g v .DG h..lwmum“.....

is

Ime

ith
Frameworks

>
o
[

/

lded

ing Started w
Real-T
d

Gett
QP ™
E

mbe

www.state-machine.com

mailto:info@state-machine.com

Table of Contents

I L0 T 0T o o 1
2 Obtaining and Installing QP-bundle.............ciii s 2
2.1 Downloading QP-DUNGIE.........coi ettt e e e s s bt e e e e e sbee e e e e eeneeranenee 2
2 111 = T o T SRR 3
3 Building and Running the Blinky Example..........ccccoimiiiirrernr s 5
3.1 Blinky on Windows with MinGW (GNU C/C++ for WiNdOWS).........couiiiiiiiiiiiiiieeie e 6
3.2 Blinky on Tiva LauchPad with GNU-ARM (Makefile Project)..........coooueeiiiiiiiiii 7
3.3 Blinky on Tiva LauchPad with Keil/ARM (Keil UVISION).........uuiiiiiiiiiieiiiie e 10
3.4 Blinky on Tiva LauchPad with IAR (AR EWARM).......coiiiiiiiie ittt r e e e e e e e e e e e e e e aaaaaaaas 11
4 The Blinky State Machine and Code...........cccciirrirrenrierrrssererresss e e e s s sssr e s s s s s s e s e s s smn e e e e s s s smmne e esssssnmeenees 12
5 Re-building the QP/C Libraries for WindOWS..........ccccccrrriirrismrrrrnss e s rsss s smeessssssssme e s sssssmse e e ssssssmsssssssseees 15
5.1 QP/C Library for Windows With MINGW...........cuuiiiiiiiiiiie et 15
6 Creating Your OWn QP/C ProjeCts.......ccceiiiiiiiiiiiiisierisrisssssr e sssssss s s sssssss s s ss s sns s s mn s s s ssssssmn e e sensssssssnes 16
7 Next Steps and Further Reading About QP™ and QM™...........ccocimiinmmiir s 16
8 Contact INFOrMAatioN..........ceiiiiiir e arnnn 17

Legal Disclaimers

Information in this document is believed to be accurate and reliable. However, Quantum Leaps does not give any
representations or warranties, expressed or implied, as to the accuracy or completeness of such information and shall
have no liability for the consequences of use of such information.

Quantum Leaps reserves the right to make changes to information published in this document, including without limitation
specifications and product descriptions, at any time and without notice. This document supersedes and replaces all
information supplied prior to the publication hereof.

All designated trademarks are the property of their respective owners.

Copyright © 2005 Quantum Leaps, LLC. All Rights Reserved.

1 Introduction

This document explains how to install the QP/C and QP/C++ real-
time embedded frameworks (version 6.x or newer) and how to build
and run a very simple “Blinky” QP application, which blinks a light
(such as LED on an embedded board) at a rate of 1Hz (once per
second). The “Blinky” example is deliberately kept small and simple
to help you get started with the QP/C active object framework as
quickly as possible.

This document explains how to build and run the following versions
of the “Blinky” example:

NOTE: To focus the discussion, this document describes the process for the QP/C framework, but
the process is almost identical for QP/C++ .

1. Version for Windows with the free MinGW C/C+ compiler for Windows, which allows you to
experiment with the QP/C framework on a standard Windows-based PC without an embedded board
and toolchain.

2. Versions for the Texas Instruments Tiva™ C Series LaunchPad board (EK-TM4C123GXL) based on
the ARM Cortex-M4F core (see Figure 1) with the following embedded development toolchains:

a) GNU-ARM toolchain (Makefile Project and CCS Eclipse project)
b) ARM-KEIL toolchain (Microcontroller Development Kit MDK).
c) |AR EWARM toolchain.

Figure 1: Blinky on Windows (left) and on Tiva™ C Series LaunchPad board (right)

Bl Command Prompt - m v |

C:hvred Cihvgphgpciexamplesiworkstationiblinky

C:hvgphgpchexamplesiworkstationi\blinky>make .
gcc -MM -MT build/blinky.o -c -g -0 -fno-pie -std=c99 -pedantif

Foof o finclude -IL L0 LW Fsre -1l LS port s g = ATA1=
uild/blinky.d . . Software Controlled
gcc -C -g -0 -fno-pie -std=c99 -pedantic -Wall - 3-color LED

Lfsre -ILL . L L fports/win32-qv -DQP_API_VERSIQ
gcc -c -g -0 -fno-pie -std=c99 -pedantic -Wall -Wextra -W -I.
Lfsre -ILLF .G L fports/win3Z2-qv -DQP_API_VERSIO

gstamp.o . |) o'
ZcC -no-pie -L../ .. /.. fports/win32-qv/dbg - ARTl\IllvaC CrtMCI\L/IJ4F B
tamp.o -lgp -lws2_32 (ortex-) ke TEXAS INSTRUMENTS

-~ u‘l
C:hvgphgpchexamplesiworkstation\blinky>buildyblinky
LED OFF

LED ON

LED OFF

LED ON

~C

C:hgphgpciexamplesiworkstationiblinkys g W

Copyright © 2005 Quantum Leaps, LLC. All Rights Reserved. 10f 17

®
e Application Note
q antum L a ps Getting Started with QP/C™

Modern Embedded Software state-machine.com/qpc

2 Obtaining and Installing QP-bundle

This section describes how to download and install everything you need to get started: QP/C and QP/C++
frameworks, the QM modeling tool, and the QTools collection.

NOTE: The QTools collection for Windows, contains additionally the GNU make, Python, and the
GNU C/C++ compilers for Windows (MinGW) and for ARM Cortex-M (GNU-ARM), which you can
use to build the Blinky example. It is highly recommend to install QTools along with the QP
frameworks to get these basic command-line tools for Windows.

21 Downloading QP-bundle

The QP-bundles for various host operating systems are available for download from the state-
machine.com website. The website offers the latest downloads for the Windows, Linux, and macOS

hosts (see Figure 2).

Figure 2: QP-bundle downloads from state-machine.com

Download & Try it!

It's easier than you think...

The following free downloads contain everything you need to get
started: the QP™ frameworks, the QM™ modeling tool and the QTools™
collection bundled together in a single, streamlined QP-bundle:

® QP-bundle A QP-bundle & QP-bundle

for Windows for Linux for macOS

NOTE: The QP frameworks can be also downloaded directly from GitHub repositories. In each case
it is recommended to download the pre-packaged releases.

NOTE: The installer application is recommended for installing QP on Windows, because it is digitally
signed by Quantum Leaps. However, if you are allergic to running installers, you can also install QP
on Windows from the provided ZIP files (choose “Download QP on Linux/MacOS).

Copyright © 2005 Quantum Leaps, LLC. All Rights Reserved. 20f17

https://github.com/QuantumLeaps
https://www.state-machine.com/#Embedded
https://www.state-machine.com/
https://www.state-machine.com/
https://www.state-machine.com/qpc

®
0 q (Ve ni'U m Leq ps Application Note
Getting Started with QP/C™
Modern Embedded Software state-machine.com/qpc

2.2 Installing QP/C

The QP/C installation process on Windows consist of running the Windows installer, while installation on
Linux/MacOS consists of extracting the ZIP archive into a directory of your choice. For the rest of this
document, it is assumed that you have chosen the default installation directory C: \gp.

NOTE: For your convenience of writing build scripts and make files, it is highly recommended to
avoid spaces in the QP installation directory (so, you should avoid the standard locations “C: \

Program Files”or“C:\Program Files (x86)").

Figure 3: Windows installer for QP/C

9P QP-bundle 6.9.3 Setup

Thank you for downloading
QP-bundle 6.9.3 from Quantum Leaps
(state-machine.com)

QP (Quantum Platform) is & family of lightweight Real-Time Embedded
Framewaorks (RTEFs) as well as host-based tools for modern embedded

systems programming.

9P OP-bundle 6.9.3 Setup

Select Destination Location 1)
Where should QP-bundle be installed?

Setup will install QP-bundle into the following folder.

To continue, dick Mext. If you would like to select a different folder, dick Browse.

|m Browse...

The installation directory
for QP/C framework

At least 15.9 MB of free disk space is required.

The QP-bundle installation copies the QP source code, ports, and examples to your hard-drive. The
following listing shows the main sub-directories comprising the QP/C framework.

NOTE: The main components like QP/C, QP/C++, QM and QTools can be also downloaded
separately from GitHub repositories. In each case it is recommended to download the pre-packaged

releases.

Copyright © 2005 Quantum Leaps, LLC. All Rights Reserved. 3 of 17

https://github.com/QuantumLeaps
https://www.state-machine.com/qpc

Quantum’|S4Ps

Application Note
Getting Started with QP/C™

Modern Embedded Software

state-machine.com/gpc

Listing 1: The main sub-directories of the QP-bundle installation (on Windows).

-3rd party\
-examples\

+-make.exe
+-gspy.exe
+-.

-gspy\
-qutest\
-gview\

-mingw32\

+ 4+ 4+ — 4+ + +—— — — +.Q

ython3\

QP directory
QM directory (modeling tool)

QP/C directory

3rd-party software used in QP/C examples
QP/C examples

QP/C offline documentation in HTML

QP/C platform-independent header files
QP/C ports

QP/C platform-independent source code

QP/C++ directory (similar structure to QP/C)

QTools directory (Windows version)

the make utility for Windows

the QSPY host utility

QSPY source code
QUTest unit testing (Phython)
QView monitoring (Phython)

MinGW GNU-C/C++ compiler for Windows

-gnu_arm-none-eabi\ - GNU-C/C++ cross compiler for ARM Cortex-M/R
-P

Python-3 for Windows

NOTE: It is highly recommended to watch the "Getting Started with QP" Video

Figure 4: Getting Started Video

Dl
Targating i

Ganaralicd

21

Copyright © 2005 Quantum Leaps, LLC. All Rights Reserved.

4 of 17

https://youtu.be/O7ER6_VqIH0
https://www.state-machine.com/qpc

Getting Started with QP/C™
Modern Embedded Software state-machine.com/qpc

0 q vantu m® Leq pS Application Note
ML

3 Building and Running the Blinky Example

This section explains how to build and run the Blinky QP/C example on various platforms.

NOTE: The QP/C applications can be built in the following three build configurations:

Debug - this configuration is built with full debugging information and minimal optimization. When the QP
framework finds no events to process, the framework busy-idles until there are new events to process.

Release - this configuration is built with no debugging information and high optimization. Single-stepping and
debugging is effectively impossible due to the lack of debugging information and optimized code, but the
debugger can be used to download and start the executable. When the QP framework finds no events to
process, the framework puts the CPU to sleep until there are new events to process.

Spy - like the debug variant, this variant is built with full debugging information and minimal optimization.
Additionally, it is build with the QP's Q-SPY trace functionality built in. The on-board serial port and the Q-Spy
host application are used for sending and viewing trace data. Like the Debug configuration, the QP framework
busy-idles until there are new events to process.

NOTE: All examples for embedded boards include the QP/C framework as source code within the
projects, instead of statically linking with a QP/C library.

NOTE: Examples for desktop Windows still use QP/C as pre-built libraries.

Copyright © 2005 Quantum Leaps, LLC. All Rights Reserved. 5 of 17

https://www.state-machine.com/qpc

Getting Started with QP/C™

0 q vantu m® Leq pS Application Note
ML

Modern Embedded Software state-machine.com/qpc

31

Blinky on Windows with MinGW (GNU C/C++ for Windows)

The Windows version of the Blinky example is a simple console application. The
example is built with the MinGW toolchain and the make utility, which you have
already installed with QTools. The example is located in the directory gpe\
examples\workstation\blinky\ and is specifically provided so that you don't
need an embedded board or a development toolchain to get started with QP/C.

NOTE: The Blinky source code (blinky. c) is actually the same on Windows and the embedded
boards. The only difference is in the Board Support Package (bsp. c), which is implemented
differently on Windows than in for the embedded boards.

Figure 5 shows the steps of building and running the Blinky example from a Windows command prompt.
The explanation section immediately following the figure describes the steps.

Figure 5: Building and running Blinky in a Windows command prompt.

BEX Command Prompt — O *
~
C:hvrod Ciigphgpchexamples workstationiblinky
C:hgpigpciexamplesiworkstationiblinky>make
gcc -MM -MT build/blinky.o -c -g -0 -fno-ple -std=c99 -pedantic -Wall -Wextra -W -I. -I..
foof oo finclude -I../ . fsre -1 0 L fportsfwin32-qy -DQP_API_VWERSION=9999 blinky.c > b
uild/blinky.d
gcc -c -g -0 -fno-ple -std=c99 -pedantic -Wall -Wextra -W -I. -I../.. .. include -I../../
fsre Il L fports/win32-qv -DQP_API_VERSION=9999 blinky.c -o build/blinky.o
gcc -c -g -0 -fno-pie -std=c89 -pedantic -Wall -Wextra -W -I. -I../ finclude -I../../
sre -1l fportsfwin32-qy -DQP_API_VERSION=99399 ../../../includesgstamp.c -o build/
gstamp.o
gcc -no-pie -L../../.. ports/win32-qv/dbg -0 build/blinky.exe build/blinky.o build/gs
tamp.oc -lgp -lwsZ_32
C:hgphgpchexamplesiworkstation\blinky>buildyblinky
LED OFF
LED ON
LED OFF
LED ON
<
C:%gpigpciexamplesiworkstation\blinkysg]

[11 Change directory to the Blinky example for Windows. The command “cd C:\gp\gpc\examples\
arm-cm\blinky ek-tm4cl23gx1\win32” assumes that QP/C has been installed in the default
directory C:\gp\qgpc.

[2] The “make” command performs the build. The make command uses the Makefile from the Blinky
directory. The printouts following the “make” command are produced by the gcc compiler.

NOTE: The Blinky application links to the QP/C library for Windows, which is pre-compiled and
provided in the standard QP/C distribution. The upcoming Section 5.1 describes how you can re-
compile the QP/C library yourself.

[3] The “build\blinky.exe” command runs the Blinky executable, which is produced in the build\
directory. The output following this command is produced by the Blinky application.

[4] The Blinky application is exited by pressing the Ctrl-C key.

Copyright © 2005 Quantum Leaps, LLC. All Rights Reserved. 6 of 17

https://www.state-machine.com/qpc

e Application Note
I ‘ q antum L a ps Getting Started with QP/C™

Modern Embedded Software state-machine.com/qpc

3.2 Blinky on Tiva LauchPad with GNU-ARM (Makefile Project)

The Blinky example for the EK-TM4C123GXL board with GNU-ARM is located in the
directories C:\gp\gpc\examples\arm-cm\blinky ek-tm4cl23gxl\gv\gnu. (for
the cooperative QV kernel) and C:\gp\gpc\examples\arm-cm\blinky ek-
tmdcl123gx1\gk\gnu\ (for the preemptive QK kernel). Each of these directories
contains the Makefile for building the application from the command-line.

The GNU-ARM toolchain used in these Makefiles is now part of the QTools collection for Windows. It
has been downloaded and adapted from (http://gnutoolchains.com/arm-eabi/). This pre-built toolchain is
an example of an open-source toolchain, which offers acceptable code generation, but no support for
code download or debugging. To get these features, you would need to use IDE's (typically based on
Eclipse), such as TI Code Composer Studio (CCS), Atollic TrueSTUDIO, and many others.

NOTE: The gnu\ sub-directory contains project files for TI Code Composer Studio (CCS) that you

can immediately import into the CCS Eclipse-based IDE.

Figure 6: Building and Blinky in the Command Prompt Window

E¥ Command Prompt

Ciwred Crvwgprgpohexamplesharm—omhblinky_ek—trdel23gx] agk>anuw
3E\§pc\9§anples\arn—cn\hlinky_ek—tn4c1239x1\qk\gnu}nake clean

Y- B
dhg/* bin ™~
dbg - ®.elf ™~
bo /¥, nap

e
>3
1]
™
*

d

Ce ? ?pc\exanples\arn—cn\hl1nkg ek—tn401239x1\3k gnu)nake

= / sSgnu_arm—eabisbinsavrm—-eabl-gcc - ogk_rmutex.o —-g -
Y fp —nfloat-abi=sof tfy —nmnthumb_-Hall —ffunc ion-sections —f

—0 - / LS s Ainelude I LS L AL s0urce —

artusek-tndcl 39 1 0’ TARA_ARCA=?Z
utex.c » dbgsgk_mutex.
C /tools/gnu arm-eabisbinsarm—eabi— -MM —HMT dbgsgk.0 —g —mMmCcpu=c

/1nclude -I../ source_—-TI.. -
—cn/ nu —1. .. /3rd_part CCMSISsinclude —L. .o 7. 7. . 7.
5 tn cl Joxl —D HRH_HRCH—? o 1] PU_PRESENT ..~/../../../../50u
ol

C: tools gnu arn eabisbinsarmn—eabi- gcc Thllnkﬁ 14 THMCPpU= cortex—
—nfloat abi= 50 tfﬁ —mthumb —-nostdli H1 Hap hg/hllnk k Map,—
ions — db g y—gk.elf dhg/qkTﬁort o /Bllnkg o d hsp dbe
ustem TM4C1 3GH6PM o dbgsstap up 4C1236H6 M. o dhg/g _ﬁsn o dh e
of _act,o g/af actq.o dbosgf_defer. D dbosof dgn o 4 g/ﬁ Enen o db
af gact.o d of _geq.o dbosof gmact. dbgs/gf _time.o 4 gk.o dbgsq
stanp

u—ak
C:wgpasgpocexamplessarm—cocrnxblinky_ek—tndcl23gx]l »gk»gnu?

tssarm—cnsgksanu — L. ./ LSS /Srd_Par SCMSIS/incTude —-1..7.. 7.7,
?‘Pu_PRESENT i

ncpu=cor tex—md
data—-sections

T
ortex—md

. S3v
rce/qk

rd —nfpu vip

cref, gc
g/naln o
Hgep _MSHM. o
/q su

i

: 0
/togls/gnu _armn—eabi binsarm-eabi-obicopry -0 binary dbogsblinku—gk.elf dbgsblink

L/sourcesgk
? —nffu

uf —nfluat “abi=softfy —nmthunb -Hall —ffunction— sections —-fdata-sections -0 —
I - / / AL -AportsSarm
_partﬁ/e

NOTE: For the Makefile to work, you need to adjust the Makefile to provide the location of
ARM toolchain on your machine.

the GNU-

o
ro_p

sect

dhg/
dbo”

[11 Change directory to the Blinky example for EK-TM4C123GXL board with GNU. The command “cd
C:\gp\gpc\examples\arm-cm\blinky ek-tm4cl23gxl\gv\gnu” assumes that QP/C has been

installed in the default directory C:\gp\gpc.

[2] The “make clean” command invokes the GNU make utility (from the QTools directory) to clean the

build.

[3] The “make” command performs the actual build. The make command uses the Makefile from the
Blinky directory. The printouts following the “make” command are produced by the GNU-ARM

compiler/linker.

Copyright © 2005 Quantum Leaps, LLC. All Rights Reserved.

7 of 17

http://gnutoolchains.com/arm-eabi/
https://www.state-machine.com/qpc

®
e Application Note
q antum L a ps Getting Started with QP/C™

) |\/lodern Embedded Software state-machine.com/qpc

The provided Makefiles support the following build configurations:

Table 1 Make targets for the Debug, Release, and Spy build configurations

Build Configuration Build/Clean command

Debug (default) make / make clean

Release make CONF=rel / make CONF=rel clean
Spy make CONF=spy / make CONF=spy clean

Once you have successfully built the Blinky application (you can check for the file blinky-gk.bin in the
dbg subdirectory) you can download it to the EK-TM4C123GXL board with the Tl utility called 1mflash.

Figure 7: Downloading the Blinky Application to the EK-TM4C123GXL Board
with the LmFlash Utility

m LM Flash Pregrammer - Build 1613 — "
Configuration IProgram | Flash Utiities | Other Utilities | Help

Quick Set

TM4C 123G LaunchPad h
m LM Flash Programmer - Build 1613 - X

Interface

ICDI {Eval
Select .bin file

Cladk Sourc

i Options

Configuration Program | Fiash Utiities | Other Utiites | Help

Erase Method:
& {* Erase Entire Flash - (faster)
(™ Erase Necessary Pages - (slower)

[~ verify After Program
[Reset MCU After Program

Program Address Offset: Ox |0

CRC32
Source CRC32 = | OxC3C31312

Hardware Reset

Program Comp

wip TEXAS INSTRUMENTS

Pragram Complete - 4944 Bytes Programmed

NOTE: You need to download the LmFlash utility from Texas Instruments (go to www.til.com and
search for “LmFlash”)

[11 Inthe Configuration tab, select the TM4C123GXL LaunchPad
[2] Inthe Program tab, browse to the blinky-gk.bin file produced by the Makefile.

Copyright © 2005 Quantum Leaps, LLC. All Rights Reserved. 8 of 17

http://www.til.com/
https://www.state-machine.com/qpc

sl Quantum’[€4Ps

Modern Embedded Software

Application Note

Getting Started with QP/C™
state-machine.com/gpc

Finally, as mentioned before, you can import the Makefiles to an Ecliplse-based IDE of your choice (the
IDE should support the Stellaris-ICD debug interface of your TivaC LauchPad board). The following
screen shot shows the Makefile Project imported to the TI Code Composer Studio (CCS) IDE:

Figure 8: The Blinky Projects Imported into the TI CCS IDE

e

File Edit Wiew Mavigate Project Run Scripts Window Help
%~ R@ifEiS Gvw [Quick Access || [|| B CCSEdit | % CCSDebug |
! |
[fyProj.. 52| = B | T gke | main.c | bsp.c (8 gk_ports T gf actgc @ Makefile &2 = B
3 12—
Sl =S aols oo . 2
2# project name |
v GF > blinky-gk [qpe. 54 0 '
#5 Binaries 54 PROJECT := blinky-gk w# Mew Project O X
! Includes 55
db 56 o - — = m o mmmmmmmmmmmmmmo o .
& lQ 57 # project directories Select a wizard —
& re . SB# Creates a new Makefile project in a directory containing existing code
% » targetConfir 59
|sfi blinky-gk.ld 68 # location of the QP/C framework (if
[7] flash.bat 61 ifeq (%(QPC),) Wizards:
iy Makefie G2QPC = ofuf ool
[5} README.bxt o -
" b4 ~ (= General
v 5 blinky-qv [qpc 65# QP port used in this project /L% Project
Lgfi blinky-qu.ld 66 QP_PORT_DIR := %(QPC)/ports/arm-cm/gk — cc
- W CC++
[7 flash.bat 67 = i
% Makefile 683 # list of all source directories used @ C Project
_Dn README.tt 69 VPATH = \ [& C++ Project
7 oo\ =4 CCS Project
n é&&;&)} \ 5 Makefile Project with Existing Code
72 source
73 ;5(QP PORT_DIR) \ (= Code Composer Studic
74 $(QPC)/3rd_party/ek-tmac123gxl \ (= Energia
75 $(QPC)/3rd_party/ek-tmicl23gx1/gny (= JavaScript
75 (= RTSC
77# list of all include directories nee
78 INCLUDES =\
79 R TRV TR
g0 -I5{QPC)/include \ 4
Bl Console 3 i B O
Mo consoles to display at this time. A @I < Back Mext > Finish Cancel
Path
£ > £ >
=5 blinky-gk i ‘ Free License

Copyright © 2005 Quantum Leaps, LLC. All Rights Reserved.

9 of 17

https://www.state-machine.com/qpc

e Application Note
l I q antum L a pS Getting Started with QP/C™

Modern Embedded Software state-machine.com/qpc

3.3 Blinky on Tiva LauchPad with Keil/ARM (Keil uVision)

The Blinky example for the EK-TM4C123GXL board with
ARM-KEIL uVision is located in the directories C:\gp\ ™
gpc\examples\arm-cm\blinky ek-tmdcl23gxl\gv\

arm. (for the cooperative QV kernel) and C:\gp\gpc\ K E I L
examples\arm-cm\blinky ek-tm4cl23gxl\gk\arm

(for the preemptive QK kernel). Each of these directories
contains the uVision project file blinky.uvproj.

An ARM® Company

Keil/ARM MDK (http://www.keil.com/arm/mdk.asp) is an example of a commercial toolchain, which offers
superior code generation, fast code download and good debugging experience.

NOTE: Keail/ARM offers a free size-limited version of Keil MDK as well as time-limited evaluation
options. The Blinky example has been built with the free MDK edition limited to 32KB of code.

Figure 9: Blinky workspace in Keil uVision5 IDE

A Chgp\gpciexamples\arm-cmiblinky_ek-tmdcl23gxhgviarmiblinky-qv.uvprajx - pVision — O =

BU”d button Tools SVCS Window Help

File Edit View

= b Py | T |;;§;.§ |L§GP|0x vﬂ$|@|0 @dﬂ
@ E i @ | %gl blinky-dbg ~ £ﬂ| ﬁ o ‘_l'/‘ @ ’
- Debug button
Project o x| blinky.c - X
2“2 Project: blinky-qv -~ 34 . . .
yect by — “&—— Build configuration ~
E#z blinky-dbg #in
L 36 #include "bsp.h
5 Applicatioin 37
1 bspe N\ 38 //Q _DEFINE_THIS_FILE
] blinky.c APPIICAtoN COdE |-+ . vt =/
1 main.c e truct { /* the Blinky active object =/
- 42 QAactive super; /* inherit QActive */
_1 blinky.h P T Q

ﬁ qstamp.c
-0 ek-tmdc123gxd

timeEvt; /* private time event generator */

Board-specific code

1 Ae |
E-5 QP i L i r iy 1 EY
a ﬁ’ ‘qep — QP source code 1 blinky; /* the Blinky active object #*/
* i = : .
ﬁ» qep_msm.c g-g QActive const AQ Blinky &1 _blinky.super;
ﬁ qf_act.c 51 /#* hierarchical state machine ... */
ﬁ gf_actq.c 52 static QState Blinky_initial(Blinky * const me, QEvt const * const e);
- ' ﬂ 53 static QState Blinky_off (Blinky * const me, QEvt const * const e);
L w151 of defer.c 54 static OState Blinkv on (Blinkv * const me. OEvt const * const e): R
I=] Praj... @E-:--:-I':- {} Func.| (1, Tem < ¥
Build Qutput L x|
compiling qv.c... A
compiling qv_port.c...

linking...

Program Size: Code=4128 RO-data=776 RW-data=28 ZII-data=1444

After Build - User command #1: fromelf --bin --output .\dbg\blinky-qv.bin .\dbg\blinky-gqv.axf
" Adbghblinky-qv.axf" - @ Error(s), ® Warning(s).

Build Time Elapsed: @8:88:85

Stellaris ICDI

To open the Blinky project in Keil uVision, you can double-click on blinky.uvproj project file located in
this directory. Once the project opens, you can build it by pressing the Build button. You can also very
easily download it to the LaunchPad board and debug it by pressing the Debug button (see Figure 9).

Copyright © 2005 Quantum Leaps, LLC. All Rights Reserved. 10 of 17

http://www.keil.com/arm/mdk.asp
https://www.state-machine.com/qpc

Quantum’|S4Ps

ar

Modern Embedded Software

Application Note
Getting Started with QP/C™
state-machine.com/qpc

3.4

blinky.eww.

Blinky on Tiva LauchPad with IAR (IAR EWARM)

The Blinky example for the EK-TM4C123GXL board with IAR EWARM is
located in the directories C: \gp\gpc\examples\arm-cm\blinky ek-
tmdcl23gxl\gv\iar. (for the cooperative QV kernel) and C:\gp\gpc\
examples\arm-cm\blinky ek-tm4cl23gxl\gk\iar (for the preemptive
QK kernel). Each of these directories contains the IAR workspace file

OIAR

SYSTEMS

IAR EWARM is an example of commercial toolchain (https://www.iar.com/iar-embedded-workbench/),
which offers superior code generation, fast code download and good debugging experience.

NOTE: IAR offers a free size-limited KickStart version of EWARM as well as time-limited evaluation
options. The Blinky example described here has been built with the free KickStart EWARM edition
limited to 32KB of generated code.

Figure 10: Blinky workspace in IAR EWARM

ﬁ blinky-qv - IAR Embedded Workbench IDE - ARM 7.70.1 — O bt
File Edit View Project TI5tellaris Tools Window Help Make (bUI|d) button
D W@ & |0 o] v EET VY
Workspace X |L.|-| D b b i =
. . . ebug button
Debll et Build Conf|gurat|on nclude "gpc.h” g f
_ pry— nclude "blinky.h™
Files G T #include "bsp.h"
Bl [blinky-qv - Debug +
|5 01 Application L DEEINE THIS FILE
Application code | =y
— [blinky.h Ol typedef struct { /% the Blinky active ohject */
bsp.c Qactive super; JS* inherit QActive */
— Blbseh TimeEvt timeEvt; /* private ti t tor *
main.c: QTimeEv imeEvt; /* private time event generator */
astamp.c Board-specific code
] ek-trdel 23gxl = TETTE—TrTETY 1 blinky; /% the Blinky octive object */
—E=aap
qep_hsm.c QP source code [t AO_Blinky = &1_blinky.super;
qep_msm_c /* hierarchical state machine ... */
qf_act.c: static Q5tate Blinky_initial(Blinky * const me, QEvt const * const e);
qf_au:tq.c: static QState Blinky_off (Blinky * const me, QEvt const * const e);
qf_defer.c static QState Blinky_on (Blinky * const me, QEvt conmst * const e);
adn.e b B e e et e e e a e e st ar e e e aa s =
| blinky-gv <B T ! : > v
x
Meszages File Line #
qf_gmact.c
qf_geq.c
gstamp.c
qf_time.c
qv.c
qv_park.c
o aypztern_TMACT Z3GHEPM A
3 Debuglog Build x
Ready Errors 0, Warnings 2

To open the Blinky workspace in EWARM, you can double-click on blinky.eww workspace file located in
this directory. Once the project opens, you can build it by pressing the Make button. You can also very
easily download it to the LaunchPad board and debug it by pressing the Debug button (see Figure 10).

Copyright © 2005 Quantum Leaps, LLC. All Rights Reserved.

11 of 17

https://www.iar.com/iar-embedded-workbench/
https://www.state-machine.com/qpc

e Application Note
l ‘ q antum L a ps Getting Started with QP/C™

Modern Embedded Software state-machine.com/qpc

4 The Blinky State Machine and Code

The behavior of the Blinky example is modeled by a very simple state machine (see Figure 11). The top-
most initial transition in this state machine arms a QP time event to deliver the TIMEOUT signal every half
second, so that the LED can stay on for one half second and off for the other half. The initial transition
leads to state “off”, which turns the LED off in the entry action. When the TIMEOUT event arrives, the “off”
state transitions to the “on” state, which turns the LED on in the entry action. When the TIMEOUT event
arrives in the “on” state, the “on” state transitions back to “off’, which cases execution of the entry action,
in which the LED is turned off. From that point on the cycle repeats forever.

Figure 11: Blinky state machine

.
QTimeEvt_armX(&me->timeEvt,

BSP_TICKS_PER SEC/2,
BSP_TICKS_PER SEC/2);

4 off 2
entry /
BSP_ledOff();
TIMEOUT /
3
N— 2
4 on)
entry /
BSP_ledOn();
TIMEOUT /
5
N— Z

[1] The top-most initial transition in this state machine arms a QP time event (QTimeEvt armX())to
deliver the TIMEOUT signal every half second, so that the LED can stay on for one half second and
off for the other half.

[2] The initial transition leads to state "off", which turns the LED off in the entry action (BSP_1ed0Off ()).
[3] When the TIMEOUT event arrives in the "off" state, the "off" state transitions to the "on" state
[4] The "on" state turns the LED on in the entry action (BSP_1ledOn ()).

[5]1 When the TIMEOUT event arrives in the "on" state, the "on" state transitions back to "off", which
cases execution of the entry action, in which the LED is turned off. From that point on the cycle
repeats forever because the TIMEOUT events keep getting generated at the pre-determined rate.

The Blinky state machine shown in Figure 11 is implemented in the blinky.c source file, as shown in the
following listing:

NOTE: The following code has been auto-generated by the QM Model-Based Design Tool.

Copyright © 2005 Quantum Leaps, LLC. All Rights Reserved. 12 of 17

https://www.state-machine.com/qm/
https://www.state-machine.com/qpc

Modern Embedded Software state-machine.com/qpc

e Application Note
I I q antum L a pS Getting Started with QP/C™

Listing 2 Implementation of the Blinky state machine (file blinky.c)

/*S$declare${AOs: :Blinky} VVV*/
Y R VO TSI = 1 5 0 <2 S */
typedef struct {
/* protected: */

QActive super;

/* private: */
QTimeEvt timeEvt;
} Blinky;

/* protected: */

static QState Blinky initial (Blinky * const me, QEvt const * const e);

static QState Blinky off (Blinky * const me, QEvt const * const e);

static QState Blinky on(Blinky * const me, QEvt const * const e);
/*$Senddecl${A0s: :Blinky} "AANAAANAANAANNANNANNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN K [

static void Blinky ctor(void) {
Blinky *me = (Blinky *)AO Blinky;
QActive ctor (éme->super, Q STATE CAST (&Blinky initial));
QTimeEvt ctorX(&me->timeEvt, &me->super, TIMEOUT SIG, 0U);
}

/* ask QM to define the Blinky class */
/*$skip${QP_VERSION} VVV X/
/* Check for the minimum required QP version */

#if (QP _VERSION < 650U) || (QP_VERSION != ((QP RELEASE"4294967295U) % 0x3E8U))
#error gpc version 6.5.0 or higher required
#endif

/*SendskipS {QP VERSION} "NANANANANAAANNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN AR [
/*$define${AOs::Blinky} VV*/
/S ROS :t tBLANK Y ittt e e e e e et e e */
/S R0S : tBLANKY s tSM) ittt it e e e ettt e e e */
static QState Blinky initial (Blinky * const me, QEvt const * const e) {

/*${A0s::Blinky::SM::initial} */

(void)e; /* unused parameter */

QTimeEvt armX (&éme->timeEvt,

BSP_TICKS_ PER SEC/2, BSP TICKS PER SEC/2)

OS_FUN_DICTIONARY (&Blinky off);
OS_FUN_DICTIONARY (&Blinky on);

return Q TRAN(&Blinky off);
}
/S A0S : tBlinky:iOM: i i e e e e e et e */
static QState Blinky off(Blinky * const me, QEvt const * const e) {
QState status ;
switch (e->sig) {
/*${AOs::Blinky::SM::0ff} */
case Q ENTRY SIG: {
BSP_ledOff ();
status_ = Q HANDLED() ;
break;

}
/*${AOs::Blinky::SM::0ff::TIMEOUT} */

Copyright © 2005 Quantum Leaps, LLC. All Rights Reserved.

13 of 17

https://www.state-machine.com/qpc

Quantum’|&aPs

Modern Embedded Software

Application Note
Getting Started with QP/C™

state-machine.com/gpc

case TIMEOUT SIG: {

status_ = Q TRAN(&Blinky on);
break;

}

default: {
status_ = Q SUPER(&QHsm_top) ;
break;

}
}
return status_ ;
}
/*${A0s::Blinky::SM: :on}

static QState Blinky on(Blinky * const me, QEvt const * const e) {

QState status ;
switch (e->sig) {
/*${AOs::Blinky::SM::on} */
case Q ENTRY SIG: {
BSP ledOn();
status_ = Q HANDLED() ;
break;
}
/*${AOs::Blinky::SM::on::TIMEOUT} */
case TIMEOUT SIG: {

status_ = Q TRAN(&Blinky off);
break;

}

default: {
status_ = Q SUPER(&QHsm_top) ;
break;

}
}
return status ;

}

/*$enddef${AOS: :Blinky} /\/\/\/\AA/\/\/\/\/\/\AA/\/\/\/\/\/\AA/\/\/\/\/\/\AA/\/\/\/\/\/\AA/\/\/\/\/\/\AA/\/\/\/\/\/*/

Copyright © 2005 Quantum Leaps, LLC. All Rights Reserved.

14 of 17

https://www.state-machine.com/qpc

e Application Note
I ‘ q antum L a ps Getting Started with QP/C™

Modern Embedded Software state-machine.com/qpc

5 Re-building the QP/C Libraries for Windows

On Windows, QP/C is deployed as a library that you statically link to your application. The pre-built QP
libraries are provided inside the C:\gp\gpc\ports\ directory. Normally, you should have no need to re-
build the QP libraries. However, if you want to modify QP code or you want to apply different settings, this
section describes steps you need to take to rebuild the libraries yourself.

5.1 QPJ/C Library for Windows with MinGW

For the MinGW port, you perform a console build with the provided Makefile in $QPC%
\ports\win32\mingw\. This Makefile supports three build configurations: Debug,
Release, and Spy.

You choose the build configuration by providing the CONF argument to the make. The
default configuration is “dbg”. Other configurations are “rel”, and “spy”. The following
table summarizes the commands to invoke make.

Table 2 Make targets for the Debug, Release, and Spy build configurations

Build Configuraion Build/Clean command

Debug (default) make / make clean

Release make CONF=rel / make CONF=rel clean
Spy make CONF=spy / make CONF=spy clean

NOTE: The provided Makefile assumes that the QTools bin directory is added to the PATH.

Figure 12: Building QP/C library for Windows with MinGW

E¥ Command Prompt — O >
thwgplod gpochportshwindz ™
\qp\qpc\purts\ulnBZ}nake
c function—-sections —fdata—-sections -0 -I.. .. include -I../../source
I. —DHIﬁEZ GUI -Hall -H —¢ ../../sourcesgep_hsn. c o dhg/qer_hsn.u
C function-sections —fdata—-sections -0 include -I../../source
I. —DHI 32 GUI —Hall -H -c . S EOUrCES EY_MSM. C <o dhg/qer_nsn o
c function-sections —fdata-sections -0 -1. include —-I../../source
I. —DHI 32 GUI -Hall -H —-c A S sonrcesgf _act.c -0 dhg/qf act.o
C function— sectluns ~fdata-sections -0 -I../.,./include —-I../../source
I. —DHI 32 GUI —Hall —-H . S source s gf _actg.c_ —o dhg/qf actg.o
C function— sectluns “fdata-sections - -I../. incTude ~I../ .. /source
I. —DHI 32 GUI -Hall -H —-c e s sonrceSgf _defew .o ~o dbgSgf _defer.o
C function— sectluns ~fdata-sections -0 —I1../,.7incliode —I../../source
I. —DNI 32 GUI —-Hall -H . S sourcesgf _dun.c —o dhg/qf _dun.o
CcC function— sectluns ~fdata-sections -0 -I../,./include —-I../../source
I. —DHI 32 GUI —Hall -H -c A S sonrce s gf _mem.c -0 dhg/qf_nen o
c function-sections —fdata-sections -0 —-I1../..7include -I../../source
I. —DHIﬁEZ GUI -Hall -H —-c e sonrcesgf _ps.c -0 dhg/gf_ps o
C function-sections —fdata—-sections —O —I1../ include -I../../source
I. —DHI 32 GUI —Hall -H -c A sonrce Sof qact c_—o0 dhg/qf gact.o
C ﬁ function-sections —fdata-sections - -I..~ incTude —I../ .. /source
I. —DHI 32 GUI -Hall -H —-c e sourceSgf _geoq ., c) dhg/qf 3
C function-sections —fdata—-sections -0 —-I../../1inc e -I../ ../ so0urce
I. —DHI 32 GUI -Hall -H -c A sonrceSgf _gract.c —o dhg/qf mact.o
C function-sections —fdata-sections -0 —1../../include -I../../s50urce
I. —DHI 32 GUI -Hall -H —-c A sonrceSgf _tine . c o dhg/qf time.o
C function-sections —fdata—sections -0 incTude —-I../../source
I —DHI 32 GUI —-Hall -H —-¢c win3d2 ui.c —-o dhg/u1n32_§u1.u

function-sections —fdata-sections —O Sinclude -I../7.. 50urce
I —DHI 32 GUI -Hall -H —¢c of _yort.c —o dbgsgf urt
r »s db /lvbgp a dhg/gep_hsn o dhg qeprnsn o d act.u dhg/? actg.o dbogsSogf
efer.o b ogf _dyn.o g/gf_nen o b /E o dh%/qf “gact.o 4 of _geq.o dbgsogf _—
mact.o dbgsgf _time.o 4d win32_gui.o bo/af _port.
r dbos ¥, 0
fngphgpehpor tsiwin32 rnake CONF=»rel W

Copyright © 2005 Quantum Leaps, LLC. All Rights Reserved. 15 of 17

https://www.state-machine.com/qpc

e Application Note
I ‘ q antum L a ps Getting Started with QP/C™

Modern Embedded Software state-machine.com/qpc

6 Creating Your Own QP/C Projects

Perhaps the most important fact of life to remember is that in embedded systems nothing works until
everything works. This means that you should always start with a working system and gradually evolve it,
changing one thing at a time and making sure that it keeps working every step of the way.

Keeping this in mind, the provided QP/C application examples, such as the super-simple Blinky, or a bit
more advanced DPP or “Fly 'n' Shoot” game, allow you to get started with a working project rather than
starting from scratch. You should also always try one of the provided example projects on the same
evaluation board that it was designed for, before making any changes.

Only after convincing yourself that the example project works "as is", you can think about creating your
own projects. At this point, the easiest and recommended way is to copy the existing working example
project folder (such as the Blinky example) and rename it.

After copying the project folder, you still need to change the name of the project/workspace. The easiest
and safest way to do this is to open the project/workspace in the corresponding IDE and use the Save
As... option to save the project under a different name. You can do this also with the QM model file, which
you can open in QM and "Save As" a different model.

NOTE: By copying and re-naming an existing, working project, as opposed to creating a new one
from scratch, you inherit the correct compiler and linker options an other project settings, which will
help you get started much faster.

7 Next Steps and Further Reading About QP™ and QM™

This quick-start guide is intended to get the QP/C installed and running on your system as quickly as
possible, but to work with QP/C effectively, you need to learn a bit more about active objects and state
machines. Below is a list of links to enable you to further your knowledge:

e Key Concepts behind QP frameworks and QM modeling tool
(https://www.state-machine.com/doc/concepts)

e QP/C++ Reference Manual (https://www.state-machine.com/gpcpp)

e QM Reference Manual (https://www.state-machine.com/gm)

e QP Application Notes & Articles (https://www.state-machine.com/doc/an)

e Book “Practical UML Statecharts in C/C++, 2™ Edition” [PSiCC2] and the companion web-page to the
book (https://www.state-machine.com/psicc?2)

e Free Support Forum for QP/QM (https://sourceforge.net/p/qpc/discussion/668726)

e "State Space" Blog (https://embeddedgurus.com/state-space)

Copyright © 2005 Quantum Leaps, LLC. All Rights Reserved. 16 of 17

https://embeddedgurus.com/state-space
https://sourceforge.net/p/qpc/discussion/668726
https://www.state-machine.com/psicc2
https://www.state-machine.com/doc/an
https://www.state-machine.com/qm
https://www.state-machine.com/qpcpp
https://www.state-machine.com/doc/concepts
https://www.state-machine.com/qpc

Quantum’|&aPs

Modern Embedded Software

Application Note
Getting Started with QP/C™

state-machine.com/qpc

8 Contact Information
Quantum Leaps, LLC

info@state-machine.com

state-machine.com

+1 919 360-5668 (9AM-5PM US EST)
+1 919 869-2998 (FAX)

Quantum Leaps on GitHub

GitHub

https://github.com/Quantuml eaps

Copyright © 2005 Quantum Leaps, LLC. All Rights Reserved. 17 of 17

https://github.com/QuantumLeaps
https://www.state-machine.com/
mailto:info@state-machine.com
https://www.state-machine.com/qpc

	1 Introduction
	2 Obtaining and Installing QP-bundle
	2.1 Downloading QP-bundle
	2.2 Installing QP/C

	3 Building and Running the Blinky Example
	3.1 Blinky on Windows with MinGW (GNU C/C++ for Windows)
	3.2 Blinky on Tiva LauchPad with GNU-ARM (Makefile Project)
	3.3 Blinky on Tiva LauchPad with Keil/ARM (Keil uVision)
	3.4 Blinky on Tiva LauchPad with IAR (IAR EWARM)

	4 The Blinky State Machine and Code
	5 Re-building the QP/C Libraries for Windows
	5.1 QP/C Library for Windows with MinGW

	6 Creating Your Own QP/C Projects
	7 Next Steps and Further Reading About QP™ and QM™
	8 Contact Information

