
On the Compositional Properties of UML Statechart
Diagrams

Anthony J H Simons

Department of Computer Science, University of Sheffield
Sheffield, South Yorkshire

Abstract

This paper proposes a revised semantic interpretation of UML Statechart Diagrams which ensures, under the
specified design rules, that Statecharts may be constructed to have true compositional properties. In particular,
hierarchical state machines may be properly encapsulated to allow independent verification and compositional
testing, something which is not possible under the current UML semantics. Certain problems regarding the
formal tractability of UML Satechart Diagrams are addressed, such as the confusion over states and connectors,
the flattening effect of boundary-crossing transitions, and the consequences of inverting the inter-level priority
rule for handling concurrent events. A set-theoretic formal treatment of object states, events, guards and run-to-
completion processing is given, describing both serial and concurrent Statecharts.

1 Introduction

One of the advantages of state machine based design models is the ability to visualise the control behaviour of a
system graphically, something that is more appealing than a dense mathematical specification. For this reason,
Statecharts of one kind or another have become perhaps the most acceptable means of specifying formal designs in
the software industry. The UML Statechart Diagram is now an important OMG standard for documenting the
behaviour of objects, components and systems.

An evolution of the Harel Statechart [1], the Statechart Diagram traces its history via the Dynamic Model of
OMT [2], a version of which was subsequently incorporated in UML 1.1 [3]. After adoption by the OMG in 1997,
the Statechart Diagram was subject to scrutiny during the UML 1.2 and 1.3 revisions. The current published OMG
June 1999 standard defines the notation for Statecharts, giving examples of usage [4], and describes the intended
semantics of Statecharts as part of the State Machine behavioural elements package (which also describes Activity
Graphs) [5]. The latter sources provide perhaps the most precise descriptions that have yet been available for UML
1.3 Statecharts, superceding the gentler introduction in the UML 1.3 Users Guide [6].

1.1 Semantics of State Machines

Classical finite state machines are amenable to formal reasoning in terms of their equivalence to orders of grammar
and formal language in the Chomsky hierarchy [7]. For example, a recursive language is defined by a context-free
grammar and is recognisable by a pushdown automaton, a variant of a finite state automaton with a global stack.
However, different Statechart formalisms are subject to a number of different semantic interpretations. These result
from differences in the treatment of events as signals or functions, the static or quasi-functional nature of states, the
existence of global or local memory, the discrete, continuous or interval-based nature of time and the precise
meaning of the connectors between different levels of hierarchical machines [8, 5]. Statecharts typically admit the
presence of read/writeable memory and allow conditions, or guards, which test this, making them equivalent to
augmented transition networks, capable of recognising arbitrary context-dependent languages.

1.2 Hierarchical Modular Testing

Another property of state machines is the ability to validate the correct operation of the formal model with respect to
the events handled by it; and the ability then to generate test sets which verify the correct behaviour of an
implementation with respect to the formal design provided by the state machine. The basis for the state machine
testing method is due to Chow [9], which guarantees the behaviour of an implementation with respect to a minimal
finite state automaton, subject to assumptions about redundant states, by driving the system through its transition
cover and comparing all valid and error states reached with the specification.

Rigorous Object-Oriented Methods, 2000

1

On the Compositional Properties of UML Statechart Diagrams

Holcombe and Ipate [10, 11, 12] have generalised this approach for Stream X-Machines, which are a
generalisation of finite state machines with a global memory and input/output streams. X-Machines are formally
equivalent to a restricted class of augmented transition networks and have Turing-equivalent computing power.
Using the Holcombe/Ipate reductionist method, a design is decomposed into a hierarchy of independent Stream X-
Machines, whose behaviour may be validated independently. A system based on this design is tested, using a variant
of Chow's method, in a bottom-up fashion. The method provides a ground-breaking proof of correct integration
[13], which absolutely guarantees the correct behaviour of an integrated system, on the assumption that its
component parts are correct.

The importance of this cannot be under-emphasised: conventional path-based testing approaches do no more
than exercise as many parts of a system as is economically feasible; and when testing is complete, no definite
statements can be made about the number or location of any remaining faults, nor how serious these might be. With
the Holcombe/Ipate method, systems may be tested in a divide-and-conquer fashion down to the lowest level and
smallest component whose behaviour you are prepared to trust, and in which all remaining faults are necessarily to
be found. Compared with other object-oriented testing methods [14, 15] which flatten hierarchical state machines
and compute the transition cover for the Cartesian product of states and transitions, the Holcombe/Ipate method
computes the transition cover for each machine independently, making complete functional black-box testing a
tractable possibility. This divide-and-conquer method depends crucially on the design-for-test properties of the
Stream X-Machine model, which include (i) compositionality - the ability to deal with each level of abstraction as an
independent machine; (ii) output-distinguishability - the ability to associate the firing of each distinct transition with
a uniquely observed output; and (iii) test-completeness - the ability to drive a machine through all its transitions
from any state.

1.3 Design-For-Test Properties

To obtain similar testing benefits for UML Statecharts, it is necessary to examine their formal properties under
decomposition. One of the principal novelties of Harel's original Statechart formalism [1] was the idea that states
could be decomposed hierarchically, as illustrated in Figure 1, which models the behaviour of an automatic gearbox.

At a certain level of abstraction, the Drive state is considered as a single state, but at a finer-grained level, this
is revealed to be made up of three forward-gear substates. Certain transitions apply to the Drive state as a whole
(such as drive, neutral), whereas certain other transitions apply to the substate machine (such as upShift, downShift).
To obtain the design-for-test property of compositionality, the superstate machine must be analysable in ignorance of
the mechanism of the substate machine; and the substate machine must be verifiable independently of the operation
of the superstate machine.

This particular example illustrates good encapsulation properties, in which the behaviour of each machine is
independently verifiable, but Statecharts have also been used in ways which violate the encapsulation of substate
machines. An example of this is the phenomenon of boundary crossing, a style in which transitions lead directly to,
or from, the substates of a composite state. Identifying styles of usage which preserve the hierarchical encapsulation
of state machines is therefore an important area of concern.

Park Neutral Reverse

Drive

1stGear 2ndGear 3rdGear

upShift upShift

downShift downShift

neutral drive

neutral

neutral reverse

park

halt

Figure 1: Harel Statechart for Automatic Gearbox

On the assumption that a single input event in the X-Machine model corresponds to a message request, resulting in a
single method invocation in a Statechart, the output-distinguishable property is obtained if every distinct transition
produces a distinct output value. This can be achieved by instrumenting methods during the test phase. If the names
of methods do not describe unique transitions, perhaps because the same method may be invoked to reach two
destination states, which are selected according to an additional guard, then a distinct output value must be chosen

Rigorous Object-Oriented Methods, 2000 2

On the Compositional Properties of UML Statechart Diagrams

for each guarded version. The test-completeness property is obtained for free in the object-oriented model, since all
of an object's methods may always be attempted in every state of the object (some may raise exceptions).

2 Some Features of UML Statecharts

The UML Statechart Diagram is a rich, hybrid model incorporating a number of influences that cater for different
modelling preferences. Some constructions are included which are redundant, some are convenient extensions to the
basic state machine model and other constructions unwittingly undermine the formal tractability of state machines
[16]. While redundant and syntactically sugared forms can always be converted back to canonical forms, we should
be more concerned over violations of the semantics of automata and especially constructions which prevent
hierarchical encapsulation of independent state machines.

2.1 Redundant Constructions

Examples of redundancy include the provision of a separate iconic notation for encapsulated substate machines,
which are no different from ordinary (sequential) composite states; this is recognised in [5]. The provision of
concurrent transitions with Petri-style forks and joins (see figure 2a) is technically redundant, since it duplicates the
semantics of concurrent composite states (see figure 2b). Originally, Petri-style notation was intended for the
separate Activity Graphs [3], but according to the revised OMG notation document [4], p3.142, their use is now
apparently allowed in Statechart Diagrams (Activity Graphs are presented separately). Both diagrams in figure 2
describe the identical forking and synchronisation behaviour in the concurrent substate machines.

First Next

forth
end

back

This That

here
stop

there

First Next

forth
end

back

This That

here
stop

there(a) (b)

Figure 2: Equivalent UML Models for Concurrent Substate Machines

A state may also have an internal transition compartment, listing its distinguished entry and exit atomic actions;
supplemented by an ongoing do-activity and aribitrary user-defined internal transitions. The admission of a separate
class of internal transitions (which do not leave the superstate, therefore which do not trigger its entry and exit
actions) complicates the model and is strictly unnecessary. All activity that occurs in a state can be modelled using a
substate machine. So, the do-activity and internal transitions are really part of the behaviour of a substate machine,
but are not treated explicitly as such in [4, 5].

2.2 Convenient Extensions

Examples of convenient extensions include the provision of connectors for expressing shared transition paths [4],
which may be expanded in full. The path leading to a forking connector is simply expanded into as many paths as
leave the fork; a symmetrical expansion is possible for joining connectors. Another extension is the admission of
conditional guards, which are equivalent to a duplication in the number of control states [16].

Guards have the effect of introducing a certain arbitrariness into the chosen control logic. Figure 3a
illustrates a temperature control system with hysteresis, in which temperature changes trigger events and timing
constraints are expressed as a guards; this is reversed in figure 3b to show how the choice of event or guard is
essentially arbitrary and therefore one must be careful in making assertions about the real events driving a system.
Figure 3c shows that a two-state machine with guards is technically equivalent to a four-state machine with no
guards. Guards are useful because they allow some aspects of the control behaviour of a system to be elided, by
pushing it down into the concrete memory variables. However, it would be better if UML Statecharts had a
mechanism for exposing the extra states implicit in such guards and relating these to the behaviour of the explicit
state machine (see section 5.1 below).

Rigorous Object-Oriented Methods, 2000 3

On the Compositional Properties of UML Statechart Diagrams

Heating

Standby

tooCold

tempOK

[time>d]

[time>d]

Heating

Standby

timeOut

timeOut

[temp<h]

[temp>=h]

Heating

Standby

timeOut

Heating

Standby

timeOut

Standard

Standard

Extended

Extended

tempOK

tooCold

tooCold

tempOK
(a) (b) (c)

Figure 3: Guards Conceal Duplicated Control States

2.3 Inconsistent or Intractable Constructions

Examples of inconsistent constructions include the context-dependent interpretation of pseudostates as: states,
arrows, or connectors (see sections 3.1, 3.2 below); and the special treatment of free transitions leaving composite
states (see section 4.1 below). The freedom to indulge in arbitrary boundary crossing, which includes the notion of
stubbed transitions (see figure 5) violates the clean compositional semantics of hierarchical state machines (see
section 4.2). While the admission of history states must be regarded as permanently intractable, since recorded
history conceals a product of state machines [16], it is possible to provide alternative treatments of pseudostates and
free transitions, such that the notion of an accept state may be more cleanly defined (see section 4.3). This allows
eventually for a clear distinction between forms of composite state which are strictly hierarchical, and forms which
are merely convenient abbreviations for expanded machines.

3 Basic Properties of a State Machine

The UML Statechart [4] is based on the Harel Statechart [1], with certain small changes to express encapsulated
object-like behaviour; and a modified execution semantics based on the queueing of events [5]. The Harel
Statechart is itself a mix of Mealy and Moore classical state machines, with further extensions more characteristic of
a flowchart. The tensions between these different models pose some challenges to a consistent formal interpretation.

3.1 Classical Machines and Flowcharts

In a classical finite state automaton, the states are quiescent vertices in the graph and all computational activity
happens on the transition arcs, as events are processed. Mealy machines may be styled as transducers [7] which read
an input symbol as each arc is traversed and generate an output symbol at the same time (figure 4a).

Initial Medial Final
in1/

DoThis DoThat

(a)

(b)

/out1

in2/

/out2

Initial Medial Final
in1/

/out1

in2/

/out2

in1/out1 in2/out2(c)
[done]

[done]

Figure 4: Comparison of (a) Mealy, (b) Moore Machines and (c) Flowchart

By contrast, the output of a Moore machine is contingent on which state it reaches, rather than which arc it is
traversing. It is possible (though not necessary) to view this as the output occurring when the machine is in the
destination state (figure 4b), fostering the idea that computation can happen in a state. Both Harel and UML
Statecharts adopt the notion that the states are active processing stages, rather than quiescent vertices. This leads to a

Rigorous Object-Oriented Methods, 2000 4

On the Compositional Properties of UML Statechart Diagrams

degenerate kind of machine in which both input and output can be processed in "states" and the transition from
"state" to "state" is then automatic (figure 4c). This is a flowchart, not a state machine.

Figure 4 illustrates some of the important correspondences and differences. In particular, notice how the arcs
in the Mealy automaton correspond to the processing stages in the flowchart. The arcs on the flowchart correspond
to quiescent states in the Mealy machine. The flowchart completely reverses the senses of state and transition;
thereby demonstrating why it is difficult to arrive at any consistent combined interpretation. In a flowchart,
transition to the next processing stage is automatic, or dependent on some internal condition computed during the
previous stage, rather than on any handled event, such that the behaviour of the machine at the current level of
abstraction cannot be determined from the processing of events at this level. This is an important formal property
which must be restored. The notion of state is defined formally by the varying response of a system, on different
occasions, to the same event; such a view of state must be maintained in any semantics of state machines.

3.2 Contextual Interpretation of Pseudostates

The admission of non-quiescent "states" corresponding to processing stages does not otherwise pose any major
theoretical problem. However, their usage necessarily forces the invention of extra start and finish points, which are
not processing stages in the same sense. These are referred to as initial and final pseudostates in UML [4, 5],
because their role either as first-class states or as inter-level connectors is left deliberately vague.

In a classical state machine, the initial state is a first-class state indicated by an initial free transition arrow
(see figure 4a, 4b). In UML Statecharts, the initial state is an extra pseudostate (see figure 4c) before the first
substantive "state". Likewise, the classical notion of an accept state (see figure 4a, 4b) is the final state reached in
the machine when an event sequence has been fully processed. In UML, the final state is usually the extra
pseudostate (see figure 4c) reached after the last substantive "state" of the machine. The comparisons in figure 4
reveal how the initial and final pseudostates, though they correspond to quiescent states in a classical machine, are
equivalent to the arcs in a flowchart and are not like the other active processing "states" at all. Instead, pseudostates
have the same status as mid-points reached on the arcs connecting processing stages in the flowchart.

UML pesudostates eventually have highly context-dependent interpretations [5] as either states or connectors,
arising from the ambiguous treatment of "states" sometimes as the processing stages and sometimes as the quiescent
points in between. At the outermost level, the initial and final pseudostates are interpreted as classical, quiescent
states, before and after the machine enters its active "states". At nested levels, where the same icons are used to
indicate entry and exit points from substate machines, the initial pseudostate cannot have this interpretation, since it
is used like a Mealy-style initial arrow, indicating the first substantive state in the nested machine (see figure 1). The
final pseudostate is nonetheless intended as a genuine Mealy accept state, indicating termination of the substate
machine. Depending on the context, UML switches between the semantics of classical arrows, classical states and
modern "states" (ie flowchart processes) in an unhelpful way.

While the intent of the UML 1.3 semantics document [5] is eventually to disambiguate the different context-
dependent meanings and uses of the pseudostate icons, surely this is the wrong approach. The elements of a formal
notation should have unambiguous, context-free interpretations: to do otherwise is to invite chaos [16]. Consider
that pseudostates may only have a consistent interpretation as classical states if all the other "states" are processes. If
a Statechart contains genuine quiescent states, then pseudostates have no consistent interpretation as states (what is
the meaning of a pseudostate before an initial classical state?), but could be treated as indicator arrows, or connectors
between different levels in a state machine hierarchy.

3.3 Required State Machine Semantics

A state machine is not a flowchart. In order to be able to apply state-based verification and testing theorems to the
model, a Statechart must conform to state machine semantics. It must have proper reactive states and transitions
must be triggered in response to events. Below, a number of guiding principles are introduced which help to ensure
these properties.

• Principle #1: States are defined by their differential responses to the same event. You cannot define a state
by the amount of time that a system may dwell in it. This rules out pseudo state machines which are merely
sequences of processes strung together.

• Principle #2: Events are messages or signals, not conditions. The next state decision function should be
placed on the transitions and not hidden inside processing states. This rules out simple conditional branching
masquerading as event handling.

Rigorous Object-Oriented Methods, 2000 5

On the Compositional Properties of UML Statechart Diagrams

• Principle #3: The next state is computable from a state and an event. There are no hidden or implicit
conditions. If a state has two or more transitions that can fire in response to an event, then the machine is
non-deterministic, otherwise it is deterministic.

To be tractable under formal analysis, the states must be genuine states; that is, the response of the system to an
event must be contingent on which state it is in. This clarifies informal definitions of states as being system
conditions "which can handle events" [6], or which "may be queried by a boolean-valued function" [17]. This does
not rule out processing states, so long as these states handle events. The restriction to genuine events is more severe,
since it forbids branching on simple boolean-valued conditions. To do otherwise upsets the uniform event-
processing semantics, because it hides the next state decision function inside the previous state. While these
restrictions eliminate crude flowcharts, it is still possible to convert an exit condition into an event. In this case, the
processing state must generate the internal event, which is subsequently handled by the next state decision function.

• Principle #4: The pseudostate icons are entry and exit connectors, not states. Never refer to them as states,
pseudo- or otherwise. Instead, visualise them as the mid-points along transition arcs into the first, and out of
the last, substantive state.

• Principle #5: An initial state receives a single half-transition from an entry connector. An initial state is not
the connector itself (which is not a state), but the subsequent state.

• Principle #6: A final state, or accept state has a single half-transition to an exit connector. A final state is not
the connector itself (which is not a state), but the preceding state. To be a legal accept state, it must not have
any other exit branches.

This creates a semantics that is consistent across quiescent and active state interpretations; and also consistent across
different levels of hierarchical composition of state machines. The entry connector has the sense of a half-transition,
a Mealy arrow indicating the real initial state of the (sub-) system. If the notion of an initial quiescent state is
relevant in a Moore machine with active processing states, then this must be modelled explicitly as a real state. The
exit connector has the inverse sense of a half-transition handing back control to the higher level. The notion of a
Mealy accept state is therefore defined as the last substantive state from which a half-transition exits. In a Moore
machine, this state will nonetheless perform all its computation before terminating. An accept state (or final state)
may not have any further exit transitions, since this would contradict the semantics of finality.

4 Compositional Properties of State Machines

In the hierarchical state machine model, an exit transition leaving a composite state's boundary is deemed to exit
immediately from all of the state's substates also. In figure 1, the neutral transition exits the Drive state; this is
understood to abbreviate and abstract over multiple neutral transitions leaving each substate 1stGear, 2ndGear and
3rdGear. This is a useful feature which eventually contributes to the desired compositional property of hierarchical
state machines. Operationally, it means that exit transitions leaving composite state boundaries interrupt the on-
going activity of the substate machine. This semantics also guarantees that composite states are reactive states rather
than locked-in processes.

4.1 Inconsistent Treatment of Free Transitions

However, there is an inconsistency in the case where the exit transition leaving a composite boundary happens to be
an unlabelled transition. UML defines normal transitions as arrows between states that are labelled with the event
that they process (classical machine), or the condition that they satisfy (flowchart) [5]. Unlabelled transitions, on
the other hand, have the semantics of a free ride, since they are not contingent on any event or condition. A state
representing a processing stage may have a free exit transition, meaning that it may be quit automatically once its
associated processing has terminated. However, if such a state is a composite state with substates, there is an
immediate problem in interpreting the free exit transition consistently, since under Harel's hierarchical semantics
[18], a transition leaving the composite state boundary is equivalent to an exit transition from every substate.
Literally, this should mean that every substate also has a free exit transition. Upon being entered, the substate
machine should therefore terminate immediately!

To prevent this, UML defines a free boundary exit transition specially as the completion transition taken
when the substate machine terminates [5]. We are asked to assume the existence of an invisible label standing for
the completion event, which is raised by the substate machine when it terminates. To ensure that the substate
machine executes to completion, UML suspends Harel's standard interpretation of a transition leaving a composite

Rigorous Object-Oriented Methods, 2000 6

On the Compositional Properties of UML Statechart Diagrams

state boundary [18]. In UML, a free boundary exit transition does not interrupt the activity of a substate machine,
but waits for its termination. This is quite significant, because it reverses the priority of inter-level event handling in
the operational semantics; and means that states are not always reactive, but are sometimes locked-in processes.
Again, the intent of UML's definition [5] is eventually clear, but it gives rise to machines that behave strangely in
different circumstances, as the following example illustrates.

UML reverses the priority of concurrent event handling across different levels of state hierarchy with respect
to Harel [5, 18]. If events arrive concurrently, then cases arise where multiple transitions could fire in machines at
different nested levels. To resolve such conflicts, Harel always selects the transition in the outermost state machine,
whereas UML selects the transition in the innermost state machine. In Harel's semantics, if the automatic gearbox
state machine from figure 1 is in composite state Drive and substate 2ndGear and then receives the events {neutral,
upShift} simultaneously, the neutral transition is fired, since the outermost state machine has priority (the vehicle
therefore always reacts to the driver's instructions). In UML, the upShift transition is preferred and fires instead,
since the innermost state machine has priority (apparently ignoring the driver's instructions). However, if only a
neutral event is received, there is no inter-level conflict and UML then interrupts the ongoing activity of the substate
machine and exits to the Neutral state.

This has the curious consequence that a substate machine may sometimes be interrupted and sometimes not
(depending on the presence, or absence of a conflicting concurrent event). The outer state machine cannot then be
formally analysed in isolation. In the example above, it is impossible to tell whether a neutral event will be handled,
or discarded due to the presence of an internal upShift event, which is invisible at this level of decomposition. For
this reason, Harel's original priority rule is an essential part of any compositional Statechart semantics.

4.2 Boundary Crossing Violates Encapsulation

Through the notational convenience allowed by composite states, designers may produce models which, although
they have the appearance of modular, encapsulated and hierarchical systems, are no less complicated than fully
expanded flat state machines. One practice which immediately violates the encapsulation of hierarchical state
machines is boundary crossing. Figure 5a illustrates an example, in which transitions both enter and leave substates
directly, crossing the enclosing composite state's boundary. Graphically, the substate machine of figure 5a may even
be elided, by drawing the arcs labelled direct and skip as stubbed transitions [4] entering and exiting the superstate,
shown in figure 5b. But it would be wrong to equate this with encapsulation. In order to reason about the formal
properties of this system, it would always be necessary to expand it to the flat machine shown in figure 5c, since the
superstate machine is strongly, and completely, coupled to the substate machine.

First Next

forth

back

Last
(a)

forth
Idle

again

in

skip

direct

out

(c)

First Next

forth

back

Last

forth

Idle

again

in

skip

direct

out

out

out

(b)

Idle

in

direct

out

skip

Working

Working

Figure 5: Logical Expansion of Boundary Crossing

Boundary crossing is clearly expected and allowed by the UML authors [6], p299, 301, 333, 437. Since this
notational feature has such a disastrous impact on the encapsulation of hierarchically composed states, we might
seek to outlaw it in any clean compositional model. However, the ability to compose states also serves the more
mundane purpose of abbreviation. Where a group of states share a common exit transition, such as the arc labelled

Rigorous Object-Oriented Methods, 2000 7

On the Compositional Properties of UML Statechart Diagrams

out in figure 5, it is notationally convenient to group these in a composite state, simply in order to draw the exit
transition just the once. Such a composite construction cannot be understood in any hierarchical sense, nor is it
technically even a state, but it may be considered an abbreviation for a set of transitions. Ideally, we should seek to
distinguish genuine hierarchical states from mere abbreviations, and insist that abbreviations are always expanded to
flat state machines in the formal analysis. This, however, would be at the cost of increasing the sizes of test sets in
the product of states and transitions for the flattened machine, compared to the sum of states and transitions in a
hierarchical machine (see section 1.2).

4.3 Boundary Crossing to Indicate Acceptance

It is sometimes interesting to examine Statecharts in which boundary crossing is present, in order to attempt to infer
why the designer resorted to this strategy. Another reason for crossing boundaries appears to result from a need to
indicate nested accept states by free exit transitions crossing the boundary [16]. According to the UML 1.3 Notation
Guide [4] and Semantics [5], an accept state should be drawn using the final pseudostate icon. However, many
examples exist in [6] where the accept states of a substate machine are only indicated using boundary-crossing free
exit transitions.

After seeking an explanation for this, we eventually found that UML Statecharts can only properly represent
one distinct accept state in a substate machine, whereas classical state machines often have multiple accept states,
indicating distinct outcomes. In UML, all exit paths from multiple accept states are subsequently merged in the
single completion transition leaving the composite state boundary. Figure 6a illustrates an example where there are
two final pseudostates representing logically distinct outcomes in the substate machine, but which cannot be
distinguished externally, and figure 6b distinguishes between these outcomes by boundary crossing, showing how
designers are forced into this strategy in order to express what they want to say (see also [4], p 3.137 for a further
example).

(a) (b)

Trying Harder

better

worse
winlose

Trying Harder

better

worse
win

loseSuccess

Success

Failure
Lost

Figure 6: Encoding Multiple Accept States

The work-around is assymmetrical, which usually indicates a problem. It would surely be better if UML had a more
appropriate way of indicating distinct accept states in a nested machine. Note that the approved use of the free exit
transition in figure 6 is notwithstanding our objections raised above in section 4.1.

4.4 Required State Compositional Semantics

To facilitate the hierarchical composition of independent state machines, some further principles are introduced
below. These address the problem of free transitions and the fact that their source states cannot be decomposed; the
need to distinguish abbreviations from genuine composite states; and the need to distinguish multiple accept states.

• Principle #7: Hierarchical, encapsulated state machines must be independently verifiable. The behaviour of a
state must be transparent at the level of its peer states; and the behaviour of its enclosed substate machine
must be transparent at the next level down.

• Principle #8: A hierarchical, or composite state encapsulates a substate machine. It may not exhibit any
boundary crossing, but must use a single entry connector and possibly one or more exit connectors to
communicate with its substate machine.

• Principle #9: An abbreviation is not a composite state. It is a notational short-hand for describing a set of
exit transitions shared by several states. It may not therefore use hierarchical entry and exit connectors and
must use boundary crossing.

The criterion of independent verification is quite deliberate and powerful, giving the intended meaning to the term
encapsulation, which cannot now just refer to the visual packaging of elements, but also must refer to the logical

Rigorous Object-Oriented Methods, 2000 8

On the Compositional Properties of UML Statechart Diagrams

independence of the elements packaged. The reasons behind forbidding the use of boundary crossing for genuine
composite states are clear, but the insistence that abbreviations always use boundary crossing is an interesting
corollary. This is because an abbreviation is a notational device, not a state, therefore it is not part of any state
hierarchy and cannot have entry and exit points. Communication to parts of an abbreviation must therefore go
directly to those internal states. We might also want to insist that abbreviations are not given names like states; they
are just enclosed regions. A given state may lie in the intersection of multiple regions, indicating that it shares the
union of their transitions. Formally, such regions must always be expanded to flattened state machines.

• Principle #10: A substate machine always generates termination events. When a machine reaches one of its
accept states, it must signal this to the higher level by generating the event associated with that accept state.
Distinct accept states generate distinct events.

• Principle #11: Events may be simple, or compositional. Some events are messages that encapsulate
argument values, which are unpacked by a substate machine. Accept states at one level may wrap up values
in the event signalled to the higher level.

• Principle #12: Free transitions may only link connectors to states. No free transition may link two
substantive states. The link between an entry connector and the initial state is a free transition, likewise that
between an accept (final) state and an exit connector.

The requirement for accept states to generate termination events solves a number of different problems. Firstly, this
means that every transition leaving a composite state boundary is a labelled transition, where the label corresponds to
the termination event for the composite state. Secondly, a composite state may have more than one termination
event, corresponding to the different accept states in the encapsulated substate machine. This strategy generalises
properly to concurrent substate machines. The exit transition leaving a superstate boundary may be labelled with
any synchronous conjunction of events generated by concurrent substate machines. This is irrespective of whether
the substate machines have multiple accept states indicating distinct outcomes, since these can be conjoined in the
desired fashion (so fixing the boundary-crossing problem in [4], p 3.137 for example). The only places where free
transitions may occur is in linking entry and exit connectors with their respective initial and final (accept) states.
These arrows should never be labelled with events, since they are not full state transitions, but merely connection
points. To justify this, consider that: no further events can be handled by a machine that has reached its accept state;
and no machine can handle an event before its initial state.

5 Formalisation

A state machine for an object is a tuple (S, Φ, E, R, M). The object may exist in a number of control states s ∈ S
which abstract over its concrete memory states m ∈ M, and always starts in a distinguished initial state s0 ∈ S, m0 ∈
M. The object reacts to events e ∈ E, the set of message requests understood by that object. The set of transitions
φ ∈ Φ describes the reaction of the object to an event, or the processing carried out by its methods. A transition is a
maplet from a source state and event to a target state and response: φ = (si, e) → (sj, r), where si, sj ∈ S are the
source and target states, e is an event and r ∈ R is a response to the event. The set of responses is output-
distinguishable if Φ and R are isomorphic, that is, for each φ ∈ Φ there exists a unique r ∈ R to indicate which
transition was fired.

5.1 Simple and Guarded Transitions

If the behaviour of the state machine is deterministic, then only one transition can be fired in response to an event:
∀φi, φj ∈ Φ. dom(φi,) ∩ dom(φj) = ∅. If this is not the case, then it is possible to make the machine deterministic by
extending the domain of the transition with a guard on a concrete memory state m ∈ M, which maps to an extended
co-domain. In this case, the set of transition functions φ ∈ Φ is considered to be replaced by ψ ∈ Ψ, such that each
ψ = (si, mi, e) → (sj, mj, r), where mi, mj ∈ M are the before and after concrete states of the object's memory, and
∀ψi, ψj ∈ Ψ. dom(ψi,) ∩ dom(ψj) = ∅.

A precise relationship relates the presence of guards on memory to elided control states. If g(m) is a boolean-
valued guard on a concrete memory state m ∈ M, then the logical complement ¬g(m) exists, whether or not it is
explicitly notated. For some constant s ∈ S and e ∈ E, a guarded transition ψ(s, m, e) fires only if the guard g(m) is
true, otherwise it fails. This and the implicit complement ¬g(m) may therefore be refined by splitting the control
state s into two new states: sg, s¬g which encode the guards, such that the guarded transition is replaced by the

Rigorous Object-Oriented Methods, 2000 9

On the Compositional Properties of UML Statechart Diagrams

unguarded φ(sg, e) and φ(s¬g, e). In general, many guarded transitions may exist for the same event and state. For

each distinct ψi fired on (s, mi, e), the memory states mi are all that distinguish the ψi. This implies that guards
gi(mi) for each ψi must be mutually exclusive: ∀m ∈ M, ∀gi, gj . gi(m) ∧ gj(m) = false. If there are n such guards,
then these either cover the concrete memory states of the object exhaustively, or there is an implicit logical
complement, defined by: ¬(g1(m) ∨ g2(m) ∨ ... ∨ gn(m)). Accordingly, a state with n guarded transitions triggered
on an event e may be refined into n states (empty complement) or n+1 states (non-empty complement) with simple
unguarded transitions.

5.2 The States of an Object

At the finest level of detail, an object has many concrete memory states m ∈ M. An upper bound on the size of M
may be calculated as: card(M) = card(A1) × ... × card(An), where A1...An are the sets of values from which the
object's attributes are drawn; however, not every value combination may be meaningful. The number of abstract
control states s ∈ S is far fewer, determined by the differential response of an object to events. There are several
ways in which this response may be judged: one is by examining when it is legal to invoke some of its methods;
another considers when certain methods are disabled (having a legal, but null effect). A final approach considers all
the state-dependent output responses of an object. These approaches yield progressively finer-grained models of
control state.

Consider first that an object's methods typically have the semantics of partial functions, that is, they are not all
legally executable in every state. For each s ∈ S there exists a distinct subset of events Ls ⊆ E to which the object
may legally react. A subset of events Ls that are legal for an object in state s is defined by:

Ls = {e ∈ E | φ(s, e) ≠ (s⊥, ⊥)},

where s⊥ is the error state and ⊥ is the undefined response. The number of control states then follows from the

number of distinct sets of legal events:

∀si, sj ∈ S, ∀Lsi, Lsj ⊆ E . si=sj ⇔ Lsi=Lsj,

that is, two states can only be distinguished if a distinct set of legal events exists for that state. According to this
definition, if an object always responds legally to every event e ∈ E, then it only has one abstract control state. A
bounded stack has three legal states and one error state, derived from the following distinct sets of legal events:
empty↔{push}, loaded↔{push, pop}, full↔{pop} and error↔{}. A corollary is that each of these states also
corresponds to distinct subsets of events e ∈ (E - Ls) that are illegal in that state, for example (E - {push}) = {pop} is
illegal in state empty. It may be easier to construct the control states of an object by considering when certain
methods are illegal. If an object always responds legally to a subset L ⊆ E of events, then n = card(E - L) messages
are illegal in some state. A maximum 2n possible control states then may exist, calculated from the cardinality of the
powerset P(E - L).

Consider next that a larger set of abstract control states s ∈ S may be chosen, corresponding to distinct subsets
of valid events Vs ⊆ E. A valid event e ∈ Vs is one to which the object reacts in some way, whereas an invalid event
e ∈ (E - Vs) is one which the object ignores. A subset of events Vs that are valid for an object in state s is given by:

Vs = {e ∈ Ls | φ(s, e) ≠ (s, r∅)},

where r∅ indicates a trivial response generated when the event is ignored and the object does not leave the state s.

Since an event may be legal, but invalid for s ∈ S, card(Vs) ≤ card(Ls) holds and many more distinct valid subsets Vs
⊆ E may therefore be chosen than legal subsets Ls ⊆ E, and the greater number of control states s ∈ S follows from
this. It may be more intuitive to construct these control states by considering when certain events are either invalid
or illegal: if a subset V ⊆ E of events is always valid for an object, then n = card(E - V) messages are either invalid
or illegal in some state. A maximum 2n possible control states then may exist, equivalent to the cardinality of the
powerset P(E - V). The largest possible set of abstract control states s ∈ S may be chosen according to the distinct
output responses of the object:

∀si, sj ∈ S, ∀e ∈ E, ∃sk ∈ S, ∃r ∈ R . si=sj ⇔ φ(si, e)=(sk, r) ∧ φ(sj, e)=(sk, r).

Two states can only be distinguished if they immediately yield distinct responses to an event, or else if the transition
which fires in response to this event leads to distinct states (judged recursively by this rule).

Rigorous Object-Oriented Methods, 2000 10

On the Compositional Properties of UML Statechart Diagrams

5.3 Event Handling Semantics

An event handling model based on Harel's asynchronous semantics with run-to-completion is assumed [18]. The
only difference is that, whereas in Harel's semantics, all events are broadcast to all hierarchically nested state
machines, in the semantics given here, events are produced and consumed within the scope of particular machines,
representing the idea that events are targeted at particular objects. In this model, every object obj is assumed to have
an event-handler η, such that η(obj, e) selects a particular φ ∈ Φ to fire in response to the event e. In general, η is a
dispatching function which acts on an object and a conjunction of events: (e1 ∧ e2 ∧ ... ∧ en), since we allow
concurrent event signalling.

Concurrent events may be received if obj encapsulates concurrent substate machines, or if obj is a substate
machine shared by concurrently-executing machines. To ensure determinism, only one transition may be enabled at
a time in obj. This is achieved by ensuring that η is well-behaved for all combinations of concurrent events that obj
could expect to handle. We allow event conjunctions to have first-class status as events: if Ec ⊆ E is the concurrent
set of events, then all possible conjunctions is given by: e ∈ (P(Ec) - {∅}), excluding the empty conjunction. Then,
we assert: ∀s ∈ S, ∀e ∈ (P(Ec) - {∅}) . ∃!φ ∈ Φ | φ(s, e) ≠ (s, r∅). This ensures that obj has distinct states in which

it ignores all but one singleton event, or event conjunction. It is possible to synchronise concurrent subprocessing
streams by labelling a transition with an event conjunction.

The hierarchical aspects of this model are captured in the execution of each method φ ∈ Φ, which may
distribute events (send messages) to further object state machines. The sequentially-ordered execution of a method
is not described in detail here, but it is modelled as a separate state machine. The objects whose methods it invokes
in turn are available as elements of the memory M of the current object. Decomposing further, the behaviour of
these collaborator-objects may also be modelled as state machines. This is in a similar spirit to the Holcombe/Ipate
model of transition refinement [11, 12, 13] and slightly different from the Cook and Daniels model of object state
machine refinement [19]. The only special consideration here is in the semantics given to the completion of
processing. The termination of a subroutine (substate machine) must always signal an event to the caller (superstate
machine), which in the model looks identical to an event generated at the higher level. This ensures that every
object's state machine may be analysed independently. At each level of abstraction, a machine receives external
events, corresponding to message requests from its clients. In selecting a particular φ ∈ Φ, it executes a single
processing step, which may distribute further events to substate machines. These run to completion and return to the
caller, signalling completion events. A completion event may in turn trigger a further step, such that the machine
makes maximal progress, corresponding to a super-step in Harel's asynchronous semantics [18].

6 Conclusions

An alternative semantics for UML Statechart Diagrams has been presented. The semantics are designed around
twelve principles. The first six principles ensure a consistent interpretation of both classical-style and flowchart-
style elements of the notation. The second six principles support the intended compositional semantics.

In particular, the notion of pseudostates is abandoned in favour of a clearer notion of connectors, such that all
other states are represented explicitly. The independence of nested state machines was also examined, with the goal
of identifying a set of design rules to ensure that Statecharts were tractable under hierarchical and modular
approaches to verification and testing, such as the Chow [9] or Ipate/Holcombe [13] methods. It was found that true
composite states must be formally distinguished from abbreviations, which are regions enclosing some states sharing
a set of exit transitions. Boundary-crossing transitions must be eliminated from composite states. UML's reversed
priority rule for resolving inter-level concurrency conflicts was found to introduce nondeterminism in the outer state
machine and so Harel's original inter-level priority rule was restored [18]. These steps together ensured that state
machines could be analysed independently of each other. Problems with the interpretation of free transitions were
eliminated by ensuring that all substate machines generate real termination events. This also solved the problem of
indicating distinct outcomes in a substate machine, which previously could only be indicated by boundary crossing.
The same approach scaled up to concurrent event handling.

Finally, a set-theoretic semantics was given in which the translation between guards and simple states was
specified, the number of distinct control states of an object was explored and the event handling model was
described, showing how this deals with concurrency. This model is being explored as the basis for a compositional
design-for-test approach which promises to reduce the usual state explosion.

Rigorous Object-Oriented Methods, 2000 11

On the Compositional Properties of UML Statechart Diagrams

7 References

1. Harel D. Statecharts: a visual formalism for complex systems. Sci of Comp Prog 1997; 8:231-274

2. Rumbaugh J, Blaha M, Premerlani W et al. Object-Oriented Modeling and Design. Prentice-Hall, 1991

3. Rational Software Corporation. UML 1.1 Reference Manual. http://www.rational.com/uml/, 1997

4. Object Management Group. Section 3: Notation Guide, Part 9: Statechart Diagrams. In: UML 1.3 Reference
Manual, OMG, 1999, pp 3.131-3.150

5. Object Management Group. Section 2: UML Semantics, State Machines. In: UML 1.3 Reference Manual,
OMG, 1999, pp 2.129-2.157

6. Booch G, Rumbaugh J and Jacobson I. The Unified Modeling Language User Guide. Addison Wesley
Longman, Reading MA, 1999

7. Gazdar G and Mellish C. Natural Language Processing in Prolog. Addison Wesley, Reading MA, 1991

8. von der Beeck M. A comparison of statechart variants. Lect Notes in Comp Sci 1994; 863:128-148

9. Chow T. Testing software design modeled by finite state machines. IEEE Trans Soft Eng SE-4 1978; 3:178-
187

10. Holcombe W M L. X-machines as a basis for dynamic system specification. Software Engineering J 1988;
March:69-76

11. Holcombe W M L. An integrated methodology for the formal specification, verification and testing of
systems. Software Testing, Verification and Reliability 1993; 3(3/4):149-163

12. Holcombe W M L and Ipate F. Another look at computability. Informatica 1996; 20:359-372

13. Ipate F and Holcombe W M L. An integration testing method that is proved to find all faults. Int J Comp
Math 1997; 63:159-178

14. Binder R V. The FREE approach to object-oriented testing: an overview (synthesis of four articles).
http://www.rbsc.com/pages/FREE.htm, 1996

15. Kim Y G, Hong H S, Bae D H et al. Test cases generation from UML state diagrams. IEE Proc Softw 1999;
146(4):187-192

16. Simons A J H and Graham I. 30 things that go wrong in object modelling with UML. Chap. 17 in: Kilov H,
Rumpe B and Simmonds I (ed) Precise Behavioral Specification of Businesses and Systems. Kluwer
Academic Publishers, 1999

17. d'Souza D F and Wills A C . Objects, Components and Frameworks with UML: the Catalysis Approach.
Addison Wesley Longman, Wokingham, 1998

18. Harel D and Naamad A. The STATEMATE semantics of statecharts. ACM Trans Soft Eng Method 1996; 5(4)

19. Cook S and Daniels J. Designing Object Systems, Prentice Hall, London, 1994

Rigorous Object-Oriented Methods, 2000 12

