

QP state machine framework example

Application Note
Inheriting State Machines
with QP™ 4.x

Document Revision C
September 2009

Copyright © Quantum Leaps, LLC

www.quantum-leaps.com
www.state-machine.com

http://www.state-machine.com/avr
http://www.quantum-leaps.com/
http://www.state-machine.com/

Table of Contents

1 Introduction...1
1.1 About QP™...1
1.2 Licensing QP™...2
2 Changes between QP v2.x and QP 4.x ...3
2.1 The Rationale ...3
3 Template Method Example ..4
3.1 The Mine Superclass Design..4
3.2 The Mine Superclass Implementation ..5
3.3 Subclassing The Mine Superclass ...8
3.4 Testing the Code ..11
4 Subtyping Method Example ..12
4.1 Calc1—Preparing a State Machine Class for Inheritance..13

4.1.1 Declaring the Base Calc1 State Machine Class..13
4.1.2 Defining the Base Calc1 State Machine Class..14

4.2 Calc2—Deriving a State Machine...16
4.2.1 Declaring the Derived Calc2 Statechart ..16
4.2.2 Defining the Derived Calc2 Statechart ...17

4.3 Testing the Derived Statechart ...18
5 Related Documents and References ..22
6 Contact Information ...23

Copyright © Quantum Leaps, LLC. All Rights Reserved. i

1 Introduction
Traditional Object-Oriented Programming (OOP) prescribes how to
inherit attributes and refine individual class methods (virtual functions in
C++) to use polymorphism. But how do you inherit entire state
machines?

The issue is tricky, because a state machine is a system of interrelated
states and transitions rather than a just a group of virtual functions. The
challenge is to keep intact the numerous relationships among the
hierarchical states and transitions in the process of inheriting and
refining the derived state machine. The relations among state machine
elements come in two flavors: (1) states refer to other states as
superstates, and (2) transitions refer to states as targets of the
transition. The challenge is not to break these relationships in the derived state machines.

As described in Chapter 4 of “Practical UML Statecharts in C/C++, Second Edition” [PSiCC2], the
representation of state handler functions in QP/C++ 4.x has changed compared to the version 2.x
published in the book “Practical Statecharts in C/C++” [PSiCC1]. This change impacts the rules for
inheriting entire state machines, so the guidelines described in Chapter 6 of Practical Statecharts in
C/C++ do not apply in QP/C++ 4.x. This Application Note addresses this issue by describing how to
inherit state machines with the new QP 4.x.

NOTE: This Application Note uses the C++ code for illustrating the concepts, because most likely the
C++ version will be extended via inheritance. However, the accompanying code to this Application
Note contains also the C code. The differences between C and C++ are only syntactical, and both
versions rely essentially on the same techniques for adapting the state models for inheritance.

This Application Note explains two approaches to inheriting state machines. The first, much safer
approach, is not to change the state machine structure at all. In this case, the complete state machine
topology (the network of hierarchical states and transitions) is completely defined in the state machine
superclass. The subclasses inherit this state machine structure and override only the actions and guard
conditions that are declared as virtual functions in the base class. This way of inheriting state machines is
an example of the widely used Template Method design pattern described in the “Design Patterns:
Reusable Elements of Object-Oriented Software” book [GoF 95]. This approach is illustrated by the
inheritance of Mine state machines from the “Fly ‘n’ Shoot” game described in Chapter 1 of [PSiCC2].

The second method of inheriting state machines allows changing the structure of the inherited state
machine by adding states and transitions. This Subtyping Method is illustrated by the refinement of the
Calculator state machine described in Chapter 3 of [PSiCC2].

1.1 About QP™
QP™ is a family of very lightweight, open source, state machine-based frameworks for developing event-
driven applications. QP enables building well-structured embedded applications as a set of concurrently
executing hierarchical state machines (UML statecharts) directly in C or C++ without big tools. QP is
described in great detail in the book “Practical UML Statecharts in C/C++, Second Edition: Event-Driven
Programming for Embedded Systems” [PSiCC2] (Newnes, 2008).

As shown in Figure 1, QP consists of a universal UML-compliant event processor (QEP), a portable real-
time framework (QF), a tiny run-to-completion kernel (QK), and software tracing instrumentation (QS).
Current versions of QP include: QP/C™ and QP/C++™, which require about 4KB of code and a few
hundred bytes of RAM, and the ultra-lightweight QP-nano, which requires only 1-2KB of code and just
several bytes of RAM. The Linux port described in this Application Note pertains to QP/C and QP/C++.

1 of 23 Copyright © Quantum Leaps, LLC. All Rights Reserved.

http://www.state-machine.com/psicc2

Application Note
Inheriting State Machines with QP v4.x

www.state-machine.com

Figure 1 QP components and their relationship with the target hardware, board support package
(BSP), and the application

Target

BSP

QK Preemptive Kernel,
Cooperative Kernel,
or other OS/RTOS

QS Software
Tracing

State
Machine

State
Machine

State
Machine

State
Machine

QEP UML-Compliant
Event Processor

QF Event-Driven
Framework

Application
(Your code)

QP can work with or without a traditional RTOS or OS. In the simplest configuration, QP can completely
replace a traditional RTOS. QP can manage up to 63 concurrently executing tasks structured as state
machines (called active objects in UML).

1.2 Licensing QP™
The Generally Available (GA) distribution of QP™ available for download from the www.state-
machine.com/downloads website is offered with the following two licensing options:

• The GNU General Public License version 2 (GPL) as published by the Free
Software Foundation and appearing in the file GPL.TXT included in the packaging
of every Quantum Leaps software distribution. The GPL open source license allows
you to use the software at no charge under the condition that if you redistribute the
original software or applications derived from it, the complete source code for your

application must be also available under the conditions of the GPL (GPL Section
2[b]).

• One of several Quantum Leaps commercial licenses, which are designed for
customers who wish to retain the proprietary status of their code and therefore cannot
use the GNU General Public License. The customers who license Quantum Leaps
software under the commercial licenses do not use the software under the GPL and
therefore are not subject to any of its terms.

For more information, please visit the licensing section of our website at: www.state-
machine.com/licensing.

2 of 23 Copyright © Quantum Leaps, LLC. All Rights Reserved.

http://www.quantum-leaps.com/%1Fdownloads
http://www.quantum-leaps.com/%1Fdownloads
http://www.state-machine.com/licensing
http://www.state-machine.com/licensing

Application Note
Inheriting State Machines with QP v4.x

www.state-machine.com

2 Changes between QP v2.x and QP 4.x
The representation of state handler functions in QP/C++ 4.x has changed compared to the version 2.x
published in the book Practical Statecharts in C/C++ [PSiCC1]. The state handler functions are no longer
true member functions of the QHsm subclasses, but rather simply static member functions. The following
table contrasts the two approaches:

QP/C++ 2.x ([PSiCC1]) QP/C++ 4.x ([PSiCC2])

class Calc : public QHsm {
protected:
 void initial(QEvent const *e);

 QSTATE calc(QEvent const *e);

 QSTATE ready(QEvent const *e);

 QSTATE result(QEvent const *e);

 . . .
};

class Calc : public QHsm {
protected:
 static QState initial(Calc *me,
 QEvent const *e);
 static QState calc(Calc *me,
 QEvent const *e);
 static QState ready(Calc *me,
 QEvent const *e);
 static QState result(Calc *me,
 QEvent const *e);
 . . .
};

QSTATE Calc::result(QEvent const *e)

{
 switch (e->sig) {
 case Q_ENTRY_SIG:
 dispState("result");
 eval();
 return (QSTATE)0;
 }
 }
 return (QSTATE)&Calc::ready;
}

QState Calc::result(Calc *me,
 QEvent const *e)
{
 switch (e->sig) {
 case Q_ENTRY_SIG: {
 me->dispState("result");
 me->eval();
 return Q_HANDLED();
 }
 }
 return Q_SUPER(&Calc::ready);
}

As you can see, the new approach (QP/C++ 4.x) uses static state handlers and emulates the “this” calling
convention by explicitly providing the “me” pointer (just like the QP/C version). As shown in the bottom
part of the table, in the state handler definition you use the “me” pointer to access the true members of
the derived state machine (Calc in this case).

The new approach is without a doubt less elegant than the old one. Conceptually, state handlers are
members of the state machine class and they should be coded as such.

2.1 The Rationale
However — and here is where the rubber hits the road — the users of the earlier versions of the QP/C++
have filed too many alarming reports from the trenches where the “elegant” approach either had very
lousy performance, or did not work altogether. For example, some compilers used over 30 machine
instructions to de-reference a pointer-to-member-function and only 3 to de-reference a regular pointer-to-
function. Needless to say, 3 machine instructions should do the job (see also Chapter 3 of [PSiCC2]).

As it turns out, too many C++ compilers, especially in the embedded C++ cross-compilers, simply don’t
support pointers-to-member-functions well. As explained in the sidebar on page 75 of [PSiCC1], other
C++ features such polymorphism and multiple inheritance, compound the complexity of pointers-to-
member-functions. Pointers-to-member-functions seem often to be just an afterthought implemented very
inefficiently in the compiler, if at all. To avoid inefficiencies and portability issues, QP/C++ 4.x does not to
use pointers-to-member-functions, but simply static methods that don’t use the “this” calling convention.

3 of 23 Copyright © Quantum Leaps, LLC. All Rights Reserved.

Application Note
Inheriting State Machines with QP v4.x

www.state-machine.com

3 Template Method Example
The illustration of the Template Method is based on the “Fly ‘n’ Shoot” game example described in
Chapter 1 of [PSiCC2]. The “Fly ‘n’ Shoot” game offers a meaningful opportunity for reusing the Mine
behavior. As you recall, the game has two types of Mines (Mine1 and Mine2), which behave similarly, but
not quite the same. As it turns out, both Mine state machines have exactly the same structure and differ
only by the actions executed by the state machines. This is exactly the situation you can address with the
Template Method.

NOTE: The code for the Template Method is located in the directory:
<qpcpp>\examples\80x86\dos\ tcpp101\l\game2\.

3.1 The Mine Superclass Design
Figure 2 shows the hierarchy of the state machine classes. The Mine state machine base class captures
the common behavior of mines. This base class uses virtual functions for actions and guard conditions
that are dependent on the type of the mine. These virtual functions are called in the state machine of the
Mine superclass. The subclasses of Mine, such as Mine1 and Mine2, override the virtual functions and
thus provide different behavior.

Figure 2 The Mine state machine abstract state machine class and its two subclasses

 : void
 : void

 : bool
 : bool

$ initial(me : Mine, e : QEvent*) : QState
$ unused(me : Mine, e : QEvent*) : QState
$ used(me : Mine, e : QEvent*) : QState
$ planted(me : Mine, e : QEvent*) : QState
$ exploding(me : Mine, e : QEvent*) : QState

m_id : uint8_t
m_x : uint8_t
m_y : uint8_t
m_exp_ctr : uint8_t

«abstract»

onInitial() : void
onDrawMine() : void
onShipCollision(e : ObjectImageEvt*) : bool
onMissileCollision(e : ObjectImageEvt*) : bool

onInitial() : void
onDrawMine() : void
onShipCollision(e : ObjectImageEvt*) : bool
onMissileCollision(e : ObjectImageEvt*) : bool

virtual
functions

actions

guards

static
state-handler
functions

4 of 23 Copyright © Quantum Leaps, LLC. All Rights Reserved.

Application Note
Inheriting State Machines with QP v4.x

www.state-machine.com

Figure 3 shows the state machine of the Mine base class, which calls the virtual actions and guard
conditions.

Figure 3 Mine state machine that calls the virtual actions and guards (shown in bold and red)

exit /
 QActive_postFIFO(Tunnel, MINE_DISABLED(MINE_ID(me)));

TIME_TICK [me->x >= GAME_SPED_X] /
 me->x -= GAME_SPED_X;

;

entry / me->exp_ctr = 0;

TIME_TICK [(me->x >= GAME_SPEED_X)
 && (me->exp_ctr < 15)] /
 me->x -= GAME_SPEED_X;
 ++me->exp_ctr;
 postFIFO(Tunnel, EXPLOSION(me->x + 3, me->y - 4,
 EXPLOSION0_BMP + (me->exp_ctr >> 2)));

/

MINE_PLANT(x, y) /
 me->x = e->x;
 me->y = e->y;

TIME_TICK [else]

TIME_TICK [else]

MINE_RECYCLE

SHIP_IMG []

MISSILE_IMG []

3.2 The Mine Superclass Implementation
Listing 1 shows the declaration of the Mine state machine class. The declaration is exactly the same as
any other hierarchical state machine class in QP, except that the Mine class declares a few virtual
functions to be overridden by the sublcasses. In fact these are pure-virtual functions, because the Mine
base class does not provide any implementation for these functions.

Listing 1 Declaration of the Mine state machine base class for inheritance (file mine.h)
 #ifndef mine_h
 #define mine_h

5 of 23 Copyright © Quantum Leaps, LLC. All Rights Reserved.

Application Note
Inheriting State Machines with QP v4.x

www.state-machine.com

 class Mine : public QHsm { // extend the QHsm class
 protected:
 uint8_t m_id;
 uint8_t m_x;
 uint8_t m_y;
 uint8_t m_exp_ctr;

 public:
 Mine(uint8_t id) : QHsm((QStateHandler)&Mine::initial), m_id(id) {}

 protected:
 virtual void onInitial(void) = 0;
 virtual void onDrawMine(void) = 0;
 virtual uint8_t onShipCollision(ObjectImageEvt const *e) = 0;
 virtual uint8_t onMissileCollision(ObjectImageEvt const *e) = 0;

 private:
 static QState initial (Mine *me, QEvent const *e);
 static QState unused (Mine *me, QEvent const *e);
 static QState used (Mine *me, QEvent const *e);
 static QState planted (Mine *me, QEvent const *e);
 static QState exploding(Mine *me, QEvent const *e);
 };

 #endif // mine_h

Listing 2 shows the definition of the Mine state machine class. The highlighted code corresponds to the
invocations of the virtual actions and guards. When you compare the Mine state machine implementation
with the original implementation of Mine1 and Mine2 from Chapter 1 of [PSiCC2] book, you will see that
the Mine state machine code is nearly identical except that the few virtual calls simply encapsulate those
actions or guards that depend on the mine type.

NOTE: A call of the type: me->foo() is subject to late-binding (polymorphism).

Listing 2 Definition of the Mine state machine (file mine.cpp)
 #include "qp_port.h"
 #include "bsp.h"
 #include "game.h"
 #include "mine.h"

 Q_DEFINE_THIS_FILE

 //..
 QState Mine::initial(Mine *me, QEvent const *) {
 . . .
 me->onInitial(); // customized initialization for subclasses
 return Q_TRAN(&Mine::unused);
 }
 //..
 QState Mine::unused(Mine *me, QEvent const *e) {
 switch (e->sig) {
 case MINE_PLANT_SIG: {

6 of 23 Copyright © Quantum Leaps, LLC. All Rights Reserved.

Application Note
Inheriting State Machines with QP v4.x

www.state-machine.com

 me->m_x = ((ObjectPosEvt const *)e)->x;
 me->m_y = ((ObjectPosEvt const *)e)->y;
 return Q_TRAN(&Mine::planted);
 }
 }
 return Q_SUPER(&QHsm::top);
 }
 //..
 QState Mine::used(Mine *me, QEvent const *e) {
 switch (e->sig) {
 case Q_EXIT_SIG: {
 // tell the Tunnel that this mine is becoming disabled
 MineEvt *mev = Q_NEW(MineEvt, MINE_DISABLED_SIG);
 mev->id = me->m_id;
 AO_Tunnel->postFIFO(mev);
 return Q_HANDLED();
 }
 case MINE_RECYCLE_SIG: {
 return Q_TRAN(&Mine::unused);
 }
 }
 return Q_SUPER(&QHsm::top);
 }
 //..
 QState Mine::planted(Mine *me, QEvent const *e) {
 uint8_t x;
 uint8_t y;
 uint8_t bmp;

 switch (e->sig) {
 case TIME_TICK_SIG: {
 if (me->m_x >= GAME_SPEED_X) {
 me->m_x -= GAME_SPEED_X; // move the mine 1 step
 // tell the Tunnel to draw the Mine
 me->onDrawMine(); // customized in subclasses
 }
 else {
 return Q_TRAN(&Mine::unused);
 }
 return Q_HANDLED();
 }
 case SHIP_IMG_SIG: {
 if (me->onShipCollision((ObjectImageEvt const *)e)) {
 // go straight to 'disabled' and let the Ship do the exploding
 return Q_TRAN(&Mine::unused);
 }
 return Q_HANDLED();
 }
 case MISSILE_IMG_SIG: {
 if (me->onMissileCollision((ObjectImageEvt const *)e)) {
 return Q_TRAN(&Mine::exploding);
 }
 return Q_HANDLED();
 }
 }
 return Q_SUPER(&Mine::used);

7 of 23 Copyright © Quantum Leaps, LLC. All Rights Reserved.

Application Note
Inheriting State Machines with QP v4.x

www.state-machine.com

 }
 //..
 QState Mine::exploding(Mine *me, QEvent const *e) {
 switch (e->sig) {
 case Q_ENTRY_SIG: {
 me->m_exp_ctr = 0;
 return Q_HANDLED();
 }
 case TIME_TICK_SIG: {
 if ((me->m_x >= GAME_SPEED_X) && (me->m_exp_ctr < 15)) {
 ObjectImageEvt *oie;

 ++me->m_exp_ctr; // advance the explosion counter
 me->m_x -= GAME_SPEED_X; // move explosion by 1 step

 // tell the Game to render the current stage of Explosion
 oie = Q_NEW(ObjectImageEvt, EXPLOSION_SIG);
 oie->x = me->m_x + 1; // x of explosion
 oie->y = (int8_t)((int)me->m_y - 4 + 2); // y of explosion
 oie->bmp = EXPLOSION0_BMP + (me->m_exp_ctr >> 2);
 AO_Tunnel->postFIFO(oie);
 }
 else {
 return Q_TRAN(&Mine::unused);
 }
 return Q_HANDLED();
 }
 }
 return Q_SUPER(&Mine::used);
 }

3.3 Subclassing The Mine Superclass
In the Template Method of inheriting state machines the subclasses of the Mine state machine class do
not define any additional states or transitions, but rather simply specialize the virtual functions declared in
the superclass. The following Listing 3 and Listing 4 show the declarations/definitions of the Mine1 and
Mine2 subclasses, respectively.

NOTE: The subclasses Mine1 and Mine2 capture only the differences from the common superclass
Mine.

Listing 3 Declaration/Definition of the Mine1 state machine subclass (file mine1.cpp)
 #include "qp_port.h"
 #include "bsp.h"
 #include "game.h"
 #include "mine.h"

 Q_DEFINE_THIS_FILE

 // local objec --- ts --------
 class Mine1 : public Mine { // extend the Mine class
 public:

8 of 23 Copyright © Quantum Leaps, LLC. All Rights Reserved.

Application Note
Inheriting State Machines with QP v4.x

www.state-machine.com

 Mine1(void);

 protected:
 virtual void onInitial(void);
 virtual void onDrawMine(void);
 virtual uint8_t onShipCollision(ObjectImageEvt const *e);
 virtual uint8_t onMissileCollision(ObjectImageEvt const *e);
 };

 static Mine1 l_mine1[GAME_MINES_MAX]; // a pool of type-1 mines

 // helper macro to provide the ID of this mine
 #define MINE_ID(me_) ((me_) - l_mine1)

 //..
 QHsm *Mine1_getInst(uint8_t id) {
 Q_REQUIRE(id < GAME_MINES_MAX);
 return &l_mine1[id];
 }
 //..
 Mine1::Mine1(void) : Mine(MINE_ID(this)) { // the ctor
 }
 //..
 void Mine1::onInitial() {
 . . .
 }
 //..
 void Mine1::onDrawMine(void) {
 ObjectImageEvt *oie = Q_NEW(ObjectImageEvt, MINE_IMG_SIG);
 oie->x = m_x;
 oie->y = m_y;
 oie->bmp = MINE1_BMP;
 AO_Tunnel->postFIFO(oie);
 }
 //..
 uint8_t Mine1::onShipCollision(ObjectImageEvt const *e) {
 uint8_t x = (uint8_t)e->x;
 uint8_t y = (uint8_t)e->y;
 uint8_t bmp = (uint8_t)e->bmp;

 // test for incoming Ship hitting this mine
 if (do_bitmaps_overlap(MINE1_BMP, m_x, m_y, bmp, x, y)) {
 // Hit event with the type of the Mine1
 static MineEvt const mine1_hit(HIT_MINE_SIG, 1);
 AO_Ship->postFIFO(&mine1_hit);

 return 1; // report collision with the Ship
 }
 else {
 return 0; // no collision with the Ship
 }
 }
 //..
 uint8_t Mine1::onMissileCollision(ObjectImageEvt const *e) {
 uint8_t x = (uint8_t)e->x;
 uint8_t y = (uint8_t)e->y;

9 of 23 Copyright © Quantum Leaps, LLC. All Rights Reserved.

Application Note
Inheriting State Machines with QP v4.x

www.state-machine.com

 uint8_t bmp = (uint8_t)e->bmp;

 // test for incoming Missile hitting this mine
 if (do_bitmaps_overlap(MINE1_BMP, m_x, m_y, bmp, x, y)) {
 // Score event with the score for destroying Mine1
 static ScoreEvt const mine1_destroyed(DESTROYED_MINE_SIG, 25);
 AO_Missile->postFIFO(&mine1_destroyed);
 return 1; // report collision with the Missile
 }
 else {
 return 0; // no collision with the Missile
 }
 }

Listing 4 Declaration/Definition of the Mine2 state machine subclass (file mine2.cpp)
 #include "qp_port.h"
 #include "bsp.h"
 #include "game.h"
 #include "mine.h"

 Q_DEFINE_THIS_FILE

 // local objects ---
 class Mine2 : public Mine { // extend the Mine class
 public:
 Mine2(void);

 protected:
 virtual void onInitial(void);
 virtual void onDrawMine(void);
 virtual uint8_t onShipCollision(ObjectImageEvt const *e);
 virtual uint8_t onMissileCollision(ObjectImageEvt const *e);
 };

 static Mine2 l_mine2[GAME_MINES_MAX]; // a pool of type-2 mines

 // helper macro to provide the ID of this mine
 #define MINE_ID(me_) ((me_) - l_mine2)

 //..
 QHsm *Mine2_getInst(uint8_t id) {
 Q_REQUIRE(id < GAME_MINES_MAX);
 return &l_mine2[id];
 }
 //..
 Mine2::Mine2(void) : Mine(MINE_ID(this)) { // the ctor
 }
 //..
 void Mine2::onInitial() {
 . . .
 }
 //..
 void Mine2::onDrawMine(void) {
 ObjectImageEvt *oie = Q_NEW(ObjectImageEvt, MINE_IMG_SIG);

10 of 23 Copyright © Quantum Leaps, LLC. All Rights Reserved.

Application Note
Inheriting State Machines with QP v4.x

www.state-machine.com

 oie->x = m_x;
 oie->y = m_y;
 oie->bmp = MINE2_BMP;
 AO_Tunnel->postFIFO(oie);
 }
 //..
 uint8_t Mine2::onShipCollision(ObjectImageEvt const *e) {
 uint8_t x = (uint8_t)e->x;
 uint8_t y = (uint8_t)e->y;
 uint8_t bmp = (uint8_t)e->bmp;

 // test for incoming Ship hitting this mine
 if (do_bitmaps_overlap(MINE2_BMP, m_x, m_y, bmp, x, y)) {
 // Hit event with the type of the Mine1
 static MineEvt const mine2_hit(HIT_MINE_SIG, 2);
 AO_Ship->postFIFO(&mine2_hit);
 return 1; // report collision with the Ship
 }
 else {
 return 0; // no collision with the Ship
 }
 }
 //..
 uint8_t Mine2::onMissileCollision(ObjectImageEvt const *e) {
 uint8_t x = (uint8_t)e->x;
 uint8_t y = (uint8_t)e->y;
 uint8_t bmp = (uint8_t)e->bmp;

 // test for incoming Missile hitting this mine
 // NOTE: Mine type-2 is nastier than Mine type-1.
 // The type-2 mine can hit the Ship with any of its
 // "tentacles". However, it can be destroyed by the
 // Missile only by hitting its center, defined as
 // a smaller bitmap MINE2_MISSILE_BMP.
 //
 if (do_bitmaps_overlap(MINE2_MISSILE_BMP, m_x, m_y, bmp, x, y)) {
 // Score event with the score for destroying Mine2
 static ScoreEvt const mine2_destroyed(DESTROYED_MINE_SIG, 45);
 AO_Missile->postFIFO(&mine2_destroyed);

 return 1; // report collision with the Missile
 }
 else {
 return 0; // no collision with the Missile
 }
 }

3.4 Testing the Code
The executable for the example is found in the directory <qpcpp>\examples\80x86\dos\
tcpp101\l\game2\dbg\game.exe. This version of the “Fly ‘n’ Shoot” game should behave exactly as the
original described in Chapter 1 of [PSiCC2].

11 of 23 Copyright © Quantum Leaps, LLC. All Rights Reserved.

Application Note
Inheriting State Machines with QP v4.x

www.state-machine.com

4 Subtyping Method Example
The illustration of the Subtyping Method is based on the Calculator example described in Chapter 3 of
[PSiCC2]. The basic Calculator state machine is subtyped to add percentage calculations, which requires
overriding one state and adding one transition, as shown in Figure 4.

Figure 4 Refined Calc2 statechart. The added/refined elements are shown in bold

entry /
exit /
TERMINATE / exit();

on

ready

beginresult
entry / negate();

negated1

OPER [e->keId == '-']

operand1

DIGIT_0 / ;
zero1

DIGIT_0 / insert();
DIGIT_1_9 / insert();

int1
DIGIT_0 / insert();
DIGIT_1_9 / insert();

frac1

DIGIT_0 DIGIT_1_9 POINT DIGIT_0
DIGIT_1_9 POINT

DIGIT_1_9 POINT

opEntered
entry / negate();

negated2OPER [e->keId == '-']

operand2

DIGIT_0 / ;
zero2

DIGIT_0 / insert();
DIGIT_1_9 / insert();

int2
DIGIT_0 / insert();
DIGIT_1_9 / insert();

frac2

DIGIT_0 DIGIT_1_9 POINT
DIGIT_0
DIGIT_1_9 POINT

DIGIT_1_9 POINT

error

OPER

CE

CE

OPER

EQUALS

[error]

[else]

OPER

[else]

[error]

C

CE

CE

POINT

POINT
PERCENT

[error]

[else]

The refined calculator shown in Figure 4 “knows” how to handle the percentage calculations of the form x
+ y% gives z (e.g., price + sales tax gives total), where the ‘+’ operator can be replaced by ‘-‘, ‘*’, or ‘÷’.
The Calc2 statechart illustrates a nontrivial refinement to the original Calc (see Chapter 2 in [PSiCC2]),
because it involves refining an existing state “operand2” by adding to it a transition. The problem is that
the state “oper-and2” is already involved in many relationships. For example, it is the superstate of

12 of 23 Copyright © Quantum Leaps, LLC. All Rights Reserved.

Application Note
Inheriting State Machines with QP v4.x

www.state-machine.com

“zero2”, “int2”, and “frac2”, as well as the source of transitions triggered by signals EQUALS, OPER, and
CE. The question is: Can you override just the “operand2” state handler without breaking all the relation-
ships in which it already takes part?

4.1 Calc1—Preparing a State Machine Class for Inheritance
The state machine structure coded with fixed addresses of static state-handler functions is not flexible
enough to allow for overriding selected state-handler functions in the subclasses. To allow the needed
flexibility, the state machine must be coded with addresses of state handler functions that can be
modified.

Every state machine class that you intend to extend via inheritance must be prepared to be inherited. The
preparation means that it will be declared and coded slightly differently, to allow greater flexibility in
overriding state machine elements.

4.1.1 Declaring the Base Calc1 State Machine Class
Listing 5 shows Calc1 class, which is a modified version of the original Calc class described in Chapter 2
in [PSiCC2]. The Calc1 class is prepared for inheritance by adding static “state-variables” shown in bold.
Additionally, data members are declared as protected instead of private, so that they are accessible in the
subclasses of Calc1.

NOTE: The state machine base class can also declare virtual functions to be uses as actions within
the state machine. The late-binding mechanism works in the subclasses because the static state-
handler functions invoke the class methods via the “me” pointer.

Listing 5 Declaring Calc1 state machine base class for inheritance.
 #ifndef calc1_h
 #define calc1_h

 enum Calc1Signals {
 C_SIG = Q_USER_SIG,
 CE_SIG,
 DIGIT_0_SIG,
 DIGIT_1_9_SIG,
 POINT_SIG,
 OPER_SIG,
 EQUALS_SIG,
 OFF_SIG,

 MAX_CALC1_SIG // offset for adding signals used in subclasses
 };

 struct CalcEvt : public QEvent {
 uint8_t key_code; // code of the key
 };

 // Calculator HSM class for inheritance --------------------------------------
 class Calc1 : public QHsm {
 protected:
 double m_operand1; // the value of operand 1

13 of 23 Copyright © Quantum Leaps, LLC. All Rights Reserved.

Application Note
Inheriting State Machines with QP v4.x

www.state-machine.com

 uint8_t m_operator; // operator key entered

 public:
 Calc1(void) : QHsm((QStateHandler)&Calc1::initial) {} // ctor

 protected:
 static QState initial(Calc1 *me, QEvent const *e); // initial pseudostate

 static QState on (Calc1 *me, QEvent const *e); // state-handler
 static QState error (Calc1 *me, QEvent const *e);
 static QState ready (Calc1 *me, QEvent const *e);
 static QState result (Calc1 *me, QEvent const *e);
 static QState begin (Calc1 *me, QEvent const *e);
 static QState negated1 (Calc1 *me, QEvent const *e);
 static QState operand1 (Calc1 *me, QEvent const *e);
 static QState zero1 (Calc1 *me, QEvent const *e);
 static QState int1 (Calc1 *me, QEvent const *e);
 static QState frac1 (Calc1 *me, QEvent const *e);
 static QState opEntered(Calc1 *me, QEvent const *e);
 static QState negated2 (Calc1 *me, QEvent const *e);
 static QState operand2 (Calc1 *me, QEvent const *e);
 static QState zero2 (Calc1 *me, QEvent const *e);
 static QState int2 (Calc1 *me, QEvent const *e);
 static QState frac2 (Calc1 *me, QEvent const *e);
 static QState final (Calc1 *me, QEvent const *e);

 static QStateHandler state_error;

static QStateHandler state_on; // state-variable

 static QStateHandler state_ready;
 static QStateHandler state_result;
 static QStateHandler state_begin;
 static QStateHandler state_negated1;
 static QStateHandler state_operand1;
 static QStateHandler state_zero1;
 static QStateHandler state_int1;
 static QStateHandler state_frac1;
 static QStateHandler state_opEntered;
 static QStateHandler state_negated2;
 static QStateHandler state_operand2;
 static QStateHandler state_zero2;
 static QStateHandler state_int2;
 static QStateHandler state_frac2;
 static QStateHandler state_final;
 };

 #endif // calc1_h

NOTE: The Calc1 state machine in Listing 5 provides “state-variables” for all its states. However,
you can choose to provide “state-variables” only for states intended for overriding in the subclasses.

4.1.2 Defining the Base Calc1 State Machine Class
Listing 6 shows the definition of the Calc1 base class. At the top of the listing, you see the definitions and
initialization of the static state-variables. Subsequently, you don’t hard-code the ad-dresses of state

14 of 23 Copyright © Quantum Leaps, LLC. All Rights Reserved.

Application Note
Inheriting State Machines with QP v4.x

www.state-machine.com

handler methods in the initial transitions, regular transitions, or return statements in the state handlers.
That way, all these address (targets of various transitions and superstates) can be changed by modifying
the state-variables, such as the pointer to function Calc1::state_operand2, for example.

Listing 6 Definition of the Calc1 state machine base class
 #include "qp_port.h" // the port of the QP framework
 #include "bsp.h" // board support package
 #include "calc1.h"

 // state variables ---
 QStateHandler Calc1::state_on = (QStateHandler)&Calc1::on;

 QStateHandler Calc1::state_error = (QStateHandler)&Calc1::error;
 QStateHandler Calc1::state_ready = (QStateHandler)&Calc1::ready;
 QStateHandler Calc1::state_result = (QStateHandler)&Calc1::result;
 QStateHandler Calc1::state_begin = (QStateHandler)&Calc1::begin;
 QStateHandler Calc1::state_negated1 = (QStateHandler)&Calc1::negated1;
 QStateHandler Calc1::state_operand1 = (QStateHandler)&Calc1::operand1;
 QStateHandler Calc1::state_zero1 = (QStateHandler)&Calc1::zero1;
 QStateHandler Calc1::state_int1 = (QStateHandler)&Calc1::int1;
 QStateHandler Calc1::state_frac1 = (QStateHandler)&Calc1::frac1;
 QStateHandler Calc1::state_opEntered = (QStateHandler)&Calc1::opEntered;
 QStateHandler Calc1::state_negated2 = (QStateHandler)&Calc1::negated2;
 QStateHandler Calc1::state_operand2 = (QStateHandler)&Calc1::operand2;
 QStateHandler Calc1::state_zero2 = (QStateHandler)&Calc1::zero2;
 QStateHandler Calc1::state_int2 = (QStateHandler)&Calc1::int2;
 QStateHandler Calc1::state_frac2 = (QStateHandler)&Calc1::frac2;
 QStateHandler Calc1::state_final = (QStateHandler)&Calc1::final;

 // HSM definition --
 QState Calc1::initial(Calc1 *me, QEvent const * /* e */) {
 BSP_clear();
 return Q_TRAN(state_on);
 }
 //..
 QState Calc1::operand2(Calc1 *me, QEvent const *e) {
 switch (e->sig) {
 case Q_ENTRY_SIG: {
 BSP_message("operand2-ENTRY;");
 return Q_HANDLED();
 }
 case Q_EXIT_SIG: {
 BSP_message("operand2-EXIT;");
 return Q_HANDLED();
 }
 case CE_SIG: {
 BSP_clear();
 return Q_TRAN(state_opEntered);
 }
 case OPER_SIG: {
 if (BSP_eval(me->m_operand1, me->m_operator, BSP_get_value())) {
 me->m_operand1 = BSP_get_value();
 me->m_operator nst *)e)->key_code; = ((CalcEvt co
 return Q_TRAN(state_opEntered);
 }

15 of 23 Copyright © Quantum Leaps, LLC. All Rights Reserved.

Application Note
Inheriting State Machines with QP v4.x

www.state-machine.com

 else {
 return Q_TRAN(state_error);
 }
 return Q_HANDLED();
 }
 case EQUALS_SIG: {
 if (BSP_eval(me->m_operand1, me->m_operator, BSP_get_value())) {
 return Q_TRAN(state_result);
 }
 else {
 return Q_TRAN(state_error);
 }
 return Q_HANDLED();
 }
 }
 return Q_SUPER(state_on);

NOTE: The Calc1 state machine in Listing 6 uses “state-variables” in all transitions and superstate
designations. However, you can limit the flexibility by using “state-variables” only for states that are
intended for overriding. You can use the fixed addresses (e.g., &Calc1::result for the “result”
state) for all states that you do not allow to override.

4.2 Calc2—Deriving a State Machine
Once you prepared a base statechart, you can easily derive from it and override the state machine
elements that the base has exposed for such derivation, as shown in Listing 7.

4.2.1 Declaring the Derived Calc2 Statechart

Listing 7 Deriving Calc2 statechart from Calc1 base class
 #ifndef calc2_h
 #define calc2_h

 #include "calc1.h"

 enum Calc2Signals {
 PERCENT_SIG = MAX_CALC1_SIG,
 MAX_CALC2_SIG
 };

 class Calc2 : public Calc1 { // Calc2 state machine
 public:
 Calc2(void); // ctor

 protected:
 nt const *e); static QState operand2 (Calc2 *me, QEve
 static QStateHandler state_operand2;
 };

 #endif // calc2_h

16 of 23 Copyright © Quantum Leaps, LLC. All Rights Reserved.

Application Note
Inheriting State Machines with QP v4.x

www.state-machine.com

The extended calculator needs one more signal to the Calc1 signals, which is added in the enumeration
Calc2Signals. The statechart Calc2 inherits from Calc1, and declares only one state handler
operand2, which will override the state handler from the base class. Additionally, the derived statechart
Calc2 declares the static state variable state_operand2 for further derivation.

4.2.2 Defining the Derived Calc2 Statechart

Listing 8 Definition of the Calc2 state machine
 #include "qp_port.h"
 #include "bsp.h" // board support package
 #include "calc2.h"

 #include <stdlib.h>

 Q_DEFINE_THIS_FILE

 ------ // state variables ---
 QStateHandler Calc2::state_operand2 = (QStateHandler)&Calc2::operand2;

 // Ctor definition ---
 Calc2::Calc2(void) : Calc1() {
 // substitute all overridden states...
 (1) Calc1::state_operand2 = state_operand2;
 }
 //..
 QState Calc2::operand2(Calc2 *me, QEvent const *e) {
 switch (e->sig) {
 case PERCENT_SIG: {
 double operand2 = BSP_get_value();
 switch (me->m_operator) {
 case KEY_PLUS:
 case KEY_MINUS: {
 operand2 = me->m_operand1 * operand2 / 100.0;
 break;
 }
 case KEY_MULT:
 case KEY_DIVIDE: {
 operand2 /= 100.0;
 break;
 }
 default: {
 Q_ERROR();
 break;
 }
 }
 if (BSP_eval(me->m_operand1, me->m_operator, operand2)) {
 return Q_TRAN(state_result);
 }
 else {
 return Q_TRAN(state_error);

17 of 23 Copyright © Quantum Leaps, LLC. All Rights Reserved.

Application Note
Inheriting State Machines with QP v4.x

www.state-machine.com

 }
 }
 }
 (2) return Q_SUPER(&Calc1::operand2); // let Calc1 handle other events
 }

Note first important aspect of Listing 8 is (1) changing of the state-variable Calc1::state_operand2 to
point to the state-handler function of the subclass Calc2. This change automatically updates all the
relationships between the “operand2” state and other states in the Calc1 state machines.

The second vital aspect is that the overriding state handler Calc2::operand2() defines only the
differences from the original state-handler Calc1::operand2(). In fact, the derived state-handler
function Calc2::operand2() delegates handling all events except PERCENT_SIG to the base class state
handler Calc1::operand2() by returning it as the superstate (2)..

4.3 Testing the Derived Statechart
Once you prepared a base statechart, you can easily derive from it and override the state machine
elements that the base has exposed for such derivation, as shown in Listing 7.

Listing 9 Event loop for the Calc2 state machine
 #include "qp_port.h" // the port of the QP framework
 #include "bsp.h" // board support package
 #include "calc2.h"

 #include <iostream.h>
 #include <stdlib.h>
 #include <conio.h>
 #include <dos.h>

 // Local objects ---
 static Calc2 l_calc; // instantiate Calculator2

 //..
 void main() {

 cout << "Calculator2 example, QEP version: "
 << QEP::getVersion() << endl
 << "Press '0' .. '9' to enter a digit\n"
 "Press '.' to enter the decimal point\n"
 "Press '+' to add\n"
 "Press '-' to subtract or negate a number\n"
 "Press '*' to multiply\n"
 "Press '/' to divide\n"
 "Press '=' or <Enter> to get the result\n"
 "Press 'c' or 'C' to Cancel\n"
 "Press 'e' or 'E' to Cancel Entry\n"
 "Press <Esc> to quit.\n\n";

 l_calc.init(); // trigger initial transition

 for (;;) { // event loop

18 of 23 Copyright © Quantum Leaps, LLC. All Rights Reserved.

Application Note
Inheriting State Machines with QP v4.x

www.state-machine.com

 CalcEvt e; // Calculator event

 BSP_display(); // show the display

 e.key_code = (uint8_t)getche(); // get a char with echo
 cout << ": ";

 switch (e.key_code) {
 case 'c': // intentionally fall through
 case 'C': {
 ((QEvent *)&e)->sig = C_SIG;
 break;
 }
 case 'e': // intentionally fall through
 case 'E': {
 ((QEvent *)&e)->sig = CE_SIG;
 break;
 }
 case '0': {
 ((QEvent *)&e)->sig = DIGIT_0_SIG;
 break;
 }
 case '1': // intentionally fall through
 case '2': // intentionally fall through
 case '3': // intentionally fall through
 case '4': // intentionally fall through
 case '5': // intentionally fall through
 case '6': // intentionally fall through
 case '7': // intentionally fall through
 case '8': // intentionally fall through
 case '9': {
 ((QEvent *)&e)->sig = DIGIT_1_9_SIG;
 break;
 }
 case '.': {
 ((QEvent *)&e)->sig = POINT_SIG;
 break;
 }
 case '+': // intentionally fall through
 case '-': // intentionally fall through
 case '*': // intentionally fall through
 case '/': {
 ((QEvent *)&e)->sig = OPER_SIG;
 break;
 }
 case '%': { // new event for Calc2
 ((QEvent *)&e)->sig = PERCENT_SIG;
 break;
 }
 case '=': // intentionally fall through
 case '\r': { // Enter key
 ((QEvent *)&e)->sig = EQUALS_SIG;
 break;
 }
 case '\33': { // ESC key
 ((QEvent *)&e)->sig = OFF_SIG;

19 of 23 Copyright © Quantum Leaps, LLC. All Rights Reserved.

Application Note
Inheriting State Machines with QP v4.x

www.state-machine.com

 break;
 }
 default: {
 ((QEvent *)&e)->sig = 0; // invalid event
 break;
 }
 }

 if (((QEvent *)&e)->sig != 0) { // valid event generated?
 l_calc.dispatch(&e); // dispatch event
 }
 }
 }

Listing 9 shows the event loop for Calc2, which is very similar to the original Calc event loop. The only
differences are the instantiation of Calc2 object instead of Calc1 and generation of the PERCENT event.

The Listing 10 below shows a test of Calc2 run for the following computations:

100 + 8%
100 – 8%
100 * 8%
100 / 8%, and
100 / 0%, which causes a divide-by-zero error

Listing 10 Test run of Calc2
Calculator2 example, QEP version: 4.0.00
Press '0' .. '9' to enter a digit
Press '.' to enter the decimal point
Press '+' to add
Press '-' to subtract or negate a number
Press '*' to multiply
Press '/' to divide
Press '=' or <Enter> to get the result
Press 'c' or 'C' to Cancel
Press 'e' or 'E' to Cancel Entry
Press <Esc> to quit.

on-ENTRY;on-INIT;ready-ENTRY;ready-INIT;begin-ENTRY;
[0] 1: begin-EXIT;ready-EXIT;operand1-ENTRY;int1-ENTRY;
[1] 0:
[10] 0:
[100] _:
[100] 8:
[1008] &:
[1008] c: int1-EXIT;operand1-EXIT;on-EXIT;on-ENTRY;on-INIT;ready-ENTRY;read
y-INIT;begin-ENTRY;
[0] 1: begin-EXIT;ready-EXIT;operand1-ENTRY;int1-ENTRY;
[1] 0:
[10] 0:
[100] -: int1-EXIT;operand1-EXIT;opEntered-ENTRY;
[100] 8: opEntered-EXIT;operand2-ENTRY;int2-ENTRY;

20 of 23 Copyright © Quantum Leaps, LLC. All Rights Reserved.

Application Note
Inheriting State Machines with QP v4.x

www.state-machine.com

[8] %: int2-EXIT;operand2-EXIT;ready-ENTRY;result-ENTRY;
[92] c: result-EXIT;ready-EXIT;on-EXIT;on-ENTRY;on-INIT;ready-ENTRY;ready
-INIT;begin-ENTRY;
[0] 1: begin-EXIT;ready-EXIT;operand1-ENTRY;int1-ENTRY;
[1] 0:
[10] 0:
[100] *: int1-EXIT;operand1-EXIT;opEntered-ENTRY;
[100] 8: opEntered-EXIT;operand2-ENTRY;int2-ENTRY;
[8] %: int2-EXIT;operand2-EXIT;ready-ENTRY;result-ENTRY;
[8] c: result-EXIT;ready-EXIT;on-EXIT;on-ENTRY;on-INIT;ready-ENTRY;ready
-INIT;begin-ENTRY;
[0] 1: begin-EXIT;ready-EXIT;operand1-ENTRY;int1-ENTRY;
[1] 0:
[10] 0:
[100] /: int1-EXIT;operand1-EXIT;opEntered-ENTRY;
[100] 8: opEntered-EXIT;operand2-ENTRY;int2-ENTRY;
[8] %: int2-EXIT;operand2-EXIT;ready-ENTRY;result-ENTRY;
[1250] c: result-EXIT;ready-EXIT;on-EXIT;on-ENTRY;on-INIT;ready-ENTRY;ready
-INIT;begin-ENTRY;
[0] ←: begin-EXIT;ready-EXIT;on-EXIT;final-ENTRY;
[0] 1: begin-EXIT;ready-EXIT;operand1-ENTRY;int1-ENTRY;
[1] 0:
[10] 0:
[100] /: int1-EXIT;operand1-EXIT;opEntered-ENTRY;
[100] 0: opEntered-EXIT;operand2-ENTRY;zero2-ENTRY;
[0] %: zero2-EXIT;operand2-EXIT;error-ENTRY;
[Error 0] c: error-EXIT;on-EXIT;on-ENTRY;on-INIT;ready-ENTRY;ready-INIT;begin-
ENTRY;
[0] ←: begin-EXIT;ready-EXIT;on-EXIT;final-ENTRY;
Bye! Bye

21 of 23 Copyright © Quantum Leaps, LLC. All Rights Reserved.

Application Note
Inheriting State Machines with QP v4.x

www.state-machine.com

5 Related Documents and References

Document Location

[PSiCC2] “Practical UML Statecharts in C/C++,
Second Edition: Event-Driven Programming for
Embedded Systems”, Miro Samek, Newnes, 2008

Available from most online book retailers, such as
amazon.com. See also: http://www.state-
machine.com/psicc2.htm

[PSiCC1] “Practical Statecharts in C/C++: Quantum
Programming for Embedded Systems”, Miro
Samek, CMP Books, 2002

Available from most online book retailers, such as
amazon.com. See also: http://www.state-
machine.com/psicc.htm

[GoF 95] “Design Patterns: Reusable Elements of
Object-Oriented Software”, Erich Gamma at al.
(“Gang of Four”), 1995

Available from most online book retailers, such as
amazon.com.

[QP 08] “QP Reference Manual”, Quantum Leaps,
LLC, 2008

http://www.state-machine.com/doxygen/qpn/

[QL AN-Directory 07] “Application Note: QP
Directory Structure”, Quantum Leaps, LLC, 2007

http://www.state-
machine.com/doc/AN_QP_Directory_Structure.pdf

22 of 23 Copyright © Quantum Leaps, LLC. All Rights Reserved.

http://www.amazon.com/
http://www.state-machine.com/psicc2.htm
http://www.state-machine.com/psicc2.htm
http://www.amazon.com/
http://www.state-machine.com/psicc.htm
http://www.state-machine.com/psicc.htm
http://www.amazon.com/
http://www.state-machine.com/doxygen/qpn/
http://www.state-machine.com/doc/AN_QP_Directory_Structure.pdf
http://www.state-machine.com/doc/AN_QP_Directory_Structure.pdf

Application Note
Inheriting State Machines with QP v4.x

www.state-machine.com

6 Contact Information

Quantum Leaps, LLC
103 Cobble Ridge Drive
Chapel Hill, NC 27516
USA

+1 866 450 LEAP (toll free, USA only)
+1 919 869-2998 (FAX)

e-mail: info@quantum-leaps.com
WEB : http://www.quantum-leaps.com
 http://www.state-machine.com

“Practical UML
Statecharts in C/C++,
Second Edition: Event
Driven Programming for
Embedded Systems”,
by Miro Samek,
Newnes, 2008

23 of 23 Copyright © Quantum Leaps, LLC. All Rights Reserved.

http://www.state-machine.com/
http://www.state-machine.com/psicc2
mailto:info@quantum-leaps.com
http://www.quantum-leaps.com/
http://www.state-machine.com/

	Introduction
	1.1 About QP™
	1.2 Licensing QP™

	2 Changes between QP v2.x and QP 4.x
	2.1 The Rationale

	3 Template Method Example
	3.1 The Mine Superclass Design
	3.2 The Mine Superclass Implementation
	3.3 Subclassing The Mine Superclass
	3.4 Testing the Code

	4 Subtyping Method Example
	4.1 Calc1—Preparing a State Machine Class for Inheritance
	4.1.1 Declaring the Base Calc1 State Machine Class
	4.1.2 Defining the Base Calc1 State Machine Class

	4.2 Calc2—Deriving a State Machine
	4.2.1 Declaring the Derived Calc2 Statechart
	4.2.2 Defining the Derived Calc2 Statechart

	4.3 Testing the Derived Statechart

	5 Related Documents and References
	6 Contact Information

