
QP state machine framework example

Application Note
PEdestrian LIght
CONtrolled (PELICAN)
Crossing Example

Document Revision D
February 2011

Copyright © Quantum Leaps, LLC
www.state-machine.com

http://www.state-machine.com/

i

Table of Contents

1 Introduction... 1

2 Requirements.. 1

3 Design 2
3.1 Step 1: Sequence Diagrams.. 2
3.2 Step 2: Signals, Events, and Active Objects..3
3.3 Step 3: Designing State Machines of Active Objects..4
3.4 Step 4: Initializing the QP Application (main())...7
3.5 Step 5: Implementing Active Objects..9

4 References... 13

5 Contact Information.. 14

Copyright © Quantum Leaps, LLC. All Rights Reserved.

1 of 14

1 Introduction
This Application Note describes the PEdestrian LIght CONtrolled (PELICAN) crossing as an example
application for the QP state machine framework. The PELICAN crossing example demonstrates a non-
trivial hierarchical state machine. This Application Note describes step-by-step how to design and
implemented of PELICAN with QP-nano.

NOTE: This Application Note assumes the QP-nano framework and uses example code in C to explain
implementation details. However, the design part of the discussion applies equally to QP/C and QP/C++
framework types.

2 Requirements
First, your always need to understand what your application is supposed to accomplish. In the case of a
simple application, the requirements are conveyed through the problem specification, which for the
PELICAN crossing (see Figure 1) is as follows.

Figure 1 PEdestrian LIght CONtrolled (PELICAN) Crossing.

The PELICAN crossing starts with cars enabled (green light for cars) and pedestrians disabled (“Don’t
Walk” signal for pedestrians). To activate the traffic light change, a pedestrian must push the button at the
crossing, which generates the PEDS_WAITING event. In response, the cars get the yellow light, which
after a few seconds changes to red light. Next, pedestrians get the “Walk” signal, which shortly thereafter
changes to the flashing “Don’t Walk” signal. When the “Don’t Walk” signal stops flashing, cars get the
green light again. After this cycle, the traffic lights don’t respond to the PEDS_WAITING button press
immediately, although the button “remembers” that it has been pressed. The traffic light controller always
gives the cars a minimum of several seconds of green light before repeating the traffic light change cycle.
One additional feature is that at any time an operator can take the PELICAN crossing offline (by providing
the OFF event). In the “offline” mode, the cars get a flashing red light and pedestrians flashing “Don’t
Walk” signal. At any time the operator can turn the crossing back online (by providing the ON event).

Copyright © Quantum Leaps, LLC. All Rights Reserved.

2 of 14

Application Note:
PElican LIght CONtrolled Crossing Example

www.state-machine.com

3 Design

3.1 Step 1: Sequence Diagrams
A good starting point in designing any event-driven system is to draw sequence diagrams for the main
scenarios (main use cases) identified from the problem specification. To draw such diagrams, you need to
break up your problem into active objects with the main goal of minimizing the coupling among active
objects. You seek a partitioning of the problem that avoids resource sharing and requires minimal
communication in terms of number and size of exchanged events.

The sequence diagram in Figure 2 shows two most representative scenarios of the PELICAN crossing
operation. In panel (a), you see the scenario in which the initial minimal green light for cars elapses
without the pedestrian generating the PEDS_WAITING event. In panel (b) you see the situation where the
pedestrian generates the PEDS_WAITING event during the minimal green light for cars. The explanation
section immediately following Figure 2 highlights the most interesting points.

Figure 2 Sequence diagrams of the PELICAN application. PEDS_WAITING event after the minimum
green light for cars (a), and PEDS_WAITING event during the minimum green light for cars (b).

Copyright © Quantum Leaps, LLC. All Rights Reserved.

http://www.state-machine.com/

3 of 14

Application Note:
PElican LIght CONtrolled Crossing Example

www.state-machine.com

(0) The QP infrastructure initializes all active objects (state machines) in the system. The PELICAN state
machine starts in the “carsEnabled” state, which arms a QP timer to expire after the minimum green
light for cars. The Pedestrian active object arms its QP timer to trigger the PEDS_WAITING event.

(1) The QP timer for the PELICAN active object expires, which causes a transition to “carsGreenInt”
state. This state “remembers” that the minimum green time for cars has elapsed, so the green light
can be now interrupted at any time.

(2) The QP timer for the PELICAN active object expires, which causes a transition to “carsGreenInt”
state. This state “remembers” that the minimum green time for cars has elapsed, so the green light
can be now interrupted at any time.

(3) The Pedestrian active object posts the PEDS_WAITING event directly to the PELICAN active object.
This event causes immediate transition to “carsYellow”, in which cars get the yellow light. The entry to
the “carsYellow” light arms the QP timer to trigger light change to red.

(4) After the timer expires the PELICAN active object transitions to “pedsEnabled”. This transition causes
displaying red light for cars and “WALK” signal to pedestrians.

(5) The QP timer expires for the Pedestrian active object.

(6) As usual, the Pedestrian active object generates the PEDS_WAITING event, but this time the PELICAN
active object ignores the event, as it already is allowing pedestrians to the crossing.

(7) The QP timer expires to trigger flashing the “DON’T WALK” signal for pedestrians.

(8) Finally, the QP timer expires and triggers the transition back to “carsEnabled” at which time the cycle
repeats.

The sequence diagram in Figure 2(b) shows the situation where the pedestrian generates the
PEDS_WAITING event during the minimal green light for cars.

(9) The QP timer for the Pedestrian active object expires during the minimal green light for cars.

(10)As usual, the Pedestrian active object generates the PEDS_WAITING event. This time the PELICAN
active object reacts by transitioning to the “carsPedsWaiting” state to “remember” that a pedestrian is
waiting. The PELICAN crossing keeps showing the green light for cars, as the minimal interval has
not expired yet.

(11)Eventually, the QP timer for the PELICAN active object expires, which triggers transition to
“carsYellow”.

(12)From that point on the scenario is identical as panel (a).

3.2 Step 2: Signals, Events, and Active Objects
Sequence diagrams, like Figure 2, help you discover events exchanged among active objects. The choice
of signals and event parameters is perhaps the most important design decision in any event-driven
system. The events affect the other main application components: events and state machines of the
active objects.

In QP, signals are typically enumerated constants. Listing 1 shows signals and active objects in the
PELCIAN application. The PELICAN sample code for the DOS version is located in the
<qpn>\examples\80x86\watcom\pelican\ directory, where <qpn> stands for the installation directory
you chose to install QP.

NOTE: This section describes the platform-independent code of the PELICAN application. This code is
actually identical in all PELICAN versions for different CPUs and compilers.

Copyright © Quantum Leaps, LLC. All Rights Reserved.

http://www.state-machine.com/

4 of 14

Application Note:
PElican LIght CONtrolled Crossing Example

www.state-machine.com

 #ifndef pelican_h
 #define pelican_h

 (1) enum PelicanSignals {
 (2) PEDS_WAITING_SIG = Q_USER_SIG,
 OFF_SIG,
 ON_SIG
 };

 /* active objects ..*/
 (3) extern struct PelicanTag AO_Pelican;
 (4) extern struct PedTag AO_Ped;

 (5) void Pelican_ctor(void);
 (6) void Ped_ctor(void);

 #endif /* pelican_h */

Listing 1 Signals and active objects in the PELCAN application (file pelican.h)

(1) All signals are defined in one enumeration, which automatically guarantees the uniqueness of signals.

(2) Note that the user signals must start with the offset Q_USER_SIG to avoid overlapping the reserved QP
signals.

(3-4) All active object instances in the system are declared as extern variables. These declarations are
necessary for the initialization of the QF_active[] array (see upcoming section about the main()
function and QP initialization).

NOTE: The active object structures (e.g., struct PelicanTag) do not need to be defined globally in
the application header file. Initialization of the QP (discussed later) needs only pointers to the active
objects, which the compiler can resolve without knowing the full definition of the active object structure.

You should avoid declaring active object structures globally. Instead, you can declare the active object
structures in the file scope of the specific active object module (e.g., struct PelicanTag is declared in
the pelican.c file scope). That way, you can be sure that each active object remains fully encapsulated.

(5-6) Every active object in the system must provide a “constructor” function, which initializes the active
object instance. These constructors don’t take the “me” pointers, because they have access to the
global active object instances (see (3-4)). However, the constructors can take some other initialization
parameters. The constructors are called right at the beginning of main().

3.3 Step 3: Designing State Machines of Active Objects
Sequence diagrams, like Figure 2, help you discover events exchanged among active objects. The choice
of signals and event parameters is perhaps the most important design decision in any event-driven
system. The events affect the other main application components: events and state machines of the
active objects.

Copyright © Quantum Leaps, LLC. All Rights Reserved.

http://www.state-machine.com/

5 of 14

Application Note:
PElican LIght CONtrolled Crossing Example

www.state-machine.com

3.3.1 PELICAN state machine
Figure 3 shows the complete PELICAN crossing state machine. The explanation section following the
diagram describes how it works.

Figure 3 The PELICAN state machine.

Copyright © Quantum Leaps, LLC. All Rights Reserved.

operational

entry / CARS_RED; PEDS_DONT_WALK

offline

entry /

exit /

carsEnabled

exit /

pedsEnabled

exit /

carsGreen

entry / CARS_GREEN

exit /

carsYellow

entry / CARS_YELLOW

exit /

pedsWalk

entry / PEDS_WALK

exit /

pedsFlash

entry /

exit /

carsGreenNoPed

entry /

carsGreenInt

entry /

carsGreenPedWait

entry /

OFF

TERMINATE /

PEDS_WAITING

Q_TIMEOUT

PEDS_WAITING

Q_TIMEOUT

Q_TIMEOUT

Q_TIMEOUT

[(me->flashCtr & 1U) == 0U] /
 BSP_signalPeds(PEDS_DONT_WALK);

[else] /
 BSP_signalPeds(PEDS_BLANK);

[me->flashCtr != 0U] /
 --me->flashCtr;

[else]

Q_TIMEOUT

[(me->flashCtr & 1U) == 0U] /
CARS_RED; PEDS_DONT_WALK;

[else] / CARS_BLANK; PEDS_BLANK;

Q_TIMEOUT /
 QActive_arm(&me->super,

ON

TERMINATE /

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

http://www.state-machine.com/

6 of 14

Application Note:
PElican LIght CONtrolled Crossing Example

www.state-machine.com

(1) Upon the initial transition, the PELICAN state machine enters the “operational” state and displays the
red light for cars and “Don’t Walk” signal for pedestrians.

(2) The “operational” state has a nested initial transition to the “carsEnabled” substate. Per the UML
semantics, this transition must be taken after entering the superstate.

(3) The “carsEnabled” state has a nested initial transition to the “carsGreen” substate. Per the UML
semantics, this transition must be taken after entering the sperstate. Entry to “carsGreen” changes
signals green light for cars and arms the time event to expire in the GREEN_TOUT clock ticks. The
GREEN_TOUT timeout represents the minimum duration of green light for cars.

(4) The “carsGreen” state has a nested initial transition to the “carsGreenNoPed” substate. Per the UML
semantics, this transition must be taken after entering the superstate. The “carsGreenNoPed” state is
a leaf state, meaning that it has no substates or initial transitions. The state machine stops and waits
in this state.

(5) When the PEDS_WAITING event arrives in the “carsGreenNoPed” state, the state machine transitions
to another leaf state “carsGreenPedWait”. Please note that the state machine still remains in the
“carsGreen” superstate, because the minimum green light period for cars hasn’t expired yet.
However, by transitioning to the “carsGreenPedWait” substate, the state machine remembers that the
pedestrian is waiting.

(6) However, when the Q_TIMEOUT event arrives while the state machine is still in the “carsGreenNoPed”
state, the state machine transitions to the “carsGreenInt” (interruptible green light for cars) state.

(7) The “carsGreenInt” state handles the PEDS_WAITING event by immediately transitioning to the
“carsYellow” state, because the minimum green light for cars has elapsed.

(8) The “carsGreenPedWait” state, on the other hand, handles only the Q_TIMEOUT event, because the
pedestrian is already waiting for the expiration of the minimum green light for cars.

(9) The “carsYellow” state displays the yellow light for cars and arms the timer for the duration of the
yellow light. The Q_TIMEOUT event causes the transition to the “pedsEnabled” state. The transition
causes exit from the “carsEnabled” superstate, which displays the red light for cars.

The pair of states “carsEnabled” and “pedsEnabled” realizes the main function of the PELICAN crossing,
which is to alternate between enabling cars and enabling pedestrians. The exit action from “carsEnabled”
disables cars (by showing red light for cars), while the exit action from “pedsEnabled” disables
pedestrians (by showing them the “Don’t Walk” signal). The UML semantics of state transitions
guarantees that these exit actions will be executed whichever way the states happen to be exited, so you
can be sure that the pedestrians will always get the “Don’t Walk” signal outside the “pedsEnabled” state
and cars will get the red light outside the “carsEnabled” state.

NOTE: Exit actions in the states “carsEnabled” and “pedsEnabled” guarantee mutually exclusive
access to the crossing, which is the main safety concern in this application.

(10)The “pedsEnabled” state has a nested initial transition to the “pedsWalk” substate. Per the UML
semantics, this transition must be taken after entering the superstate. The entry action to “pedsWalk”
shows the “Walk” signal to pedestrians and arms the timer for the duration of this signal.

(11)The Q_TIMEOUT event triggers the transition to the “pedsFlash” state, in which the “Don’t Walk” signal
flashes on and off. You can use the internal variable of the PELICAN state machine me-
>pedFlashCtr to count the number of flashes.

(12-13) The Q_TIMEOUT event triggers two internal transitions with complementary guards. When the me-
>pedFlashCtr counter is even, the “Don’t Walk” signal is turned on. When it’s odd, the “Don’t Walk”
signal is turned off. Either way the counter is always decremented.

Copyright © Quantum Leaps, LLC. All Rights Reserved.

http://www.state-machine.com/

7 of 14

Application Note:
PElican LIght CONtrolled Crossing Example

www.state-machine.com

(14)Finally, when the me->pedFlashCtr counter reaches zero, the Q_TIMEOUT event triggers the transition
to the “carsEnabled” state. The transition causes execution of the exit action from the “pedsEnabled”
state, which displays “Don’t Walk” signal for pedestrians. The lifecycle of the PELICAN crossing then
repeats.

At this point, the main functionality of the PELICAN crossing is done. However, you still need to add the
“offline” mode of operation, which is actually quite easy because of the state hierarchy.

(15)The OFF event in the “operational” superstate triggers the transition to the “offline” state. The state
hierarchy ensures that the transition OFF is inherited by all direct or transitive substates of the
“operational” superstate, so regardless in which substate the state machine happens to be, the OFF
event always triggers transition to “offline”. Please also note that the semantics of exit actions still
applies, so the PELICAN crossing will be left in a consistent safe state (both cars and pedestrians
disabled) upon the exit from the “operational” state.

(16)The Q_TIMEOUT events in the substates of the “offline” state cause flashing of the signals for cars and
pedestrians, as described in the problem specification.

(17)The ON event can interrupt the “offline” mode at any time by triggering the transition to the
“operational” state.

The actual implementation of the PELICAN state machine in QP is very straightforward and follows
exactly the same simple rules as described for the Ship state machine in the QP Tutorial [QP-tutorial 08].

3.3.2 Pedestrian state machine
The actual traffic light controller hardware will certainly provide a push button for generating the
PED_WAITING event, as well as a switch to generate the ON/OFF events. But many development
boards have no push-buttons or any other way to provide external inputs. For such boards, you need to
simulate the pedestrian/operator in a separate state machine. This is actually a good opportunity to
demonstrate how to incorporate a second state machine (active object) into the application.

The Pedestrian active object is very simple. It periodically posts the PED_WAITING event to the
PELICAN active object and from time to time it turns the crossing offline by posting the OFF event
followed by the OFF event. As an exercise, you should draw the state diagram of the Pedestrian state
machine from the source code found in the file <qp>\qpn\examples\msp430\iar\pelican-
eZ430\ped.c, found in the Standard Distribution of QP. Please note that such “reverse engineering” of
source code is very easy in QP applications, because the code is always the precise specification of the
state machine.

3.4 Step 4: Initializing the QP Application (main())

Listing 2 shows the main.c source file for the PELICAN application, which contains the main() function
along with some important data structures required by QP.

 (1) #include "qpn_port.h" /* QP port */
 (2) #include "bsp.h" /* Board Support Package (BSP) */
 (3) #include "pelican.h" /* application interface */

 /*..*/
 (4) static QEvent l_pelicanQueue[2];
 (5) static QEvent l_pedQueue[1];

Copyright © Quantum Leaps, LLC. All Rights Reserved.

http://www.state-machine.com/

8 of 14

Application Note:
PElican LIght CONtrolled Crossing Example

www.state-machine.com

 /* QF_active[] array defines all active object control blocks --------------*/
 (6) QActiveCB const Q_ROM Q_ROM_VAR QF_active[] = {
 (7) { (QActive *)0, (QEvent *)0, 0 },
 (8) { (QActive *)&AO_Pelican, l_pelicanQueue, Q_DIM(l_pelicanQueue) },
 (9) { (QActive *)&AO_Ped, l_pedQueue, Q_DIM(l_pedQueue) }
 };

 /* make sure that the QF_active[] array matches QF_MAX_ACTIVE in qpn_port.h */
(10) Q_ASSERT_COMPILE(QF_MAX_ACTIVE == Q_DIM(QF_active) - 1);

 /*..*/
 void main (void) {
(11) Pelican_ctor(); /* instantiate the Pelican AO */
(12) Ped_ctor(); /* instantiate the Ped AO */

(13) BSP_init(); /* initialize the board */

(14) QF_run(); /* transfer control to QF */
 }

Listing 2 The file main.c of the PELICAN crossing application.

(1) Every application C-file that uses QP must include the qpn_port.h header file. This header file
contains the specific adaptation of QP to the given processor and compiler, which is called a port.
The QP port is typically located in the application directory.

(2) The bsp.h header file contains the interface to the Board Support Package and is located in the
application directory.

(3) The pelican.h header file contains the declarations of events and other facilities shared among the
components of the PELICAN application. This header file is located in the application directory.

(4-5) The application must provide storage for the event queues of all active objects used in the
application. In QP the storage is provided at compile time through the statically allocated arrays of
events. Events are represented as instances of the QEvent structure declared in the
<qpn>\include\qepn.h header file, included from qpn_port.h. Each event queue of an active object
can have a different length and you need to decide this length based on your knowledge of the
application.

(6) Every QP application must provide the constant array QF_active[], which defines all active object
control blocks in the application. The control block QActiveCB structure groups together: (1) the
pointer to the corresponding active object instance, (2) the pointer to the event queue buffer of the
active object, and (3) the length of the queue buffer.

QP uses every opportunity to place data in ROM rather than in the precious RAM. The QActiveCB
structure contains data elements known at compile time, so that these elements can be placed in ROM,
as opposed to placing them in the active object structure (RAM). That way, you can save anywhere from
10 to 80 bytes of RAM, depending on the number of active objects and the pointer size of the target CPU.

The Q_ROM macro is necessary on some CPU architecture to enforce placement of constant objects, such
as the QF_active[] array, in ROM. On Harvard architecture CPUs (such as 8051 or AVR), the code and
data spaces are separate and are accessed through different CPU instructions. The const keyword is not
sufficient to place data in ROM, and various compilers often provide specific extended keywords to
designate the code space for placing constant data, such as the “__code” extended keyword in the IAR
8051 compiler. The macro Q_ROM hides such non-standard extensions. If you don’t define Q_ROM in
qepn_port.h, it will be defined to nothing in the qepn.h platform-independent header file.

Copyright © Quantum Leaps, LLC. All Rights Reserved.

http://www.state-machine.com/

9 of 14

Application Note:
PElican LIght CONtrolled Crossing Example

www.state-machine.com

The Q_ROM_VAR macro defines the compiler-specific directive for accessing a constant object in ROM.
Many compilers for 8-bit MCUs provide different size pointers for accessing objects in various memories.
Constant objects allocated in ROM often mandate the use of specific-size pointers (e.g., far pointers) to
get access to ROM objects. The macro Q_ROM_VAR specifies the kind of the pointer to be used to access
the ROM objects. An example of valid Q_ROM_VAR macro definition is: __far (Freescale HC(S)08
compiler).

(7) The first entry (QF_active[0]) corresponds to active object priority of zero, which is reserved for the
idle task and cannot be used for any active object.

(8-9) The QF_active[] entries starting from index one define the active object control blocks in the
order of their relative priorities. The maximum number of active objects in QP cannot exceed 8.

NOTE: The order or the active object control blocks in the QF_active[] array defines the priorities of
active objects. This is the only place in the code where you assign active object priorities.

(10)This compile-time assertion (see Chapter 6 in [PSiCC2]) ensures that the dimension of the
QF_active[] array matches the number of active objects QF_MAX_ACTIVE defined in the qpn_port.h
header file.

In QP, QF_MAX_ACTIVE denotes the exact number of active objects used in the application. The macro
QF_MAX_ACTIVE must be defined in qpn_port.h header file, because QP uses the macro to optimize the
internal algorithms based on the number of active objects. The compile-time assertion in line (10) makes
sure that the configured number of active objects indeed matches exactly the number of active object
control blocks defined in the QF_active[] array.

NOTE: All active objects in QP-nano must be defined at compile time. This means that all active objects
exist from the beginning and cannot be started (or stopped) later, as it is possible in the full-version QP.

(11-12) The main() function must first explicitly calls all active object constructors.

(13)The board support package (BSP) is initialized.

(14)At this point, you have initialized all components and have provided to the QP framework all the
information it needs to manage your application. The last thing you must do is to call the function
QF_run() to pass the control to the Q framework.

Overall, the application startup is much simpler in QP than in full-version QP. Neither event pools, nor
publish-subscribe lists are supported, so you don’t need to initialize them. You also don’t start active
objects explicitly. The QP framework starts all active objects defined in the QF_active[] array
automatically just after it gets control in QF_run().

3.5 Step 5: Implementing Active Objects
Implementing active objects with QP is very similar to the full-version QP. You derive the concrete active
object structures from the QActive base structure provided in QP. Your main job is to elaborate the state
machines of the active objects, which is also very similar as in the full-version QP. The only important
difference is that state handler functions in QP do not take the event pointer as the second argument. In
fact, QP state handlers take only one argument—the “me” pointer. The current event is embedded inside
the state machine itself and is accessible via the “me” pointer. QP provides macros Q_SIG() and Q_PAR()
to conveniently access the signal and the scalar parameter of the current event, respectively.

Copyright © Quantum Leaps, LLC. All Rights Reserved.

http://www.state-machine.com/

10 of 14

Application Note:
PElican LIght CONtrolled Crossing Example

www.state-machine.com

Listing 3 shows the implementation of the Pelican active object from the PELICAN crossing application,
which illustrates all aspects of implementing active objects with QP. Please correlate this implementation
with the PELICAN state diagram in Figure 3.

 #include "qpn_port.h"
 #include "bsp.h"
 #include "pelican.h"

 /* Pelican class ---*/
 (1) typedef struct PelicanTag {
 (2) QActive super; /* derived from QActive */
 uint8_t flashCtr; /* pedestrian flash counter */
 } Pelican;

 (3) static QState Pelican_initial (Pelican *me);
 (4) static QState Pelican_offline (Pelican *me);
 static QState Pelican_operational (Pelican *me);
 static QState Pelican_carsEnabled (Pelican *me);
 static QState Pelican_carsGreen (Pelican *me);
 static QState Pelican_carsGreenNoPed (Pelican *me);
 static QState Pelican_carsGreenPedWait(Pelican *me);
 static QState Pelican_carsGreenInt (Pelican *me);
 static QState Pelican_carsYellow (Pelican *me);
 static QState Pelican_pedsEnabled (Pelican *me);
 static QState Pelican_pedsWalk (Pelican *me);
 static QState Pelican_pedsFlash (Pelican *me);

 enum PelicanTimeouts { /* various timeouts in ticks */
 CARS_GREEN_MIN_TOUT = BSP_TICKS_PER_SEC * 8, /* min green for cars */
 CARS_YELLOW_TOUT = BSP_TICKS_PER_SEC * 3, /* yellow for cars */
 PEDS_WALK_TOUT = BSP_TICKS_PER_SEC * 3, /* walking time for peds */
 PEDS_FLASH_TOUT = BSP_TICKS_PER_SEC / 5, /* flashing timeout for peds */
 PEDS_FLASH_NUM = 5*2, /* number of flashes for peds */
 OFF_FLASH_TOUT = BSP_TICKS_PER_SEC / 2 /* flashing timeout when off */
 };

 /* Global objects --*/
 (5) Pelican AO_Pelican; /* the single instance of the Pelican active object */

 /*..*/
 void Pelican_ctor(void) {
 (6) QActive_ctor((QActive *)&AO_Pelican, (QStateHandler)&Pelican_initial);
 }

 /* HSM definition --*/
 QState Pelican_initial(Pelican *me) {
 (7) return Q_TRAN(&Pelican_operational);
 }
 /*..*/
 QState Pelican_operational(Pelican *me) {
 (8) switch (Q_SIG(me)) {
 case Q_ENTRY_SIG: {
 BSP_signalCars(CARS_RED);
 BSP_signalPeds(PEDS_DONT_WALK);
 (9) return Q_HANDLED();
 }
 case Q_INIT_SIG: {

Copyright © Quantum Leaps, LLC. All Rights Reserved.

http://www.state-machine.com/

11 of 14

Application Note:
PElican LIght CONtrolled Crossing Example

www.state-machine.com

 return Q_TRAN(&Pelican_carsEnabled);
 }
 case OFF_SIG: {
 return Q_TRAN(&Pelican_offline);
 }
 }
(10) return Q_SUPER(&QHsm_top);
 }
 /*..*/
 QState Pelican_carsEnabled(Pelican *me) {
 switch (Q_SIG(me)) {
 case Q_EXIT_SIG: {
 BSP_signalCars(CARS_RED);
 return Q_HANDLED();
 }
 case Q_INIT_SIG: {
 return Q_TRAN(&Pelican_carsGreen);
 }
 }
 return Q_SUPER(&Pelican_operational);
 }
 /*..*/
 QState Pelican_carsGreen(Pelican *me) {
 switch (Q_SIG(me)) {
 case Q_ENTRY_SIG: {
(11) QActive_arm((QActive *)me, CARS_GREEN_MIN_TOUT);
 BSP_signalCars(CARS_GREEN);
 return Q_HANDLED();
 }
 case Q_INIT_SIG: {
 return Q_TRAN(&Pelican_carsGreenNoPed);
 }
 }
 return Q_SUPER(&Pelican_carsEnabled);
 }
 . . .
 /* other state handlers ... */

Listing 3 The PELICAN active object definition (file pelican.c). Boldface indicates QP facilities.

(1) This structure defines the Pelican active object.

(2) The Pelican active object structure derives from the framework structure QActive, as described in the
sidebar “Single Inheritance in C” in Chapter 1 of [PSiCC2].

(3) The Pelican_initial() function defines the top-most initial transition in the Pelican state machine.
The only difference from the full-version QP is that the initial pseudostate function does not take the
initial event parameter.

(4) The state-handler functions in QP-nano also don’t take the event parameter. (In QP, the current event
is embedded in the state machine.) As in the full-version QP, a state handler function in QP returns a
pointer the superstate handler function.

(5) In this line the global AO_Pelican active object is defined. Note that actual structure definition for the
Pelican active object is accessible only locally at the file scope of the pelican.c file.

Copyright © Quantum Leaps, LLC. All Rights Reserved.

http://www.state-machine.com/

12 of 14

Application Note:
PElican LIght CONtrolled Crossing Example

www.state-machine.com

NOTE: QP assumes that all global or static variables without explicit initialization value are initialized to
zero upon the system startup, which is a requirement of the ANSI-C standard. You should make sure
that your startup code clears the .BSS section before calling main().

(6) As always, the derived structure is responsible for initializing the part inherited from the base struc-
ture. The “constructor” of the base class QActive_ctor() puts the state machine in the initial pseu-
dostate &Pelican_initial. The constructor also initializes the priority of the active object based on
the QF_active[] array.

(7) The top-most initial transition to state &Pelican_operational is specified with the Q_TRAN() macro.

(8) Every state handler is structured as a switch statement that discriminates based on the signal of the
event, which in QP-nano is obtained by the macro Q_SIG(me).

(9) The entry/exit actions are terminated with “return Q_HANDLED()”, which informs QP that the initial
transition has been handled.

(10)You terminate the case statement with “return Q_HANDLED()”, which informs QP that the initial tran-
sition has been handled.

(13)The final return from a state handler function designates the superstate of that state, which is exactly
the same as in the full-version QP. QP provides the “top” state as a state handler function &QHsm_top,
and therefore the Pelican_operational() state handler returns the pointer &QHsm_top. (see the
PELICAN state diagram in Figure 3)

(11)You arm the QP-nano time event (timer) associated with the active object via the call to
QActive_arm() function.

Copyright © Quantum Leaps, LLC. All Rights Reserved.

http://www.state-machine.com/

13 of 14

Application Note:
PElican LIght CONtrolled Crossing Example

www.state-machine.com

4 References

Document Location

[PSiCC2] “Practical UML Statecharts in
C/C++, Second Edition”, Miro Samek,
Newnes, 2008, ISBN 0750687061

Available from most online book retailers, such as
amazon.com. See also: http://www.state-
machine.com/psicc2.htm

[QP 08] “QP Reference Manual”, Quantum
Leaps, LLC, 2008

http://www.state-machine.com/doxygen/qpn/

[QL AN-Directory 07] “Application Note:
QP Directory Structure”, Quantum Leaps,
LLC, 2007

http://www.state-machine.com/doc/ -
AN_QP_Directory_Structure.pdf

[Samek+ 06a] “Build a Super Simple
Tasker”, Embedded Systems Design, Miro
Samek and Robert Ward, July 2006.

http://www.embedded.com/shared/ printableArticle.jhtml?
articleID=190302110

[Samek 06b]“UML Statecharts at $10.99”,
Dr. Dobb’s Journal, Miro Samek, May
2006

http://www.ddj.com/dept/embedded/188101799

Copyright © Quantum Leaps, LLC. All Rights Reserved.

http://www.state-machine.com/
http://www.ddj.com/dept/embedded/188101799
http://www.embedded.com/shared/%1FprintableArticle.jhtml?articleID=190302110
http://www.embedded.com/shared/%1FprintableArticle.jhtml?articleID=190302110
http://www.state-machine.com/doc/%1FAN_QP_Directory_Structure.pdf
http://www.state-machine.com/doc/%1FAN_QP_Directory_Structure.pdf
http://www.quantum-leaps.com/doxygen/qpn/
http://www.state-machine.com/psicc2.htm
http://www.state-machine.com/psicc2.htm
http://www.amazon.com/

14 of 14

Application Note:
PElican LIght CONtrolled Crossing Example

www.state-machine.com

5 Contact Information

Quantum Leaps, LLC
103 Cobble Ridge Drive
Chapel Hill, NC 27516
USA
+1 866 450 LEAP (toll free, USA only)
+1 919 869-2998 (FAX)
e-mail: info@quantum-leaps.com
WEB : http://www.quantum-leaps.com
 http://www.state-machine.com

“Practical UML
Statecharts in C/C++,
Second Edition”
(PSiCC2),
by Miro Samek,
Newnes, 2008,
ISBN 0750687061

Copyright © Quantum Leaps, LLC. All Rights Reserved.

http://www.state-machine.com/
http://www.state-machine.com/
http://www.quantum-leaps.com/
mailto:info@quantum-leaps.com

	1 Introduction
	2 Requirements
	3 Design
	3.1 Step 1: Sequence Diagrams
	3.2 Step 2: Signals, Events, and Active Objects
	3.3 Step 3: Designing State Machines of Active Objects
	3.3.1 PELICAN state machine
	3.3.2 Pedestrian state machine

	3.4 Step 4: Initializing the QP Application (main())
	3.5 Step 5: Implementing Active Objects

	4 References
	5 Contact Information

