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1 Introduction
This Application Note describes performance tests and results of the QP  TM   real-time framework  , which 
combines hierarchical state machines with the particular model of concurrency, known as active objects 
(a.k.a., actors). The framework provides a modern, event-driven, reusable architecture that is generally 
safer, more responsive and easier to understand than “naked threads” of a conventional Real-Time 
Operating System (RTOS).

In the resource-constrained embedded systems, the biggest concern has always been about the size and
efficiency of any such “unconventional” solutions, especially that most existing active object frameworks 
(e.g., frameworks accompanying various modeling tools) have traditionally been built on top of a 
conventional RTOS, which can only add memory footprint and CPU overhead to the end-application.

However, in this respect QPTM differs from most other active object frameworks, because it can run 
standalone on bare-metal single-chip microcontrollers, completely replacing a conventional RTOS. The 
framework contains a selection of built-in real-time kernels, such as the cooperative QV kernel, the 
preemptive, non-blocking QK kernel, and the preemptive, blocking QXK kernel, which are all specifically 
custom-tailored and optimized to execute event-driven active objects. For compatibility with the existing 
software, the QPTM framework can also run on top of a conventional, third-party RTOS kernel, such as the
µC/OS-II RTOS kernel from Micrium used in this study. All this creates a unique opportunity to compare 
the space (code) and time (CPU cycles) performance of these various options.

The main goals of this Application Note are as follows:

● To help you understand what performance aspects are being measured and how they are being 
measured, so that you can make meaningful apples-to-apples comparisons

● To help you evaluate the QPTM framework against other competitive offerings and your specific 
performance goals by presenting the specific test results 

● To help you understand the overhead of various features and configuration options of the QPTM 
framework to choose the right options for your specific application

● To provide you with methods and tools to repeat the tests yourself, or to devise your own 
performance tests

● To help you debug timing and performance bottleneck problems in your code

● To help you perform CPU utilization of your own application to apply formal methods such as Rate 
Monotonic Analysis (RMA)

NOTE: The reported results in this Application Note have been obtained for QPTM/C++ 5.6.1, but they 
are representative for both QPTM/C++ and QPTM/C, whereas the performance of QPTM/C can be 
expected to be slightly better than QPTM/C++.
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1.1 General Performance Measurement Strategy

The general problem with any performance measurements is that they strongly depend on a large 
number of factors, such as: the CPU type, the CPU memory interface (e.g., wait-states), the compiler 
quality, the specific compiler optimization, other compiler options, the specific initial state of the system 
under test (e.g., the priority of a thread to be preempted), the specific final state reached after the test 
(e.g., context switch was required or not), any instrumentation used to perform the test, and many, many 
more. Therefore, it is generally impossible to cover the whole test space and provide meaningful 
measurements for even the most common use scenarios that would be directly applicable to your specific
system.

Instead, the general philosophy applied in this document is to carefully explain what is being measured 
and how it is being measured, so that you can repeat the tests yourself, with your specific hardware and 
software configuration.

Therefore, the general measurement strategy used in this Application Note is to keep it simple (so that 
you have a chance to actually repeat these tests). To this end, the measurements described in this 
documents have the following characteristics: 

● Non-intrusive means that the performance measurements require no additional code on the target 
system. This is certainly a preferred method because intrusive methods always have some effect on 
the timing of the target system.

● Non-repetitive means that you don’t need to construct special test harnesses to repeat the tests in a 
loop to improve the accuracy. You simply choose the interesting case in your code and perform a 
cycle-count measurement for this one case.

1.2 CPU-Assisted Cycle Measurement

In the past, performance testing often required instrumenting the target code (e.g., to toggle GPIO pins 
that could then be observed on an oscilloscope) and repeating the tests many times to improve the 
accuracy of the collected measurements. Consequently, most older benchmarks were designed to 
execute certain pieces of code repetitively millions of times.

However, modern MCUs often have a register that keeps track of the elapsed CPU cycles. For example, 
newer ARM Cortex-M3/4/7 devices provide a register called CYCLECOUNTER. Recording the values of the 
CYCLECOUNTER at two code points allows you can accurately measure the number of CPU cycles as the 
difference between those two points. With such measurement, you can always calculate the actual 
execution time for your specific CPU clock speed. For example, if your CPU is running at 100MHz, you 
can divide the number of CPU cycles by 100 to get the number of microseconds passed.

NOTE: All timing measurements in this document are expressed in CPU cycles rather then seconds 
or microseconds.

The benefits of such CPU-assisted cycle measurements are:

● No need to modify the target code
● The accuracy is one CPU cycle unit (see NOTE below)
● No need to repeat the tests multiple times to increase accuracy
● The method requires support from the MCU and the debugger you are using

NOTE: The CYCLECOUNTER is easy to use and provides precise measurements, but to achieve the 
single CPU cycle accuracy you need to be careful to always use the Step-Over or Continue to the 
next breakpoint debugger command (as opposed to Step-Into). Also, the value of CYCLECOUNTER 
can be influenced by the CPU pipeline or cache conditions. It is recommended not to measure only 
one or two instructions, but instead ten or more instructions to get more precise data.
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1.3 Aspects of Performance Measured

The active object model of execution underlying QPTM represents a paradigm shift compared to a 
conventional RTOS (see Figure 1). This means that many features of QPTM, such as hierarchical state 
machines, are not provided in conventional RTOS, and conversely, many features provided in a 
conventional RTOS, such as semaphores, are not provided in QPTM. For these reasons, the comparative 
performance measurements are not possible for all QPTM features and some performance measurements 
cannot be compared to any existing RTOS offerings.

NOTE: The exception is the QXK built-in kernel of QPTM, which does provide blocking mechanisms 
such as semaphores, mutextes, and in-line delay.

Figure 1: Paradigm shift from a conventional RTOS to an active object framework

According to Figure 1, the performance measurements are divided into three groups with different 
participants:

 1 Features supported by both a conventional RTOS (µC/OS-II) and the built-in QPTM kernels: QV, QK 
and QXK (e.g., interrupt processing, context switch, queues, memory partitions). 

 2 Features supported only by a conventional RTOS (µC/OS-II) and the QXK built-in kernel 
(semaphores, in-line delay, etc.)

 3 Features supported only by the QPTM framework and not available in conventional RTOS 
(publish/subscribe, time events, hierarchical state machines, etc.)
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2 Test Environment
To focus the discussion, this Application Note uses a specific selection of the target hardware, embedded 
toolset, and the embedded software to test. This section describes all these components and their 
configuration used in the performance tests.

NOTE: The selected hardware and software should be generally representative for the intended 
QPTM applications, which are low-end 32-bit single-chip microcontrollers.

2.1 Target Hardware

The target hardware used in this Application Note is the EFM32-SLSTK3401A Pearl Gecko Starter Kit 
from Silicon Labs. The board is based on the EFM32PG1B200F256GM48 MCU with ARM Cortex-M4F 
core surrounded by 256KB of no-waitstate Flash ROM and 32KB of SRAM. The CPU is capable of clock 
speeds up to 40MHz, but is clocked only at 19MHz in the tests.

The CPU provides the CYCLECOUNTER register for measuring execution times. The board also provides 
the built-in J-Link debugger, two user LEDs (LED0 and LED1) and two user switches (BTN0 and BTN1) 
that are used in the tests. The board is inexpensive ($29.99 at the time of this writing) and is available 
directly from Silicon Labs as well as many online distributors.

NOTE: The FPU inside the ARM Cortex-M4 core is NOT used in the performance tests (see also the 
Toolset configuration), so the CPU behaves very similarly to the ARM Cortex-M3 core.

Figure 2: EFM32-SLSTK3401A (Perl Gecko Starter Kit) board
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2.2 Embedded Toolset

The embedded toolset used in this Application Note is the IAR EWARM
version 7.60 running under the free size-limited KickStart license. The C-
SPY debugger included in this toolset supports viewing the CYCLECOUNTER
register for measuring execution times (see Figure 3).

Figure 3: The CYCLECOUNTER register 
in the IAR C-SPY debugger view

2.2.1 Optimization Options
The choice of compiler optimization has significant impact on the
performance measurements. Therefore it has to be specified and kept the
same in all tests. The optimization chosen for all performance
measurements is High/Balanced (see Figure 4).

Figure 4: IAR EWARM optimization options (High/Balanced) used in all performance tests 
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2.2.2 FPU Options
The presence of the hardware FPU (which is available in ARM Cortex-M4F) can have an impact on the 
interrupt entry/exit times, context switch times, and the size of stack required. Therefore, to simplify the 
measurements, the hardware FPU is not used in any of the tests. 

To disable the FPU, the Floating Point settings are set to “None” (see Figure 5). Additionally, for the 
µC/OS-II tests, the command-line macro __TARGET_FPU_SOFTVFP is defined to the compiler. (The 
µC/OS-II port to ARM Cortex-M4 internally uses this macro to conditionally omit the code for the FPU.)

Figure 5: IAR EWARM FPU options 

NOTE: The FPU is the main difference between ARM Cortex-M3 and M4, so with FPU disabled the 
Cortex-M4 core behaves very similarly to the Cortex-M3 core.
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2.3 Embedded Software

As mentioned before, the performance testing strategy applied in this Application Note does not require 
creating specific test harnesses. Instead, the simplicity of CPU cycle measurements allows you to use 
any QPTM application (e.g., your own project) for testing performance. Of course, the application must 
contain at least one instance of every performance aspect you wish to measure.

This Application Note uses a slightly modified Dining Philosophers Problem (DPP) example, which is 
provided in the examples directory of the QPTM distribution (see Listing 1).

Listing 1: Selected directories and files in the performance test code

<qpcpp>/                - QP/C++ installation directory (QP/C is similar)
+-3rd_party/            - 3rd-party software
| +-efm32pg1b/          – EFM32PG support software
+-examples/
| +-performance/
| | +-dpp_efm32-slstk3401a/ - DPP example for EFM32-SLSTK3401A board
| | | +-qk/             - QK preemptive non-blocking kernel
| | | | +-iar/          - IAR toolset
| | | | | +-dpp-qk.eww  – IAR workspace to build the example
| | | | | | +-. . .
| | | | +-bsp.cpp       - Board Support Package implementation for QK
| | | | +-main.cpp      - main() function for QK
| | | +-qv/             - QV cooperative kernel
| | | | +-iar/          - IAR toolset
| | | | | +-dpp-qv.eww  – IAR workspace to build the example
| | | | | | +-. . .
| | | | +-bsp.cpp       - Board Support Package implementation for QV
| | | | +-main.cpp      - main() function for QV
| | | +-qxk/            - QXK preemptive, blocking kernel
| | | | +-iar/          - IAR toolset
| | | | | +-dpp-qxk.eww – IAR workspace to build the example
| | | | | | +-. . .
| | | | +-bsp.cpp       - Board Support Package implementation for QXK
| | | | +-main.cpp      - main() function for QXK
| | | | +-test.hpp      - Test of a “naked” thread for QXK interface
| | | | +-test.cpp      - Test of a “naked” thread for QXK implementation
| | | +-ucos-ii/        - uC/OS-II conventional RTOS kernel
| | | | +-iar/          - IAR toolset
| | | | | +-dpp-ucos2.eww – IAR workspace to build the example
| | | | | | +-. . .
| | | | +-bsp.cpp       - Board Support Package implementation for uC/OS-II
| | | | +-main.cpp      - main() function for uC/OS-II
| | | | +-os_cfg.h      - uC/OS-II kernel configuration file
| | | | +-app_cfg.h     - uC/OS-II application configuration file
| | | | +-test.hpp      - Test of a “naked” thread for uC/OS-II interface
| | | | +-test.cpp      - Test of a “naked” thread for uC/OS-II implementation
| | | | 
| | | +-bsp.hpp         - Board Support Package interface
| | | +-dpp.hpp         - DPP application interface (generated code)
| | | +-dpp_qhsm.qm/    - DPP application QM model (QHsm strategy)
| | | +-dpp_qmsm.qm/    - DPP application QM model (QMsm strategy)
| | | +-philo.cpp       - Philosopher active object (generated code)
| | | +-table.cpp       - Table active object (generated code)
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2.3.1 Software Components
As shown in Figure 6, the DPP example application consists of 6 active objects (Philo[0..4] and the 
Table AO) and a couple of interrupts that publish or send directly events to the active objects. The active 
objects also communicate with one another by exchanging events both directly and by means of 
publish/subscribe. Additionally, the examples for QXK and uC/OS-II have an extra “naked” thread Test. 
This naked thread uses a semaphore and in-line delay() to exercise these features. 

Figure 6: Components of the DPP test example 

 1 5 identical Philo[0..4] active objects have priorities 1..5. 

 2 A mutex at priority 6 to protect the random number generator shared among the Philo active 
objects (this feature is not available in the QV kernel) 

 3 Table active object at priority 7

 4 Test “naked thread” at priority 8 (available only in the QXK and uC/OS-II kernels). This thread 
exercises such features as semaphore (see [5] and in-line delay()).

 5 A semaphore to signal the Test “naked thread” (available only in the QXK and uC/OS-II kernels)

 6 SysTick interrupt handler that runs at 100Hz and posts and publishes events to the active objects

 7 GPIO_EVEN interrupt handler that posts event directly to the Table active object. This interrupt can 
be triggered from the debugger and is used for testing interrupt handling.
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2.3.2 Hierarchical State Machines
Figure 7 shows the state machines in the DPP test application.

Figure 7: State Machines in the DPP test example 

 1 The state machine associated with the Philo active objects is simple without state nesting. It clearly 
shows the life cycle consisting of states “thinking”, “hungry”, and “eating”. This state machine 
generates the HUNGRY event on entry to the “hungry” state and the DONE event on exit from the 
“eating” state because this exactly reflects the semantics of these events. The state machine is 
driven by time events (TIMEOUT) and EAT signals from the Table active object.

 2 The state machine associated with the Table active objects contains one level of state nesting. It has
a composite state “active” with two sub-states: “serving” and “paused”. The event PAUSE triggers 
transitions between these two states. This event is generated upon pressing and releasing the BTN0
switch on the Pearl Gecko board.
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2.3.3 Assertions in QPTM

The QPTM framework extensively uses Design-by-Contract (assertions) to check various conditions, such 
as parameters passed to the framework, consistency of the internal data, etc. These assertions obviously 
introduce some overhead, but they are considered an integral part of the framework. Therefore they are 
left enabled and the results published here reflect the additional overhead of checking assertions.

2.3.4 No Argument Checking in uC/OS-II
In contrast, the uC/OS-II code is built with the configuration macro OS_ARG_CHK_EN set to zero (disabled), 
so the results published here do not contain additional overhead of parameters checking in uC/OS-II.

NOTE: uC/OS-II contains many checks that are not under the control of the OS_ARG_CHK_EN 
macro. These integral checks are still active, because removing them would require modifying the 
uC/OS-II source code. 

2.3.5 Compile-Time Configuration of uC/OS-II
The uC/OS-II kernel is designed to be configured by means of pre-processor macros, which are all 
defined in the os_cfg.h and app_cfg.h header files (see Listing 1). The settings in these header files 
are carefully chosen to minimize the code size and overhead of the uC/OS-II kernel for the DPP example.
In particular, only services used by the DPP example are enabled, and the number of kernel objects is set
such that it just fits the actual use of the project without over-allocating anything.
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3 CPU-Cycle Measurements and Results
This section describes the performed tests and the obtained results. The following sub-sections cover 
sets of related features. Each sub-section starts with an explanation of what is being measured and how it
is being measured, followed by the measurements. 

NOTE: Please remember that the CPU-cycle numbers depend on many factors and might be 
significantly different for different CPUs, compilers, compiler options, etc.

3.1 Group 1 Performance Tests

As described in Section 1.3, Group 1 features are supported by both a conventional RTOS (µC/OS-II) and
the built-in QPTM kernels: QV, QK and QXK. These features include interrupt processing including context 
switch, queues, and memory partitions.

3.1.1 Interrupt Latency, Response, and Recovery
Probably the most important performance specification of a real-time kernel is how fast it handles 
interrupts. The following Figure 8 shows the most important aspects of interrupt handling that are 
measured and reported in this document. 

Figure 8: Interrupt latency, response, and recovery 
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 1 Interrupt Latency is the time between the arrival of an interrupt request and the beginning of 
interrupt processing. This latency is caused by briefly disabling interrupts that most real-time kernels
(including uC/OS-II and all the built-in kernels in QPTM) to perform critical operations atomically. 
Sections of code that run with interrupts disabled are called Critical Sections.

NOTE: For the ARM Corex-M3/M4 CPUs with the BASEPRI register, the built-in kernels in QPTM 
never disable the highest-priority interrupts prioritized above the specified threshold, so 
consequently such “kernel-unaware” interrupts run with “zero latency”. The standard uC/OS-II to 
ARM Cortex-M4 does not support this feature. (See also Application Note: QP and ARM Cortex-M).

In general, measurement of interrupt latency requires finding the longest Critical Section in the system. In 
case of QPTM, some of the longest Critical Section is inside the QMActive::post_() function (83 CPU 
cycles). The QK port to ARM Cortex-M has an even longer Critical Section inside the PendSV exception 
handler.

The uC/OS-II code has not been scrutinized sufficiently to determine for sure which Critical Section is the 
longest. For the purposes of this analysis, the longest critical section in uC/OS-II code has been found in 
the OSQPost() function.

NOTE: The determination which Critical Section in the code is the longest depends on the kernel 
configuration (enabled features), CPU type, compiler type, compiler optimization, and many other 
factors. Therefore, the analysis should be repeated for the specific system configuration at hand.

 2 Interrupt Response is the time between the arrival of an interrupt
request and the start of the user code that handles the interrupt. The
additional contribution to Interrupt Response comes from the hardware
CPU context save (9-12 CPU cycles on Cortex-M3/M4) plus the special
function “Kernel ISR Entry” that the real-time kernel must call to notify
the kernel that the ISR is starting.

Interrupt Recovery is the time required by the CPU to return to the
thread context. There could be two cases here: 

 3 Case-A occurs when the interrupt returns to the same Thread-A. 

 4 Case-B occurs when the interrupt returns to a different Thread-B, which
can happen under a preemptive kernel, when the ISR makes the
higher-priority Thread-B ready-to-run.

NOTE: Case-B involves the Context-Switch, which requires saving the context
of Thread-A and restoring the context of Thread-B. Such Context-Switch
typically takes more time than simple return to the same thread. Therefore the
performance results (see Table 1) list Interrupt Recovery-A and Interrupt
Recovery-B separately for preemptive kernels (QK, QXK, and uC/OS-II).

Testing of interrupt handling requires triggering an interrupt at will. The DPP
test application specifically contains an interrupt handler GPIO_EVEN, which is
specifically designed to be used for testing. In the IAR EWARM debugger you
can trigger this interrupt by writing 0x200 to the NVIC_ISPR0 register. 
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3.1.2 Message (Event) Posting
Thread-safe event-delivery is one of the most important jobs of an event-driven framework, such as QPTM.
The cornerstone of event-delivery is asynchronous event posting from one active object thread to another,
or from ISRs to an active object. Event posting is also available in conventional RTOS kernels in the form 
of posting messages to message queues.

Figure 9: Message (event) posting scenarios 

As shown in Figure 9, message posting can lead to two scenarios:

 1 Msg-Post: Event posting occurs asynchronously and the thread that posts the event continues 
undisturbed. The time overhead of event posting is just the time spent inside the POST() function.

In the DPP example application, this case can be tested when the high-priority Table active object 
posts event to the lower-priority Philo[n] in the entry action to state “serving”.

 2 Msg-Post-Get: Under a preemptive kernel, event posting to a higher-priority thread leads to 
preemption of the lower-priority thread and activation of the higher priority thread. The overhead of 
the POST() and GET() operations cannot be easily measured separately, because unblocking 
happens inside the GET() function. Instead, the time overhead of event posting is the time from the 
entry to the POST() function to the return from the GET() function. 

In the DPP example application, this case can be tested when the low-priority Philo active object 
posts event to the high-priority Table in the entry action to state “hungry”.

3.1.3 Memory Pool Get and Put
QPTM implements deterministic fixed-size memory pools (QMPool) that are used as event pools, but can 
also be used for other purposes. uC/OS-II RTOS also implements fixed-size memory pools. Therefore this
feature can be compared directly in Table 1.
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3.1.4 Group 1 Performance Measurement Results

Table 1: Group-1 measurements in CPU cycles (less is better)

Feature QV QK QXK µC/OS-II

Interrupt Latency 83 119 83 104

Interrupt Response 95 131 95 140

Interrupt Recovery-A 13 74 56 86

Interrupt Recovery-B N/A 142 129 178

Msg-Post 101 154 146 197

Msg-Post-Get N/A 174 248 333

Memory Pool-Get 67 67 67 43

Memory Pool-Put 45 45 45 44

Figure 10: Group-1 measurements in CPU cycles (less is better)
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3.2 Group 2 Performance Tests

As described in Section 1.3, Group 2 features are supported only by a conventional RTOS (uC/OS-II) and
the QXK kernel.

3.2.1 Semaphores
Virtually all conventional RTOS kernels, including uC/OS-II and QXK, support semaphores as a 
mechanism to synchronize thread execution. Semaphores are important, because many existing pieces 
of software, such as commercial middleware and legacy code use them.

Figure 11: Semaphore signaling scenarios 

As shown in Figure 11, signaling a semaphore can lead to two scenarios:

 1 Signal-Asynch: Semaphore signaling occurs asynchronously and the thread (or ISR) that signals 
the semaphore continues undisturbed. The time overhead of event posting is just the time spent 
inside the SIGNAL() function.

In the DPP example application (QXK or uC/OS-II version), this case can be tested when the BTN1 
is depressed and SysTick_Handler (in QXK) or App_TimeTickHook (in uC/OS-II) BSP signals the 
semaphore to the Test naked thread.

 2 Signal-Wait: Under a preemptive kernel, signaling a semaphore held by a higher-priority thread 
leads to preemption of the lower-priority thread and activation of the higher priority thread. The 
overhead of the SIGNAL() and WAIT() operations cannot be easily measured separately, because 
unblocking happens inside the WAIT() function. Instead, the time overhead of event posting is the 
time from the entry to the SIGNAL() function to the return from the WAIT() function. 

In the DPP example application (QXK or uC/OS-II version), this case can be tested when the BTN0 
is depressed and BSP::displayPaused signals the semaphore to the Test naked thread.
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3.2.2 Mutexes

Mutexes (a.k.a. Mutual Exclusion Semaphores) are also frequently used to protect shared resources 
among RTOS threads. Both QXK and uC/OS-II support priority-ceiling mutex type, so the comparisons 
can be quite direct.

In the DPP example application (QXK or uC/OS-II version) mutex can be tested inside the 
BSP::random() function.

3.2.3 In-line delay()
In-line blocking delay is another very frequently used mechanism to “throttle” thread execution. Both QXK 
and uC/OS-II support in-line delay, so the comparisons can be quite direct. 

Figure 12: In-line delay() measurements
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3.2.4 Group 2 Performance Measurement Results

Table 2: Group-2 measurements in CPU cycles (less is better)

Feature QXK µC/OS-II

Sema-Signal 172 181

Sema-Signal-Wait 311 352

Mutex-Lock 53 96

Mutex-Unlock 50 97

Delay-Block 148 232

Delay-Unblock 145 186

Figure 13: Group-2 measurements in CPU cycles (less is better)
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3.3 Group 3 Performance Tests

As described in Section 1.3, Group 3 tests pertain to features only by the QPTM and not supported by 
conventional RTOS. The main purpose of this section is to give you an idea about the overhead of various
QPTM services.

NOTE: With the exception of event posting, Group-3 features use the same QPTM code, which does 
not depend on the underlying real-time kernel. For simplicity, the results in this section are measured 
only for the QK kernel.

3.3.1 Hierarchical State Machines
A complete performance testing of hierarchical state machines could, in principle, require you to test all 
possible state transition topologies, among states with or without entry/exit actions, across many levels of 
state nesting, with various guard conditions, etc. Such exhaustive testing is out of scope of this 
Application Note. Instead, this Application Note tests only the simple state machines available in the DPP 
example application (see Section 2.3.2). However, this document will present test results for the two 
implementation strategies of hierarchical state machines used in QPTM.

● QMsm/QMActive-based state machines provide a state machine implementation strategy that 
requires the assistance of the QM™ tool (as an advanced "state machine compiler") to generate the 
complete transition-sequences at code-generation time. The resulting code is significantly more 
efficient than the code based on the QHsm class and is still highly human-readable, but is not suitable 
for manual coding or maintaining.

To test the QMsm state machine implementation strategy with the DPP example application, you need 
to generate the code from the dpp_qmsm.qm QM model.

● QHsm/QActive-based state machines provide an alternative state machine implementation strategy
that was originally designed for manual coding of HSMs, but now can also benefit from automatic 
code generation by QM™. The older QHsm/QActive-style state machines are less efficient in time 
(CPU cycles) and space (e.g., stack usage) than the newer QMsm/QMActive-style State Machines. 
This is because the QHsm/QActive-style implementation strategy requires discovering the transition-
sequences (sequences of exit/entry/initial actions) at run time as opposed to code-generation time.

To test the QHsm state machine implementation strategy with the DPP example application, you need 
to generate the code from the dpp_qhsm.qm QM model.

The performance measurements published in Table 3 are labeled as follows:

QMsm-1 denotes the cycle count for dispatching the EAT_SIG event to the Philo state machine (state 
“hungry”) with QMsm implementation strategy and QHsm-1 for the same event with the QHsm strategy. 
This event triggers the execution of the following actions: guard condition, transition to “eating”, entry 
action to “eating” including call to QTimeEvt::armX(). This case is heavily impacted by the overhead of 
arming the time event.

QMsm-2 denotes the cycle count for dispatching the MAX_PUB_SIG event to the Table state machine with 
QMsm implementation strategy and QHsm-2 for the same event with the QHsm strategy. This event is 
actually not recognized by the Table state machine, so it “bubbles up” through two levels of state nesting 
and is eventually silently discarded (per UML semantics).
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3.3.2 Dynamic Events
The QPTM framework supports dynamic events, which are events that are dynamically allocated from a 
deterministic event pool and that the framework automatically recycles after they are used. The 
framework determines when to recycle a dynamic event by means of the reference counter maitained in 
each event. The performance measurements published in Table 3 are labeled as follows: 

Q_NEW denotes the cycle count for allocating a new dynamic event (from the first (small) event pool).

QF_gc denotes the cycle count for recycling (garbage-collect) of a dynamic event

NOTE: The garbage-collect function has much lower overhead when it merely decrements the 
reference counter, but it does not actually recycle the event. The QF_gc measurement in Table 3 is 
for the high-overhead case of actually recycling a dynamic event to the pool.

3.3.3 Event Posting
The overhead of direct event posting has been already covered in Group 1. The performance 
measurements published in Table 3 are labeled as follows: 

QActive_POST denotes asynchronous event posting from a high-priority active object (or ISR)

QActive_POST-GET denotes the overhead of delivering event from low-priority AO to high-priority AO.

3.3.4 Event Publishing
The QP/C++ framework supports the publish/subscribe event delivery, which involves mutlicasting of 
events to multiple subscribers. Consequently, the overhead of event publishing depends on the number of
subscribers n. The dependency is approximately linear:

QF_PUBLISH(n) = a * n + b, where a, b are constants and n is the number of subscribers

The performance measurements published in Table 3 are labeled as follows: 

QF_PUBLISH-A denotes the overhead of publishing an event to one subscriber

QF_PUBLISH-B denotes the constant overhead of publishing

NOTE: The QF_PUBLISH-A and QF_PUBLISH-B coefficients have been calculated for the two data 
points: when Philo active object publishes DONE event to the Table active object (n==1), and when 
Table publishes EAT event to all Philo objects (n==5).

3.3.5 Time Events
QPTM provides an event-driven time-management mechanism in form of time events (QTimeEvt class). 
The most frequently used services in this category include arming and disarming time events. The 
performance measurements published in Table 3 are labeled as follows: 

QTime-Arm denotes the overhead of arming a time event

QTime-Disarm denotes the overhead of disarming a time event
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3.3.6 Group 3 Performance Measurement Results

Table 3: Group-3 measurements in CPU cycles (less is better)

Feature CPU cycles
(QK kernel)

QMsm-1 501

QHsm-1 680

QMsm-2 137

QHsm-2 163

Q_NEW 134

QF_gc 94

QActive-POST 154

QActive-POST-GET 174

QF_PUBLISH-A 229

QF_PUBLISH-B 63

QTime-Arm 66

QTime-Disarm 20

Figure 14: Group-3 measurements in CPU cycles (less is better)
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4 Memory Size Measurements
This section describes the code size (ROM) and data size (RAM) measurements for various configuration
options of QPTM and compares them to the results for uC/OS-II. 

4.1 Code Size Measurements

The code size measurements are based on the linker map files produced for all 4 tested configurations 
(QV, QK, QXK, and uC/OS-II). 

4.1.1 Built-in Kernels (QV, QK, and QXK)
The following Listing 2 shows an example of the map file for the DPP project with the QK kernel. The 
code size of QPTM is calculated as the sum of all modules comprising QPTM (highlighted in the listing).

Listing 2: Module Summary section of the linker map file for the DPP example with QK.
The highlighted part corresponds to the QPTM framework

*******************************************************************************
*** MODULE SUMMARY
***

    Module               ro code  ro data  rw data
    ------               -------  -------  -------
C:\qp\qpcpp\examples\performance\dpp_efm32-slstk3401a\qk\iar\dbg: [1]
    bsp.o                    572        8       20
    em_cmu.o                 144
    em_gpio.o                120
    main.o                   188               236
    philo.o                  648       68      341
    qep_hsm.o                660
    qep_msm.o                628       28
    qf_act.o                  76      204      132
    qf_actq.o                336
    qf_dyn.o                 292        4       64
    qf_mem.o                 336
    qf_ps.o                  320                 8
    qf_qact.o                 40       44
    qf_qeq.o                  42
    qf_qmact.o                60
    qf_time.o                364        4       32
    qk.o                     488       44       44
    qk_mutex.o               156
    qk_port.o                112
    startup_efm32pg1b.o      284
    system_efm32pg1b.o        84       16       16
    table.o                1 166       52       64
    ----------------------------------------------
    Total:                 7 116      472      957

dl7M_tln.a: [3]
    cppinit.o                148                20
    exit.o                     4
    low_level_init.o           4
    ----------------------------------------------
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    Total:                   156                20

dlpp7M_tl_ne.a: [4]
    cxxabi.o                  82
    ----------------------------------------------
    Total:                    82

m7M_tl.a: [5]
    FltAdd.o                 132
    FltSub.o                 214
    ----------------------------------------------
    Total:                   346

rt7M_tl.a: [6]
    ABImemclr.o                6
    ABImemset.o               94
    cexit.o                   14
    cmain.o                   26
    cmain_call_ctors.o        32
    copy_init3.o              44
    cstart_call_dtors.o
    cstartup_M.o              12
    data_init.o               40
    zero_init3.o              64
    ----------------------------------------------
    Total:                   332

shb_l.a: [7]
    exit.o                    20
    ----------------------------------------------
    Total:                    20

    Gaps                      12
    Linker created                     40    1 420
--------------------------------------------------
    Grand Total:           8 064      512    2 397
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4.1.2 Conventional RTOS (uC/OS-II)
The following Listing 3 shows an example of the map file for the DPP project with the uC/OS-II RTOS 
kernel. The code size of uC/OS-II is calculated as the sum of all modules comprising uC/OS-II 
(highlighted in the listing).

Listing 3: Module Summary of the linker map file for the DPP example with uC/OS-II.
The highlighted part corresponds to the uC/OS-II kernel

*******************************************************************************
*** MODULE SUMMARY
***

    Module               ro code  ro data  rw data
    ------               -------  -------  -------
C:\qp_lab\qpcpp\examples\performance\dpp_efm32-slstk3401a\ucos-ii\iar\dbg: [1]
    bsp.o                    592        8       16
    em_cmu.o                 144
    em_gpio.o                120
    main.o                   440             4 296
    os_core.o              1 384             1 780
    os_cpu_a.o               172
    os_cpu_c.o               272               516
    os_dbg.o                            2
    os_mem.o                 220
    os_mutex.o               860
    os_q.o                   716
    os_sem.o                 334
    os_task.o                444
    os_time.o                 92
    philo.o                  636      128      201
    qep_msm.o                624       28
    qf_act.o                 124      460       56
    qf_dyn.o                 332                16
    qf_port.o                376       44
    qf_ps.o                  396                 8
    qf_qmact.o                44
    qf_time.o                368        4       16
    startup_efm32pg1b.o      284
    system_efm32pg1b.o        84       16       16
    table.o                1 074      112       36
    test.o                   132                 4
    ----------------------------------------------
    Total:                10 264      802    6 961

    . . .

    Gaps                      10
    Linker created                     40      512
--------------------------------------------------
    Grand Total:          10 750      842    7 473
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4.2 Data Size Measurements

The data size measurements are also based on the linker map files, which contain that information as 
well. 

4.3 Stack Size Measurements

The memory required for the stack(s) is one of the most important contribution to the RAM footprint of a 
real-time kernel. To make the comparison between the QPTM build-in kernels and the uC/OS-II 3rd-party 
RTOS more fair, the stack size cannot be simply listed as the total pre-allocated stack space, because it 
contains arbitrary “padding”. Instead, the stack size listed in the memory size measurements (Table 4) is 
the actual stack space used by the application. This stack space is measured by the standard method of 
pre-filling the stack RAM with a known bit-pattern, running the application for a while, and inspecting in 
memory how much stack space has been overwritten (used).
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4.4 Memory Size Measurement Results

Table 4: Memory size measurement results in bytes (less is better)

Memory Type QV QK QXK µC/OS-II

Code (ROM) 3294 3910 5080 4494

RO-Data (ROM) 328 328 376 2

Data (RAM) 272 280 356 2296

Stacks (RAM) 192 448 1552 1564

Figure 15: Memory size measurement results in bytes (less is better)
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5 Summary                
In the resource-constrained embedded systems, the biggest concern has always been about the size and
efficiency of any piece of code, especially if the new software introduces a paradigm shift with respect to 
established conventions.

However, as it turns out an active object framework, like QPTM, can be both smaller (in code size) and 
more efficient (in CPU cycles) than a conventional RTOS, such as uC/OS-II. This is possible, because 
event-driven programming paradigm is known to require less resources, especially RAM for the stacks, 
than sequential programming based on shared-state concurrency and blocking.

All these characteristics make event-driven active objects a perfect fit for resource-constrained embedded
systems, such as single-chip microcontrollers (MCUs), systems on chip (SoCs), etc.. Not only you get the 
productivity boost by working at a higher level of abstraction than “naked” RTOS threads, but you get it 
at a lower memory utilization and better CPU efficiency.

6 Contact Information

Quantum Leaps, LLC
103 Cobble Ridge Drive
Chapel Hill, NC 27516
USA

WEB : https://www.state-machine.com
Email: mailto:info@state-machine.com
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