAPTION "Fly 'n' Shoot game"
 CLASS "QP_APP"
 FONT 8, "MS Shell Dlg", 0, 0, 1
 {
 CONTROL IDB_EK_LM3S811, IDC_BACKGROUND, WC_STATIC, SS_BITMAP,
 7, 7, 533, 181
 CONTROL "USER", IDC_USER, WC_BUTTON, WS_TABSTOP | WS_TABSTOP
 | BS_OWNERDRAW | BS_BITMAP, 374, 132, 28, 27
 CONTROL IDB_LCD, IDC_LCD, WC_STATIC, SS_BITMAP, 287, 85, 128, 20
 CTEXT "www.state-machine.com", IDC_STATIC, 224, 212, 103, 8,

28 of 42

http://www.state-machine.com/win32

Copyright © Quantum Leaps, LLC. All Rights Reserved.

Application Note:
QP™/QM™ and Win32 (Windows)

state-machine.com/win32

 SS_CENTER, WS_EX_TRANSPARENT
 DEFPUSHBUTTON "Quit", IDOK, 523, 7, 50, 14, WS_GROUP
 CONTROL IDB_SEG, IDC_STATIC, WC_STATIC, SS_BITMAP, 7, 169, 97, 54
 CONTROL IDB_SEG8, IDC_SEG3, WC_STATIC, SS_BITMAP, 16, 177, 19, 36
 CONTROL IDB_SEG8, IDC_SEG2, WC_STATIC, SS_BITMAP, 36, 177, 19, 36
 CONTROL IDB_SEG8, IDC_SEG1, WC_STATIC, SS_BITMAP, 56, 177, 19, 36
 CONTROL IDB_SEG8, IDC_SEG0, WC_STATIC, SS_BITMAP, 76, 177, 19, 36
 CONTROL IDB_LED_OFF, IDC_LED, WC_STATIC, SS_BITMAP, 417, 36, 19, 18
 LTEXT "MPool[0]:", IDC_STATIC, 135, 193, 31, 8, SS_LEFT
 LTEXT "?", IDC_MPOOL0, 168, 193, 44, 8, SS_LEFT
 }
 . . .

5.4 Window Procedure (WndProc)

The WinMain() function creates the main dialog box window and associates the Window Procedure
(traditionally called WndProc) WndProc with it (see Listing 8(13)). The main job of the WndProc is
processing windows messages such as mouse clicks, button presses, or menu commands.

NOTE: Even though the QP GUI application is based on a dialog box as the main window, the
application uses a custom Windows class with a regular Window Procedure rather than a Dialog
Procedure typically associated with dialog boxes. A standard Dialog Procedure is not used, because
it is too specialized, which would be too limiting for the embedded front panels (e.g., the Dialog
Procedure contains a specialized message loop that processes keyboard input, tab order, etc. and
does not allow to override these aspects easily.)

However, in a QP application, WndProc should only translate the Windows messages into QP events and
post/publish these events to the active object(s). The actual drawing to the screen is in this design
typically not performed by the WndProc, but rather is left to the active objects—preferably to the single
active object called “GUI-Manager”.

The main benefit of this design is that the “GUI Manager” receives and processes the GUI events just like
any other events. However, the “GUI Manager” active object is independent on the Windows “message
pump”, so it can also receive other events from the rest of the application. In this way, GUI encapsulated
inside an active object becomes a reusable, event-driven component of the application. All other active
objects do not concern themselves with rendering the screen and thus are decoupled from any particular
GUI implementation (Win32 or other).

NOTE: In the GAME-GUI example, the Tunnel active object is the only one performing output to the
GUI (through the BSP_drawBitmap() and other similar BSP functions), so it plays here the role of
the “GUI Manager”.

Listing 10: WndProc() (file bsp.c).

 (1) static LRESULT CALLBACK WndProc(HWND hWnd, UINT iMsg,
 WPARAM wParam, LPARAM lParam)
 {
 switch (iMsg) {
 /* Perform initialization upon creation of the main dialog window
 * NOTE: Any child-windows are NOT created yet at this time, so
 * the GetDlgItem() function can't be used (it will return NULL).
 */
 (2) case WM_CREATE: {
 (3) l_hWnd = hWnd; /* save the window handle */

29 of 42

http://www.state-machine.com/win32

Copyright © Quantum Leaps, LLC. All Rights Reserved.

Application Note:
QP™/QM™ and Win32 (Windows)

state-machine.com/win32

 /* initialize the owner-drawn buttons...
 * NOTE: must be done *before* the first drawing of the buttons,
 * so WM_INITDIALOG is too late.
 */
 (4) OwnerDrawnButton_init(&l_userBtn,
 LoadBitmap(l_hInst, MAKEINTRESOURCE(IDB_BTN_UP)),
 LoadBitmap(l_hInst, MAKEINTRESOURCE(IDB_BTN_DWN)),
 LoadCursor(NULL, IDC_HAND));
 return 0;
 }

 /* Perform initialization after all child windows have been created */
 (5) case WM_INITDIALOG: {
 (6) GraphicDisplay_init(&l_oled,
 BSP_SCREEN_WIDTH, 2U, /* scale horizontaly by 2 */
 BSP_SCREEN_HEIGHT, 2U, /* scale vertically by 2 */
 GetDlgItem(hWnd, IDC_LCD), c_offColor);

 (7) SegmentDisplay_init(&l_scoreBoard,
 4U, /* 4 "segments" (digits 0-3) */
 10U); /* 10 bitmaps (for 0-9 states) */
 SegmentDisplay_initSegment(&l_scoreBoard,
 0U, GetDlgItem(hWnd, IDC_SEG0));
 SegmentDisplay_initSegment(&l_scoreBoard,
 1U, GetDlgItem(hWnd, IDC_SEG1));
 . . .
 SegmentDisplay_initBitmap(&l_scoreBoard,
 0U, LoadBitmap(l_hInst, MAKEINTRESOURCE(IDB_SEG0)));
 SegmentDisplay_initBitmap(&l_scoreBoard,
 1U, LoadBitmap(l_hInst, MAKEINTRESOURCE(IDB_SEG1)));
 . . .
 SegmentDisplay_initBitmap(&l_scoreBoard,
 9U, LoadBitmap(l_hInst, MAKEINTRESOURCE(IDB_SEG9)));

 BSP_updateScore(0U);

 (8) SegmentDisplay_init(&l_userLED,
 1U, /* 1 "segment" (the LED itself) */
 2U); /* 2 bitmaps (for LED OFF/ON states) */
 SegmentDisplay_initSegment(&l_userLED,
 0U, GetDlgItem(hWnd, IDC_LED));
 SegmentDisplay_initBitmap(&l_userLED,
 0U, LoadBitmap(l_hInst, MAKEINTRESOURCE(IDB_LED_OFF)));
 SegmentDisplay_initBitmap(&l_userLED,
 1U, LoadBitmap(l_hInst, MAKEINTRESOURCE(IDB_LED_ON)));

 /* --> QP: spawn the application thread to run main() */
 (9) Q_ALLEGE(CreateThread(NULL, 0, &appThread, NULL, 0, NULL)
 != (HANDLE)0);
 return 0;
 }

(10) case WM_DESTROY: {
 BSP_terminate(0);
 return 0;

30 of 42

http://www.state-machine.com/win32

Copyright © Quantum Leaps, LLC. All Rights Reserved.

Application Note:
QP™/QM™ and Win32 (Windows)

state-machine.com/win32

 }

 /* commands from regular buttons and menus... */
(11) case WM_COMMAND: {
 SetFocus(hWnd);
 switch (wParam) {
 case IDOK:
 case IDCANCEL: {
 BSP_terminate(0);
 break;
 }
 }
 return 0;
 }

 /* owner-drawn buttons... */
(12) case WM_DRAWITEM: {
(13) LPDRAWITEMSTRUCT pdis = (LPDRAWITEMSTRUCT)lParam;
(14) switch (pdis->CtlID) {
(15) case IDC_USER: { /* USER owner-drawn button */
(16) switch (OwnerDrawnButton_draw(&l_userBtn, pdis)) {
(17) case BTN_DEPRESSED: {
 BSP_playerTrigger();
 SegmentDisplay_setSegment(&l_userLED, 0U, 1U);
 break;
 }
(18) case BTN_RELEASED: {
 SegmentDisplay_setSegment(&l_userLED, 0U, 0U);
 break;
 }
 }
 break;
 }
 }
 return 0;
 }

 /* mouse input... */
(19) case WM_MOUSEWHEEL: {
 if ((HIWORD(wParam) & 0x8000U) == 0U) {/* wheel turned forward? */
 BSP_moveShipUp();
 }
 else { /* the wheel was turned backwards */
 BSP_moveShipDown();
 }
 return 0;
 }

 /* keyboard input... */
(20) case WM_KEYDOWN: {
 switch (wParam) {
 case VK_UP:
 BSP_moveShipUp();
 break;
 case VK_DOWN:
 BSP_moveShipDown();

31 of 42

http://www.state-machine.com/win32

Copyright © Quantum Leaps, LLC. All Rights Reserved.

Application Note:
QP™/QM™ and Win32 (Windows)

state-machine.com/win32

 break;
 case VK_SPACE:
 BSP_playerTrigger();
 break;
 }
 return 0;
 }

 }
(21) return DefWindowProc(hWnd, iMsg, wParam, lParam) ;
 }

(1) The standard WndProc is made static here, because it is not used outside the bsp.c module.

(2) The WM_CREATE Windows message is sent to the WndProc upon the creation of the associated
window.

NOTE: The dialog box controls (child-windows) are not created yet at this time, so the
GetDlgItem() function can't be used in response to WM_CREATE (it will return NULL).

(3) The main window handle is copied to the static variable to use in other BSP functions.

(4) Any owner-drawn buttons must be initialized before they are drawn, which happens after WM_CREATE
is sent to the WndProc. Please see the Windows message WM_DRAWITEM at label (12) and the
upcoming Section 5.5.3 for more information about the owner-drawn buttons.

(5) The WM_INITDIALOG Windows message is not typically sent to regular WndProcs, but it is
specifically generated in the CreateCustDialog() function (see Listing 8(13)) after all the child
window controls have been created. The WM_INITDIALOG message is very useful to initialize any
dialog controls, such as buttons, bitmaps, text labels, etc.

(6) The WndProc for the game example initializes the dot-matrix display l_oled. Please see the
upcoming Section 5.5.4 for more information about dot-matrix displays.

(7) The WndProc for the game example initializes also the segment display l_scoreBoard. Please see
the upcoming Section 5.5.5 for more information about segment displays.

(8) Finally, the WndProc for the game example initializes the LED (l_userLED) as a segment display.
An LED is treated here as a simple 1-segment display with two states LED-off and LED-on.

(9) After all initialization is done, the WndProc creates a Win32 thread to run the QP application. The
thread routine passed to the CreateThread() function is just a thin wrapper around the
main_gui() function.

NOTE: The thread routine appThread() is defined as follows:

 static DWORD WINAPI appThread(LPVOID par) {
 (void)par; /* unused parameter */
 return main_gui(); /* run the QF application */
 }

(10) The WM_DESTROY Windows message is sent to the WndProc when the main window is closed or the
application is forced to quit by the operating system. The BSP_terminate() calls
PostQuiteMessage() function as well as QF_stop(), which causes termination of the application
thread.

32 of 42

http://www.state-machine.com/win32

Copyright © Quantum Leaps, LLC. All Rights Reserved.

Application Note:
QP™/QM™ and Win32 (Windows)

state-machine.com/win32

(11) The WM_COMMAND Windows message is generated by users clicking on regular buttons or activating
menus. The game example contains one such button “Quit”.

(12) Owner-drawn buttons are treated differently than regular buttons such as “Quit”. They produce the
WM_DRAWITEM Windows messages, which is sent when an owner-drawn button is pressed and again
when it is released. In simulating real buttons in embedded front panels this is typically exactly what
you want.

NOTE: The Win32 API for owner-drawn controls is a bit complicated, because it covers not just
buttons but owner-drawn menus, combo-boxes, and many others. However, for owner-drawn buttons
most of the complexities are hidden inside the OwnerDrawnButton_draw() function provided in
the QP port to Win32.

(13) The DRAWITEMSTRUCT pointer is extracted from the Windows message parameter.

(14) The switch statement discriminates based on the ID of the child-window control. Here, you decide
which owner-drawn button you want to service.

(15) For example, to service the USER button of the EK-LM3S811 board (see Figure 6), you provide a
case statement labeled with IDC_USER, which is the ID of the owner-drawn button set in the
resource editor.

(16) The function OwnerDrawnButton_draw(), which is provided in the QP-Win32 port, performs the
“heavy lifting” of painting the button in the current state and returns the status of the button.

(17) When the button is in the BTN_DEPRESSED state, the game example calls BSP_playerTrigger(),
which publishes the PLAYER_TRIGGER event to the active objects and also turns the USER LED on.

(18) When the button is in the BTN_RELEASED state, the game example turns the USER LED off.

(19) The WM_MOUSEWHEEL Windows message is generated by the mouse wheel. This code demonstrates
how to handle the mouse-wheel input.

(20) The WM_KEYDOWN Windows message is generated by pressing keys on the keyboard. This code
demonstrates how to provide keyboard input to your application.

33 of 42

http://www.state-machine.com/win32

Copyright © Quantum Leaps, LLC. All Rights Reserved.

Application Note:
QP™/QM™ and Win32 (Windows)

state-machine.com/win32

5.5 Developing Realistic Embedded Front Panels

This Application Note has been specifically designed to provide a complete toolkit with all the needed
graphical components and powerful free tools (such as the free Visual C++ Express Edition and the free
ResEdit resource editor) for building realistic embedded front panels.

This section describes a typical process of building realistic embedded front panels graphically with the
ResEdit resource editor and the facilities for implementing owner-drawn buttons, dot-matrix displays, and
segment displays, which are provided in the win32_gui.c source file.

Figure 9: Prototype of the EK-LM3S811 board open in ResEdit resource editor

5.5.1 The dialog box resource
As described in the previous sections, the structure of a GUI application with this QP-Win32 port is based
on dialog box, which can be designed graphically in a resource editor, such as ResEdit. Consequently,
the process of prototyping an embedded front panel starts with creating the Dialog resource. In ResEdit,
you create or open an existing resource file and select menu File | Add a resource... | Dialog. Once the
dialog resource is added, you can click on it and adjust its properties in the Property Editor.

NOTE: The most important step here is defining the Class Name property, because this property
cannot stay undefined (see Figure 8). The Class Name you choose must match the name you pass
to the CreateCustDialog() function.

5.5.2 The background image
Next, you typically want to add a background image of your front panel to the dialog box, such as the EK-
LM3S811 board shown in Figure 9. The most important aspect of preparing the background image is the
proper scaling. You should scale the image carefully such that any dot-matrix display present on the
panel contains the desired number of pixels. Please note that to accommodate small pixel-count
embedded displays, the provided GUI facilities for rendering dot-matrix displays allow you to scale the
pixels independently in the horizontal and vertical directions. For example, the OLED display of the EK-

34 of 42

Graphic
Display

Segment
 Display

Owner-drawn
 Button

LED

http://www.state-machine.com/win32

Copyright © Quantum Leaps, LLC. All Rights Reserved.

Application Note:
QP™/QM™ and Win32 (Windows)

state-machine.com/win32

LM3S811 board has resolution of 96 x 16 pixels, which is a very small area on the modern high-resolution
monitors. Therefore, the image of the board has been scaled such that the OLED display contains 192 x
32 pixels, which is exactly two times bigger than the original resolution.

The background image needs to be converted to the BMP format, which can be done by a number of
programs, for example the Paint utility bundled in every version of Windows. Save the image as a bitmap
in the Res\ directory of your project.

To add the bitmap image to ResEdit, select menu File | Add a resource... | Bitmap. Choose the “Create
from an existing file” option and choose the bitmap file you've just added from the Res\ directory. Next,
you add a “Picture Control” to the Dialog resource from the provided Toolbox. In the Property Editor of the
newly added Picture Control, you change the type to “Bitmap” and select the ID corresponding to the
background bitmap added in the previous step.

NOTE: ResEdit allows you to easily control the stacking order of the controls placed in the dialog
box. To change the stacking order, right-click on a control and choose the option Order | Bring to …
from the pop-up menu. The background image should obviously be always “sent to background” so
that it does not come on top of any other controls.

5.5.3 Owner-drawn buttons
Owner-drawn buttons have two critical advantages over the regular buttons when it comes to embedded
front panels. (1) they can look exactly as your physical buttons on your panel and, more importantly, (2)
they generate events when they are depressed and when they are released. In contrast, the regular
buttons are always rectangular-gray and they generate only the “clicked” event, which appears as
WM_COMMAND in the WndProc.

To add an owner-drawn button to the dialog box, select the “Button” control from the Toolbox and place in
the desired spot. Next, change the property “Owner drawn” to True.

Figure 10: Adding an owner-drawn button in ResEdit resource editor

NOTE: The design of a front panel requires quite precise placement of the controls. To achieve the
fine control of placement in ResEdit, you need to press Ctrl key and use the arrow keys to nudge
the control in the desired direction. Without the Ctrl key, ResEdit places the control at coarse grid
locations.

The owner-drawn button requires also some code. which is illustrated in Listing 11.

35 of 42

http://www.state-machine.com/win32

Copyright © Quantum Leaps, LLC. All Rights Reserved.

Application Note:
QP™/QM™ and Win32 (Windows)

state-machine.com/win32

Listing 11: Snippets from the bsp.c file pertaining to owner-drawn button

 (1) static OwnerDrawnButton l_userBtn; /* USER button of the EK-LM3S811 board */
 . . .
 static LRESULT CALLBACK WndProc(HWND hWnd, UINT iMsg,
 WPARAM wParam, LPARAM lParam)
 {
 switch (iMsg) {
 case WM_CREATE: {
 . . .
 (2) OwnerDrawnButton_init(&l_userBtn,
 LoadBitmap(l_hInst, MAKEINTRESOURCE(IDB_BTN_UP)),
 LoadBitmap(l_hInst, MAKEINTRESOURCE(IDB_BTN_DWN)),
 LoadCursor(NULL, IDC_HAND));
 return 0;
 }
 /* owner-drawn buttons... */
 case WM_DRAWITEM: {
 LPDRAWITEMSTRUCT pdis = (LPDRAWITEMSTRUCT)lParam;
 switch (pdis->CtlID) {
 case IDC_USER: { /* USER owner-drawn button */
 (3) switch (OwnerDrawnButton_draw(&l_userBtn, pdis)) {
 (4) case BTN_DEPRESSED: {
 BSP_playerTrigger();
 SegmentDisplay_setSegment(&l_userLED, 0U, 1U);
 break;
 }
 case BTN_RELEASED: {
 (5) SegmentDisplay_setSegment(&l_userLED, 0U, 0U);
 break;
 }
 }
 break;
 }
 }
 return 0;
 }
 . . .
 }

(1) You need to provide an instance of the OwnerDrawnButton struct for each owner-drawn button
you have added to the Dialog box.

(2) You need to call OwnerDrawnButton_init() in the WM_CREATE message handler with the bitmaps
for the “Released” state, “Depressed” state, and the mouse cursor when the mouse hovers above
the button. You can specify the cursor shape to NULL, in which case the standard arrow cursor is
used.

(3) You need to call OwnerDrawButton_draw() the WM_DRAWITEM message handler to render the
button in the current state.

36 of 42

http://www.state-machine.com/win32

Copyright © Quantum Leaps, LLC. All Rights Reserved.

Application Note:
QP™/QM™ and Win32 (Windows)

state-machine.com/win32

5.5.4 Graphic displays
Graphic displays of various types (LCDs, OLED, etc.) become increasingly popular in embedded
systems. The QP-Win32 port provides a generic, efficient implementation of a pixel-addressable graphic
displays with up to 24-bit color (RGB).

The use model of the provided dot-matrix display is to perform multiple, efficient pixel updates in-memory
and then render the updated bitmap to the screen. Also, to accommodate low-resolution displays, the dot-
matrix facility allows scaling the display independently in horizontal and vertical directions. For example,
the OLED display of the EK-LM3S811 board has been scaled up by factor of 2 horizontally and 2
vertically, to the total size of 192 x 32 pixels (each original pixel corresponding to 2x2 pixels on the dot-
matrix display.) Of course, the 2x2 scaling is just an example and you can use other scaling factors.

Under the hood, the implementation is based on the Device-Independent Bitmap (DIB) section of an in-
memory bitmap (CreateDIBSection() Win32 API, see win32.gui.c source file in the QP-Win32 port.)
The GraphicDisplay bitmap uses the standard coordinate system, in which the origin (0,0) is placed
in the top-left corner, the x-coordinate extends horizontally and grows to the right, while the y-coordinate
extends vertically and grows down.

To add a dot-matrix display to the dialog box in ResEdit, select the “Picture Control” from the Toolbox and
place in the desired spot. In the Property Editor of the newly added Picture Control, you change the type
to “Bitmap”. The dot-matrix display requires also some code. which is illustrated in Listing 12.

Listing 12: Snippets from the bsp.c file pertaining to graphic display

 (1) static GraphicDisplay l_oled; /* the OLED display of the EK-LM3S811 board */
 /* (R,G,B) colors for the OLED display */
 (2) static BYTE const c_onColor [3] = { 255U, 255U, 0U }; /* yellow */
 (3) static BYTE const c_offColor[3] = { 15U, 15U, 15U }; /* very dark grey */
 . . .
 /*..*/
 static LRESULT CALLBACK WndProc(HWND hWnd, UINT iMsg,
 WPARAM wParam, LPARAM lParam)
 {
 switch (iMsg) {
 /* Perform initialization after all child windows have been created */
 case WM_INITDIALOG: {
 (4) GraphicDisplay_init(&l_oled,
 BSP_SCREEN_WIDTH, 2U, /* scale horizontally by 2 */
 BSP_SCREEN_HEIGHT, 2U, /* scale vertically by 2 */
 GetDlgItem(hWnd, IDC_LCD), c_offColor);
 . . .
 }
 /*..*/
 (5) void BSP_drawBitmap(uint8_t const *bitmap) {
 UINT x, y;
 /* map the EK-LM3S811 OLED pixels to the GraphicDisplay pixels... */
 for (y = 0; y < BSP_SCREEN_HEIGHT; ++y) {
 for (x = 0; x < BSP_SCREEN_WIDTH; ++x) {
 uint8_t bits = bitmap[x + (y/8)*BSP_SCREEN_WIDTH];
 if ((bits & (1U << (y & 0x07U))) != 0U) {
 (6) GraphicDisplay_setPixel(&l_oled, x, y, c_onColor);
 }
 else {
 (7) GraphicDisplay_clearPixel(&l_oled, x, y);
 }
 }

37 of 42

http://www.state-machine.com/win32

Copyright © Quantum Leaps, LLC. All Rights Reserved.

Application Note:
QP™/QM™ and Win32 (Windows)

state-machine.com/win32

 }
 (8) GraphicDisplay_redraw(&l_oled); /* draw the updated GraphicDisplay on the
screen */
 }

(1) You need to provide an instance of the GraphicDisplay struct for each dot-matrix display you
have added to the Dialog box.

(2-3) To simulate a monochrome display, the colors for the “on” and “off” pixel states are defined.

(4) You need to call GraphicDisplay_init() in the WM_INITDIALOG message handler with the
dimensions of the display, the scaling factors, and the color of the blank pixels.

(5) The BSP_drawBitmap() function renders the whole 96x16 pixel OLED display of the EK-LM3S811
board. This function performs a re-mapping of the specific pixel representation for the OLED display
to the pixels of the GraphicDisplay device-independent bitmap. In this particular case, the
monochrome pixels are represented as tightly-packed bitmasks of 8-pixels per byte arranged
vertically.

NOTE: The particular pixel re-mapping is just a demonstration here. You need to adapt it for your
specific display. Also, you don't need to always update the whole pixel array. You might choose to
update only a part of it, as is illustrated in the function BSP_drawString() in bsp.c (not shown in
Listing 12).

(6) The function GraphicDisplay_setPixel() very efficiently sets a given pixel at (x, y) to the given
color.

(7) The function GraphicDisplay_clearPixel() very efficiently clears a given pixel at (x, y) by setting
it to the blank color specified in GraphicDisplay_init().

NOTE: The pixels are set/cleared only in memory and do not appear on the screen until the call to
GraphicDisplay_redraw().

(8) The function GraphicDisplay_redraw() re-draws the current state of the in-memory bitmap on the
screen.

NOTE: You can use the function GraphicDisplay_clear() to clear the entire internal device-
independent bitmap by setting all the pixels of the to the blank color.

5.5.5 Segment displays
The QP-Win32 port provides also a generic facility for rendering segment displays, such as found in
digital watches, calculators, thermostats, microwave ovens, washing machines, digital meters, etc.

The chosen implementation is based on selective displaying bitmaps representing the various states of
the related groups of segments. In this design, you need to provide all the bitmaps for all states of
segment groups that you anticipate in your application, but the advantage is that the bitmaps can be very
realistic and match exactly your specific display.

To add a segment display to the dialog box in ResEdit, you add all the bitmaps for the segments and a
“Picture Control” for each segment group. You also need to place the Picture Controls at the exact
locations of the segments. Please note that you add one Picture Control for the whole group of segments
not for every individual segment. For example, as illustrated in Figure 11, a single picture control
represents a whole 7-segment digit. Also, as you keep adding the segment groups to the dialog box, you

38 of 42

http://www.state-machine.com/win32

Copyright © Quantum Leaps, LLC. All Rights Reserved.

Application Note:
QP™/QM™ and Win32 (Windows)

state-machine.com/win32

don't need to make sure that the resource IDs assigned to them are consecutive or in any specific order.
The provided implementation of the Segment Display does not require any specific order.

Figure 11: Adding a segment display in ResEdit resource editor

NOTE: The design of a segment display requires quite precise placement of the bitmaps. To achieve
the fine control of placement in ResEdit, you need to press Ctrl key and use the arrow keys to
nudge the control in the desired direction. Without the Ctrl key, ResEdit places the control at coarse
grid locations.

The segment display requires also some code. which is illustrated in Listing 13.

Listing 13: Snippets from the bsp.c file pertaining to segment display

 (1) static SegmentDisplay l_scoreBoard; /* segment display for the score */
 /*..*/
 static LRESULT CALLBACK WndProc(HWND hWnd, UINT iMsg,
 WPARAM wParam, LPARAM lParam)
 {
 switch (iMsg) {
 /* Perform initialization after all child windows have been created */
 case WM_INITDIALOG: {
 . . .
 (2) SegmentDisplay_init(&l_scoreBoard,
 4U, /* 4 "segments" (digits 0-3) */
 10U); /* 10 bitmaps (for 0-9 states) */
 (3) SegmentDisplay_initSegment(&l_scoreBoard,
 0U, GetDlgItem(hWnd, IDC_SEG0));
 (4) SegmentDisplay_initSegment(&l_scoreBoard,
 1U, GetDlgItem(hWnd, IDC_SEG1));
 (5) SegmentDisplay_initSegment(&l_scoreBoard,
 2U, GetDlgItem(hWnd, IDC_SEG2));
 (6) SegmentDisplay_initSegment(&l_scoreBoard,
 3U, GetDlgItem(hWnd, IDC_SEG3));
 (7) SegmentDisplay_initBitmap(&l_scoreBoard,
 0U, LoadBitmap(l_hInst, MAKEINTRESOURCE(IDB_SEG0)));
 (8) SegmentDisplay_initBitmap(&l_scoreBoard,

39 of 42

http://www.state-machine.com/win32

Copyright © Quantum Leaps, LLC. All Rights Reserved.

Application Note:
QP™/QM™ and Win32 (Windows)

state-machine.com/win32

 1U, LoadBitmap(l_hInst, MAKEINTRESOURCE(IDB_SEG1)));
 . . .
 (9) SegmentDisplay_initBitmap(&l_scoreBoard,
 9U, LoadBitmap(l_hInst, MAKEINTRESOURCE(IDB_SEG9)));
 . . .
 }
 /*..*/
 void BSP_updateScore(uint16_t score) {
 /* update the score in the l_scoreBoard SegmentDisplay */
(10) SegmentDisplay_setSegment(&l_scoreBoard, 0U, (UINT)(score % 10U));
 score /= 10U;
(11) SegmentDisplay_setSegment(&l_scoreBoard, 1U, (UINT)(score % 10U));
 score /= 10U;
(12) SegmentDisplay_setSegment(&l_scoreBoard, 2U, (UINT)(score % 10U));
 score /= 10U;
(13) SegmentDisplay_setSegment(&l_scoreBoard, 3U, (UINT)(score % 10U));
 }

(1) You need to provide an instance of the SegmentDisplay struct for each segment display you
have added to the Dialog box..

(2) You need to call SegmentDisplay_init() in the WM_INITDIALOG message handler with the total
number of segment groups and the total number of bitmaps associated with the display. For
instance, the 4-digit l_scoreBoard display used in the game example uses 4 segment groups and
10 bitmaps (for digits 0..9).

(3-6) For each segment group, you need to call SegmentDisplay_initSegment() with the index of the
segment group and the dialog control corresponding to this segment group. This way, you establish
a consecutive numbering of segments (by the index number).

(7-9) For each bitmap, you need to call SegmentDisplay_initBitmap() with the index of the bitmap
and the bitmap itself loaded from the resource pool. This way, you establish a consecutive
numbering of bitmaps (by the index number).

(10-13) You change the bitmaps in the segments by calling SegmentDisplay_setSegment() with the
index of the segment and index of the bitmap.

5.5.6 LEDs
LEDs can be efficiently handled as segment displays with just one “segment group” (the LED itself) and
two bitmaps (“off” and “on” states of the bitmap). This way, it is also very easy to build groups of LEDs
and multi-color LEDs just by increasing the number of “segment groups” and bitmaps for each color.

40 of 42

http://www.state-machine.com/win32

Copyright © Quantum Leaps, LLC. All Rights Reserved.

Application Note:
QP™/QM™ and Win32 (Windows)

state-machine.com/win32

6 Related Documents and References

Document Location

“Practical UML Statecharts
in C/C++, Second Edition”
[PSiCC2], Miro Samek,
Newnes, 2008

ISBN-13: 978-0-7506-8706-5

Available from most online book retailers, such
as Amazon.com.

See also: http://www.state-
machine.com/psicc2.htm

[AN-DPP] “Application Note: Dining Philosopher
Problem Application”, Quantum Leaps, 2008

http://www.state-
machine.com/resources/AN_DPP.pdf

[AN-PELICAN] “Application Note: PEDestrian LIght
CONtrolled (PELICAN) Crossing Application”,
Quantum Leaps, 2008

http://www.state-
machine.com/resources/AN_PELICAN.pdf

[Pezold] “Programming Windows”, Charles Petzold
and Paul Yao, Microsoft Press

Available in most bookstores

[QP-Ref]“QP/C++ Reference Manual”, Quantum
Leaps, LLC, 2011

http://www.state-machine.com/doxygen/qpcpp/

[Q_SPY-Ref] “Q_SPY Host Application Reference
Manual”, Quantum Leaps, 2011

http://www.state-machine.com/doxygen/qspy

Free QM graphical modeling and code generation
tool, Quantum Leaps, 2011

http://www.state-machine.com/qm

41 of 42

http://www.state-machine.com/win32
http://www.state-machine.com/qm
http://www.state-machine.com/doxygen/qspy
http://www.state-machine.com/doxygen/qpcpp/
http://www.state-machine.com/resources/AN_PELICAN.pdf
http://www.state-machine.com/resources/AN_PELICAN.pdf
http://www.state-machine.com/resources/AN_DPP.pdf
http://www.state-machine.com/resources/AN_DPP.pdf
http://www.state-machine.com/psicc2.htm
http://www.state-machine.com/psicc2.htm
http://www.amazon.com/

Copyright © Quantum Leaps, LLC. All Rights Reserved.

Application Note:
QP™/QM™ and Win32 (Windows)

state-machine.com/win32

7 Contact Information

Quantum Leaps, LLC
103 Cobble Ridge Drive
Chapel Hill, NC 27516
USA

+1 866 450 LEAP (toll free, USA only)
+1 919 869-2998 (FAX)

e-mail: info@quantum-leaps.com
WEB : http://www.quantum-leaps.com
 http://www.state-machine.com

42 of 42

http://www.state-machine.com/win32
http://www.state-machine.com/
http://www.quantum-leaps.com/
mailto:info@quantum-leaps.com

	1 Introduction
	1.1 About QP™
	1.2 About QM™
	1.3 Key Features of this QP on Windows
	1.4 About the Tools
	1.5 Licensing the QP™
	1.6 Licensing QM™

	2 Getting Started
	2.1 Installing QP
	2.2 Building the QP Libraries
	2.2.1 Building QP libraries with Visual Studio Express
	2.2.2 Building QP libraries with MinGW

	2.3 Building the Examples
	2.4 Running the DPP-GUI Example
	2.5 Running the “Fly 'n' Shoot” Game Simulation
	2.6 Generating the QP Application Code with the QM™ Modeling Tool

	3 The QP Port to Win32
	3.1 The qep_port.h Header File
	3.1.1 The Fixed-Width Integer Types

	3.2 The qf_port.h Header File
	3.3 The qf_port.c Source File
	3.4 The win32_gui.h Header File
	3.5 The win32_gui.c Source File

	4 Console Applications
	4.1 Board Support Package (BSP)

	5 GUI Applications
	5.1 General Structure of the QP Application with GUI
	5.2 Main Steps for Creating QP Applications with GUI
	5.3 WinMain()
	5.4 Window Procedure (WndProc)
	5.5 Developing Realistic Embedded Front Panels
	5.5.1 The dialog box resource
	5.5.2 The background image
	5.5.3 Owner-drawn buttons
	5.5.4 Graphic displays
	5.5.5 Segment displays
	5.5.6 LEDs

	6 Related Documents and References
	7 Contact Information

