
Application Note: Getting Started with QP/C

Getting Started with
QP™ Real-Time
Embedded Frameworks

Document Revision H
October 2021

Copyright © Quantum Leaps, LLC

www.state-machine.com
info@state-machine.com

mailto:info@state-machine.com

Copyright © 2005 Quantum Leaps, LLC. All Rights Reserved.

Table of Contents

1 Introduction.. 1

2 Obtaining and Installing QP-bundle...2
2.1 Downloading QP-bundle.. 2
2.2 Installing QP/C... 3

3 Building and Running the Blinky Example..5
3.1 Blinky on Windows with MinGW (GNU C/C++ for Windows)...6
3.2 Blinky on Tiva LauchPad with GNU-ARM (Makefile Project)...7
3.3 Blinky on Tiva LauchPad with Keil/ARM (Keil uVision)..10
3.4 Blinky on Tiva LauchPad with IAR (IAR EWARM)...11

4 The Blinky State Machine and Code...12

5 Re-building the QP/C Libraries for Windows...15
5.1 QP/C Library for Windows with MinGW...15

6 Creating Your Own QP/C Projects..16

7 Next Steps and Further Reading About QP™ and QM™..16

8 Contact Information... 17

i

Legal Disclaimers

Information in this document is believed to be accurate and reliable. However, Quantum Leaps does not give any
representations or warranties, expressed or implied, as to the accuracy or completeness of such information and shall
have no liability for the consequences of use of such information.

Quantum Leaps reserves the right to make changes to information published in this document, including without limitation
specifications and product descriptions, at any time and without notice. This document supersedes and replaces all
information supplied prior to the publication hereof.

All designated trademarks are the property of their respective owners.

Copyright © 2005 Quantum Leaps, LLC. All Rights Reserved.

1 Introduction
This document explains how to install the QP/C and QP/C++ real-
time embedded frameworks (version 6.x or newer) and how to build
and run a very simple “Blinky” QP application, which blinks a light
(such as LED on an embedded board) at a rate of 1Hz (once per
second). The “Blinky” example is deliberately kept small and simple
to help you get started with the QP/C active object framework as
quickly as possible.

This document explains how to build and run the following versions
of the “Blinky” example:

NOTE: To focus the discussion, this document describes the process for the QP/C framework, but
the process is almost identical for QP/C++ .

1. Version for Windows with the free MinGW C/C+ compiler for Windows, which allows you to
experiment with the QP/C framework on a standard Windows-based PC without an embedded board
and toolchain.

2. Versions for the Texas Instruments Tiva™ C Series LaunchPad board (EK-TM4C123GXL) based on
the ARM Cortex-M4F core (see Figure 1) with the following embedded development toolchains:

a) GNU-ARM toolchain (Makefile Project and CCS Eclipse project)

b) ARM-KEIL toolchain (Microcontroller Development Kit MDK).

c) IAR EWARM toolchain.

Figure 1: Blinky on Windows (left) and on Tiva™ C Series LaunchPad board (right)

1 of 17

Software Controlled
3-color LED

Tiva-C MCU
(ARM Cortex-M4F)

Copyright © 2005 Quantum Leaps, LLC. All Rights Reserved.

Application Note
Getting Started with QP/C™

state-machine.com/qpc

2 Obtaining and Installing QP-bundle
This section describes how to download and install everything you need to get started: QP/C and QP/C++
frameworks, the QM modeling tool, and the QTools collection.

NOTE: The QTools collection for Windows, contains additionally the GNU make, Python, and the
GNU C/C++ compilers for Windows (MinGW) and for ARM Cortex-M (GNU-ARM), which you can
use to build the Blinky example. It is highly recommend to install QTools along with the QP
frameworks to get these basic command-line tools for Windows.

2.1 Downloading QP-bundle

The QP-bundles for various host operating systems are available for download from the state-
machine.com website. The website offers the latest downloads for the Windows, Linux, and macOS
hosts (see Figure 2).

Figure 2: QP-bundle downloads from state-machine.com

NOTE: The QP frameworks can be also downloaded directly from GitHub repositories. In each case
it is recommended to download the pre-packaged releases.

NOTE: The installer application is recommended for installing QP on Windows, because it is digitally
signed by Quantum Leaps. However, if you are allergic to running installers, you can also install QP
on Windows from the provided ZIP files (choose “Download QP on Linux/MacOS).

2 of 17

https://github.com/QuantumLeaps
https://www.state-machine.com/#Embedded
https://www.state-machine.com/
https://www.state-machine.com/
https://www.state-machine.com/qpc

Copyright © 2005 Quantum Leaps, LLC. All Rights Reserved.

Application Note
Getting Started with QP/C™

state-machine.com/qpc

2.2 Installing QP/C

The QP/C installation process on Windows consist of running the Windows installer, while installation on
Linux/MacOS consists of extracting the ZIP archive into a directory of your choice. For the rest of this
document, it is assumed that you have chosen the default installation directory C:\qp.

NOTE: For your convenience of writing build scripts and make files, it is highly recommended to
avoid spaces in the QP installation directory (so, you should avoid the standard locations “C:\
Program Files” or “C:\Program Files (x86)”).

Figure 3: Windows installer for QP/C

The QP-bundle installation copies the QP source code, ports, and examples to your hard-drive. The
following listing shows the main sub-directories comprising the QP/C framework.

NOTE: The main components like QP/C, QP/C++, QM and QTools can be also downloaded
separately from GitHub repositories. In each case it is recommended to download the pre-packaged
releases.

3 of 17

The installation directory
for QP/C framework

https://github.com/QuantumLeaps
https://www.state-machine.com/qpc

Copyright © 2005 Quantum Leaps, LLC. All Rights Reserved.

Application Note
Getting Started with QP/C™

state-machine.com/qpc

Listing 1: The main sub-directories of the QP-bundle installation (on Windows).

C:\qp\ – QP directory
 | +-qm\ – QM directory (modeling tool)
 |
 | +-qpc\ – QP/C directory
 | | +-3rd_party\ – 3rd-party software used in QP/C examples
 | | +-examples\ – QP/C examples
 | | +-html\ – QP/C offline documentation in HTML
 | | +-include\ – QP/C platform-independent header files
 | | +-ports\ – QP/C ports
 | | +-src\ – QP/C platform-independent source code
 |
 | +-qpcpp\ – QP/C++ directory (similar structure to QP/C)
 |
 | +-qtools\ – QTools directory (Windows version)
 | | +-bin\
 | | | +-make.exe - the make utility for Windows
 | | | +-qspy.exe - the QSPY host utility
 | | | +-. . .
 | | |
 | | +-qspy\ - QSPY source code
 | | +-qutest\ - QUTest unit testing (Phython)
 | | +-qview\ - QView monitoring (Phython)
 | | |
 | | +-mingw32\ - MinGW GNU-C/C++ compiler for Windows
 | | +-gnu_arm-none-eabi\ - GNU-C/C++ cross compiler for ARM Cortex-M/R
 | | +-Python3\ - Python-3 for Windows

NOTE: It is highly recommended to watch the "Getting Started with QP" Video

Figure 4: Getting Started Video

4 of 17

https://youtu.be/O7ER6_VqIH0
https://www.state-machine.com/qpc

Copyright © 2005 Quantum Leaps, LLC. All Rights Reserved.

Application Note
Getting Started with QP/C™

state-machine.com/qpc

3 Building and Running the Blinky Example
This section explains how to build and run the Blinky QP/C example on various platforms.

NOTE: The QP/C applications can be built in the following three build configurations:

Debug - this configuration is built with full debugging information and minimal optimization. When the QP
framework finds no events to process, the framework busy-idles until there are new events to process.

Release - this configuration is built with no debugging information and high optimization. Single-stepping and
debugging is effectively impossible due to the lack of debugging information and optimized code, but the
debugger can be used to download and start the executable. When the QP framework finds no events to
process, the framework puts the CPU to sleep until there are new events to process.

Spy - like the debug variant, this variant is built with full debugging information and minimal optimization.
Additionally, it is build with the QP's Q-SPY trace functionality built in. The on-board serial port and the Q-Spy
host application are used for sending and viewing trace data. Like the Debug configuration, the QP framework
busy-idles until there are new events to process.

NOTE: All examples for embedded boards include the QP/C framework as source code within the
projects, instead of statically linking with a QP/C library.

NOTE: Examples for desktop Windows still use QP/C as pre-built libraries.

5 of 17

https://www.state-machine.com/qpc

Copyright © 2005 Quantum Leaps, LLC. All Rights Reserved.

Application Note
Getting Started with QP/C™

state-machine.com/qpc

3.1 Blinky on Windows with MinGW (GNU C/C++ for Windows)

The Windows version of the Blinky example is a simple console application. The
example is built with the MinGW toolchain and the make utility, which you have
already installed with QTools. The example is located in the directory qpc\
examples\workstation\blinky\ and is specifically provided so that you don't
need an embedded board or a development toolchain to get started with QP/C.

NOTE: The Blinky source code (blinky.c) is actually the same on Windows and the embedded
boards. The only difference is in the Board Support Package (bsp.c), which is implemented
differently on Windows than in for the embedded boards.

Figure 5 shows the steps of building and running the Blinky example from a Windows command prompt.
The explanation section immediately following the figure describes the steps.

Figure 5: Building and running Blinky in a Windows command prompt.

[1] Change directory to the Blinky example for Windows. The command “cd C:\qp\qpc\examples\
arm-cm\blinky_ek-tm4c123gxl\win32” assumes that QP/C has been installed in the default
directory C:\qp\qpc.

[2] The “make” command performs the build. The make command uses the Makefile from the Blinky
directory. The printouts following the “make” command are produced by the gcc compiler.

NOTE: The Blinky application links to the QP/C library for Windows, which is pre-compiled and
provided in the standard QP/C distribution. The upcoming Section 5.1 describes how you can re-
compile the QP/C library yourself.

[3] The “build\blinky.exe” command runs the Blinky executable, which is produced in the build\
directory. The output following this command is produced by the Blinky application.

[4] The Blinky application is exited by pressing the Ctrl-C key.

6 of 17

1

2

3

4

https://www.state-machine.com/qpc

Copyright © 2005 Quantum Leaps, LLC. All Rights Reserved.

Application Note
Getting Started with QP/C™

state-machine.com/qpc

3.2 Blinky on Tiva LauchPad with GNU-ARM (Makefile Project)

The Blinky example for the EK-TM4C123GXL board with GNU-ARM is located in the
directories C:\qp\qpc\examples\arm-cm\blinky_ek-tm4c123gxl\qv\gnu. (for
the cooperative QV kernel) and C:\qp\qpc\examples\arm-cm\blinky_ek-
tm4c123gxl\qk\gnu\ (for the preemptive QK kernel). Each of these directories
contains the Makefile for building the application from the command-line.

The GNU-ARM toolchain used in these Makefiles is now part of the QTools collection for Windows. It
has been downloaded and adapted from (http://gnutoolchains.com/arm-eabi/). This pre-built toolchain is
an example of an open-source toolchain, which offers acceptable code generation, but no support for
code download or debugging. To get these features, you would need to use IDE's (typically based on
Eclipse), such as TI Code Composer Studio (CCS), Atollic TrueSTUDIO, and many others.

NOTE: The gnu\ sub-directory contains project files for TI Code Composer Studio (CCS) that you
can immediately import into the CCS Eclipse-based IDE.

Figure 6: Building and Blinky in the Command Prompt Window

NOTE: For the Makefile to work, you need to adjust the Makefile to provide the location of the GNU-
ARM toolchain on your machine.

[1] Change directory to the Blinky example for EK-TM4C123GXL board with GNU. The command “cd
C:\qp\qpc\examples\arm-cm\blinky_ek-tm4c123gxl\qv\gnu” assumes that QP/C has been
installed in the default directory C:\qp\qpc.

[2] The “make clean” command invokes the GNU make utility (from the QTools directory) to clean the
build.

[3] The “make” command performs the actual build. The make command uses the Makefile from the
Blinky directory. The printouts following the “make” command are produced by the GNU-ARM
compiler/linker.

7 of 17

1

3

2

http://gnutoolchains.com/arm-eabi/
https://www.state-machine.com/qpc

Copyright © 2005 Quantum Leaps, LLC. All Rights Reserved.

Application Note
Getting Started with QP/C™

state-machine.com/qpc

The provided Makefiles support the following build configurations:

Table 1 Make targets for the Debug, Release, and Spy build configurations

Build Configuration Build/Clean command

Debug (default) make / make clean

Release make CONF=rel / make CONF=rel clean

Spy make CONF=spy / make CONF=spy clean

Once you have successfully built the Blinky application (you can check for the file blinky-qk.bin in the
dbg subdirectory) you can download it to the EK-TM4C123GXL board with the TI utility called lmflash.

Figure 7: Downloading the Blinky Application to the EK-TM4C123GXL Board
 with the LmFlash Utility

NOTE: You need to download the LmFlash utility from Texas Instruments (go to www.til.com and
search for “LmFlash”)

[1] In the Configuration tab, select the TM4C123GXL LaunchPad

[2] In the Program tab, browse to the blinky-qk.bin file produced by the Makefile.

8 of 17

1

2

http://www.til.com/
https://www.state-machine.com/qpc

Copyright © 2005 Quantum Leaps, LLC. All Rights Reserved.

Application Note
Getting Started with QP/C™

state-machine.com/qpc

Finally, as mentioned before, you can import the Makefiles to an Ecliplse-based IDE of your choice (the
IDE should support the Stellaris-ICD debug interface of your TivaC LauchPad board). The following
screen shot shows the Makefile Project imported to the TI Code Composer Studio (CCS) IDE:

Figure 8: The Blinky Projects Imported into the TI CCS IDE

9 of 17

https://www.state-machine.com/qpc

Copyright © 2005 Quantum Leaps, LLC. All Rights Reserved.

Application Note
Getting Started with QP/C™

state-machine.com/qpc

3.3 Blinky on Tiva LauchPad with Keil/ARM (Keil uVision)

The Blinky example for the EK-TM4C123GXL board with
ARM-KEIL uVision is located in the directories C:\qp\
qpc\examples\arm-cm\blinky_ek-tm4c123gxl\qv\
arm. (for the cooperative QV kernel) and C:\qp\qpc\
examples\arm-cm\blinky_ek-tm4c123gxl\qk\arm
(for the preemptive QK kernel). Each of these directories
contains the uVision project file blinky.uvproj.

Keil/ARM MDK (http://www.keil.com/arm/mdk.asp) is an example of a commercial toolchain, which offers
superior code generation, fast code download and good debugging experience.

NOTE: Keail/ARM offers a free size-limited version of Keil MDK as well as time-limited evaluation
options. The Blinky example has been built with the free MDK edition limited to 32KB of code.

Figure 9: Blinky workspace in Keil uVision5 IDE

To open the Blinky project in Keil uVision, you can double-click on blinky.uvproj project file located in
this directory. Once the project opens, you can build it by pressing the Build button. You can also very
easily download it to the LaunchPad board and debug it by pressing the Debug button (see Figure 9).

10 of 17

Build configuration

Build button

Debug button

Application code

Board-specific code

QP source code

http://www.keil.com/arm/mdk.asp
https://www.state-machine.com/qpc

Copyright © 2005 Quantum Leaps, LLC. All Rights Reserved.

Application Note
Getting Started with QP/C™

state-machine.com/qpc

3.4 Blinky on Tiva LauchPad with IAR (IAR EWARM)

The Blinky example for the EK-TM4C123GXL board with IAR EWARM is
located in the directories C:\qp\qpc\examples\arm-cm\blinky_ek-
tm4c123gxl\qv\iar. (for the cooperative QV kernel) and C:\qp\qpc\
examples\arm-cm\blinky_ek-tm4c123gxl\qk\iar (for the preemptive
QK kernel). Each of these directories contains the IAR workspace file
blinky.eww.

IAR EWARM is an example of commercial toolchain (https://www.iar.com/iar-embedded-workbench/),
which offers superior code generation, fast code download and good debugging experience.

NOTE: IAR offers a free size-limited KickStart version of EWARM as well as time-limited evaluation
options. The Blinky example described here has been built with the free KickStart EWARM edition
limited to 32KB of generated code.

Figure 10: Blinky workspace in IAR EWARM

To open the Blinky workspace in EWARM, you can double-click on blinky.eww workspace file located in
this directory. Once the project opens, you can build it by pressing the Make button. You can also very
easily download it to the LaunchPad board and debug it by pressing the Debug button (see Figure 10).

11 of 17

Build configuration

Make (build) button

Debug button

Application code

Board-specific code

QP source code

https://www.iar.com/iar-embedded-workbench/
https://www.state-machine.com/qpc

Copyright © 2005 Quantum Leaps, LLC. All Rights Reserved.

Application Note
Getting Started with QP/C™

state-machine.com/qpc

4 The Blinky State Machine and Code
The behavior of the Blinky example is modeled by a very simple state machine (see Figure 11). The top-
most initial transition in this state machine arms a QP time event to deliver the TIMEOUT signal every half
second, so that the LED can stay on for one half second and off for the other half. The initial transition
leads to state “off”, which turns the LED off in the entry action. When the TIMEOUT event arrives, the “off”
state transitions to the “on” state, which turns the LED on in the entry action. When the TIMEOUT event
arrives in the “on” state, the “on” state transitions back to “off”, which cases execution of the entry action,
in which the LED is turned off. From that point on the cycle repeats forever.

Figure 11: Blinky state machine

[1] The top-most initial transition in this state machine arms a QP time event (QTimeEvt_armX()) to
deliver the TIMEOUT signal every half second, so that the LED can stay on for one half second and
off for the other half.

[2] The initial transition leads to state "off", which turns the LED off in the entry action (BSP_ledOff()).

[3] When the TIMEOUT event arrives in the "off" state, the "off" state transitions to the "on" state

[4] The "on" state turns the LED on in the entry action (BSP_ledOn()).

[5] When the TIMEOUT event arrives in the "on" state, the "on" state transitions back to "off", which
cases execution of the entry action, in which the LED is turned off. From that point on the cycle
repeats forever because the TIMEOUT events keep getting generated at the pre-determined rate.

The Blinky state machine shown in Figure 11 is implemented in the blinky.c source file, as shown in the
following listing:

NOTE: The following code has been auto-generated by the QM Model-Based Design Tool.

12 of 17

off

entry /
 BSP_ledOff();

on

entry /
 BSP_ledOn();

 /
 QTimeEvt_armX(&me->timeEvt,
BSP_TICKS_PER_SEC/2,
BSP_TICKS_PER_SEC/2);

TIMEOUT /

TIMEOUT /

1

2

3

4

5

https://www.state-machine.com/qm/
https://www.state-machine.com/qpc

Copyright © 2005 Quantum Leaps, LLC. All Rights Reserved.

Application Note
Getting Started with QP/C™

state-machine.com/qpc

Listing 2 Implementation of the Blinky state machine (file blinky.c)

/*$declare${AOs::Blinky} vvv*/
/*${AOs::Blinky} ...*/
typedef struct {
/* protected: */
 QActive super;

/* private: */
 QTimeEvt timeEvt;
} Blinky;

/* protected: */
static QState Blinky_initial(Blinky * const me, QEvt const * const e);
static QState Blinky_off(Blinky * const me, QEvt const * const e);
static QState Blinky_on(Blinky * const me, QEvt const * const e);
/*$enddecl${AOs::Blinky} ^^^*/

static void Blinky_ctor(void) {
 Blinky *me = (Blinky *)AO_Blinky;
 QActive_ctor(&me->super, Q_STATE_CAST(&Blinky_initial));
 QTimeEvt_ctorX(&me->timeEvt, &me->super, TIMEOUT_SIG, 0U);
}

/*================ ask QM to define the Blinky class ================*/
/*$skip${QP_VERSION} vvv*/
/* Check for the minimum required QP version */
#if (QP_VERSION < 650U) || (QP_VERSION != ((QP_RELEASE^4294967295U) % 0x3E8U))
#error qpc version 6.5.0 or higher required
#endif
/*$endskip${QP_VERSION} ^^*/
/*$define${AOs::Blinky} vv*/
/*${AOs::Blinky} ...*/
/*${AOs::Blinky::SM} ...*/
static QState Blinky_initial(Blinky * const me, QEvt const * const e) {
 /*${AOs::Blinky::SM::initial} */
 (void)e; /* unused parameter */
 QTimeEvt_armX(&me->timeEvt,
 BSP_TICKS_PER_SEC/2, BSP_TICKS_PER_SEC/2);

 QS_FUN_DICTIONARY(&Blinky_off);
 QS_FUN_DICTIONARY(&Blinky_on);

 return Q_TRAN(&Blinky_off);
}
/*${AOs::Blinky::SM::off} ..*/
static QState Blinky_off(Blinky * const me, QEvt const * const e) {
 QState status_;
 switch (e->sig) {
 /*${AOs::Blinky::SM::off} */
 case Q_ENTRY_SIG: {
 BSP_ledOff();
 status_ = Q_HANDLED();
 break;
 }
 /*${AOs::Blinky::SM::off::TIMEOUT} */

13 of 17

https://www.state-machine.com/qpc

Copyright © 2005 Quantum Leaps, LLC. All Rights Reserved.

Application Note
Getting Started with QP/C™

state-machine.com/qpc

 case TIMEOUT_SIG: {
 status_ = Q_TRAN(&Blinky_on);
 break;
 }
 default: {
 status_ = Q_SUPER(&QHsm_top);
 break;
 }
 }
 return status_;
}
/*${AOs::Blinky::SM::on} ...*/
static QState Blinky_on(Blinky * const me, QEvt const * const e) {
 QState status_;
 switch (e->sig) {
 /*${AOs::Blinky::SM::on} */
 case Q_ENTRY_SIG: {
 BSP_ledOn();
 status_ = Q_HANDLED();
 break;
 }
 /*${AOs::Blinky::SM::on::TIMEOUT} */
 case TIMEOUT_SIG: {
 status_ = Q_TRAN(&Blinky_off);
 break;
 }
 default: {
 status_ = Q_SUPER(&QHsm_top);
 break;
 }
 }
 return status_;
}
/*$enddef${AOs::Blinky} ^^*/

14 of 17

https://www.state-machine.com/qpc

Copyright © 2005 Quantum Leaps, LLC. All Rights Reserved.

Application Note
Getting Started with QP/C™

state-machine.com/qpc

5 Re-building the QP/C Libraries for Windows
On Windows, QP/C is deployed as a library that you statically link to your application. The pre-built QP
libraries are provided inside the C:\qp\qpc\ports\ directory. Normally, you should have no need to re-
build the QP libraries. However, if you want to modify QP code or you want to apply different settings, this
section describes steps you need to take to rebuild the libraries yourself.

5.1 QP/C Library for Windows with MinGW

For the MinGW port, you perform a console build with the provided Makefile in %QPC%
\ports\win32\mingw\. This Makefile supports three build configurations: Debug,
Release, and Spy.

You choose the build configuration by providing the CONF argument to the make. The
default configuration is “dbg”. Other configurations are “rel”, and “spy”. The following
table summarizes the commands to invoke make.

Table 2 Make targets for the Debug, Release, and Spy build configurations

Build Configuraion Build/Clean command

Debug (default) make / make clean

Release make CONF=rel / make CONF=rel clean

Spy make CONF=spy / make CONF=spy clean

NOTE: The provided Makefile assumes that the QTools bin directory is added to the PATH.

Figure 12: Building QP/C library for Windows with MinGW

15 of 17

https://www.state-machine.com/qpc

Copyright © 2005 Quantum Leaps, LLC. All Rights Reserved.

Application Note
Getting Started with QP/C™

state-machine.com/qpc

6 Creating Your Own QP/C Projects
Perhaps the most important fact of life to remember is that in embedded systems nothing works until
everything works. This means that you should always start with a working system and gradually evolve it,
changing one thing at a time and making sure that it keeps working every step of the way.

Keeping this in mind, the provided QP/C application examples, such as the super-simple Blinky, or a bit
more advanced DPP or “Fly 'n' Shoot” game, allow you to get started with a working project rather than
starting from scratch. You should also always try one of the provided example projects on the same
evaluation board that it was designed for, before making any changes.

Only after convincing yourself that the example project works "as is", you can think about creating your
own projects. At this point, the easiest and recommended way is to copy the existing working example
project folder (such as the Blinky example) and rename it.

After copying the project folder, you still need to change the name of the project/workspace. The easiest
and safest way to do this is to open the project/workspace in the corresponding IDE and use the Save
As... option to save the project under a different name. You can do this also with the QM model file, which
you can open in QM and "Save As" a different model.

NOTE: By copying and re-naming an existing, working project, as opposed to creating a new one
from scratch, you inherit the correct compiler and linker options an other project settings, which will
help you get started much faster.

7 Next Steps and Further Reading About QP™ and QM™
This quick-start guide is intended to get the QP/C installed and running on your system as quickly as
possible, but to work with QP/C effectively, you need to learn a bit more about active objects and state
machines. Below is a list of links to enable you to further your knowledge:

 Key Concepts behind QP frameworks and QM modeling tool
(https://www.state-machine.com/doc/concepts)

 QP/C++ Reference Manual (https://www.state-machine.com/qpcpp)

 QM Reference Manual (https://www.state-machine.com/qm)

 QP Application Notes & Articles (https://www.state-machine.com/doc/an)

 Book “Practical UML Statecharts in C/C++, 2nd Edition” [PSiCC2] and the companion web-page to the
book (https://www.state-machine.com/psicc2)

 Free Support Forum for QP/QM (https://sourceforge.net/p/qpc/discussion/668726)

 "State Space" Blog (https://embeddedgurus.com/state-space)

16 of 17

https://embeddedgurus.com/state-space
https://sourceforge.net/p/qpc/discussion/668726
https://www.state-machine.com/psicc2
https://www.state-machine.com/doc/an
https://www.state-machine.com/qm
https://www.state-machine.com/qpcpp
https://www.state-machine.com/doc/concepts
https://www.state-machine.com/qpc

Copyright © 2005 Quantum Leaps, LLC. All Rights Reserved.

Application Note
Getting Started with QP/C™

state-machine.com/qpc

8 Contact Information
Quantum Leaps, LLC

info@state-machine.com
state-machine.com

+1 919 360-5668 (9AM-5PM US EST)
+1 919 869-2998 (FAX)

Quantum Leaps on GitHub

https://github.com/QuantumLeaps

17 of 17

https://github.com/QuantumLeaps
https://www.state-machine.com/
mailto:info@state-machine.com
https://www.state-machine.com/qpc

	1 Introduction
	2 Obtaining and Installing QP-bundle
	2.1 Downloading QP-bundle
	2.2 Installing QP/C

	3 Building and Running the Blinky Example
	3.1 Blinky on Windows with MinGW (GNU C/C++ for Windows)
	3.2 Blinky on Tiva LauchPad with GNU-ARM (Makefile Project)
	3.3 Blinky on Tiva LauchPad with Keil/ARM (Keil uVision)
	3.4 Blinky on Tiva LauchPad with IAR (IAR EWARM)

	4 The Blinky State Machine and Code
	5 Re-building the QP/C Libraries for Windows
	5.1 QP/C Library for Windows with MinGW

	6 Creating Your Own QP/C Projects
	7 Next Steps and Further Reading About QP™ and QM™
	8 Contact Information

