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Preface
An embedded system is just a computer buried inside some other product. Surpris-
ingly, you can know a great deal about programming and computing and still get lost
in the arcane world of embedded systems. In the world of embedded systems pro-
gramming, countless details — both hardware- and software-related — make the
development process seem like a path that few have traveled and even fewer have
survived. How do software, hardware, and firmware differ? How in the world does a
100,000-line program end up inside a device smaller than my fingernail? What is
flash memory and why do I need a cache? What is the difference between a task and
a process? Do I need to worry about reentrancy? As we progress through Embedded
Systems Firmware Demystified, you will come to see that these questions are not as
complex as they first appear.

Embedded systems programming spans a wide range of activities from building
programmable logic at the most concrete end to writing a UNIX™ process at the
most abstract end. Bracketed by these poles, the industry has exploded in the last 20
years. In the late seventies, assemblers were considered luxuries. A typical embedded
system used less than 64Kb of system memory (bits, not bytes!). There was no hard-
ware hand-off to the firmware developer. The same person that drew the schematics
and soldered the prototype also wrote the firmware that pulled the whole thing
together. By the time Intel introduced the 8085 chip, it was clear that those pesky
microprocessors were here to stay. In the eighties, the Motorola versus Intel CPU
wars started, and C became a popular choice for the elite few who dared to mess
with a high-level language and an EPROM programmer. Today, microprocessors are
everywhere and range from the 4- and 8-bit workhorses still dominating the industry
vii
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to 1GHz 64-bit processors that almost need a freezer (microprocessor-controlled, no
doubt) to keep them cool.

Over the years, the complexity of these systems has snowballed. The industry has
transitioned from programming a DEC PDP machine with binary codes on the front
panel to applying object-oriented design to a microcontroller in a toaster. If you let
the trend get to you, the changes can seem frazzling. There are microprocessors and
microcontrollers; RAM, DRAM, and SDRAM; pipelining and superscalar; EPROM
and flash memory; RISC and CISC; and RAS and CAS and cache — and that’s just
the beginning.

Now, everything from toothbrushes (no kidding) to fighter jets are likely to have a
version controlled by a microprocessor of some kind. With this trend come tools and
technologies. One can easily be overwhelmed by the available choices in hardware
(integrated circuits that the firmware must make work) and software (tools that are
used to build the firmware application).

The goal of this book is to prepare you for a real embedded systems project by
walking you through an entire embedded systems design. Not coincidentally, the
project source code included is a piece of firmware — an embedded boot platform —
that can simplify all your future projects. I assume a small hardware design with
CPU, memory, and some peripherals. I present a basic schematic and walk you
through the method in which instructions are fetched from memory. I discuss
devices, as well as concepts. I examine flash memory versus EPROM, SRAM versus
DRAM, microcontroller versus microprocessor, and data bus versus address bus. I
also explain how you convert your C and assembly language source code to a binary
image that ends up in the memory device from which the CPU boots (the boot flash
memory).

Several chapters cover the basic steps of starting up an embedded system and get-
ting a working application (including the basic boot in assembler), exception han-
dling, flash memory drivers, a flash file system, and serial and Ethernet connections.
The result is an understanding of how an embedded systems project gets started and
how to build a platform on which an embedded systems application can reside.

Sound exciting? Great! Sound scary? It’s not! The intent of this book is not to dis-
cuss the latest superscalar architecture or the antenna effects of copper routes on a
printed circuit board, nor does it present a high-level abstract design process.
(Advanced architectures and transmission-line effects are certainly important, but
they are not the topic of this book.) This book is for those who want to get their
hands dirty without being overwhelmed by industry jargon or design-specific techni-
cal details. By the end of this book, you will know how to read a basic schematic,
know what goes into the boot flash device, and understand the major components of
a complete embedded systems development platform.
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Who Is the Reader?
At the minimum, I assume the reader has some experience with C and basic assembly
language concepts. I do not assume any electronics or hardware background. Thus,
readers with a wide range of programming backgrounds will find this book useful.

Computer science or electrical engineering students without a significant background
in firmware development, but at least an interest, can obviously benefit from this
book.

Low-level firmware developers will find the working example helpful, as it includes
documentation and code explanations for an extensible firmware development plat-
form. I explain the details associated with booting new hardware and the way in
which the CPU interacts with peripherals. Topics range from the lowest-level boot to
a Trivial File Transfer Protocol (TFTP) implementation over Ethernet. You can port
the code in this book to your own target system or integrate snippets of this code
with your existing firmware platform.

Hardware developers will find the completed platform useful for helping analyze and
debug hardware beyond the CPU complex. For those inquisitive enough to step
away from hardware to learn more about the firmware process, this book provides a
way to get started without getting too far from the hardware. (Hardware designers
regularly make the transition to programming in the firmware/software world.)

Project leaders will also find this book useful, as the firmware package presented is a
mature platform. The platform is applicable to a wide range of real-time operating
systems (RTOS) and target architectures, and it is extremely easy to port to new sys-
tems. The fact that the platform is fairly target- and RTOS-independent makes the
transition to a different target or RTOS much less painful.

What’s Covered in this Book?
Chapter 1: A Hard Start describes a basic CPU structure, with support peripherals,
on which the firmware discussed in this book can execute. The design includes,
among other things, a core microprocessor, RAM, flash memory, serial I/O, and CPU
supervision. Each element of the design is discussed (for example, CPU supervision
and types of volatile and non-volatile memory devices). This chapter also examines
the basics of how microprocessors fetch instructions from the memory device and
how cache makes these fetches more efficient. The chapter covers the typical periph-
erals found in many microprocessors today, without being specific to a particular
device.
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Chapter 2: Getting Started introduces the writing and building of programs for
embedded devices. This chapter explains the differences between a native-compila-
tion and a cross-compilation environment. I discuss file formats and break down the
task of burning the boot flash memory into simple steps. I also explain the impor-
tance of the link editor file and show how it is used to allocate sections of the appli-
cation code to portions of the target memory. The chapter also discusses some
preliminary tests and preparations you must undertake before you start program-
ming the firmware.

Chapter 3: Introducing MicroMonitor introduces the boot platform, or boot moni-
tor, used in embedded systems. This monitor, called MicroMonitor, has a full list of
features and serves as a learning tool to teach you about the firmware development
process.

Chapter 4: Assembly Required describes MicroMonitor’s reset vector, or startup
code. I then build some serial drivers and discuss an implementation for establishing
exception handlers.

Chapter 5: Command Line Interface describes how to build a shell around the core
functionality introduced in Chapter 4. I start with the command line interface (CLI).
Next, I explain the processing that parses the input command line and that eventu-
ally (through the table of structures) calls a function corresponding to the command
line. The command line interface includes shell variables and symbols, command line
editing and history, user levels, and password protection.

Chapter 6: Interfacing to Flash Memory is the first of three chapters dealing prima-
rily with flash memory. I describe a sample platform with (potentially several) banks
of flash memory. This chapter discusses the lowest-level details involved in program-
ming flash memory and presents a useful approach for target hardware with different
flash memory configurations.

Chapter 7: A Flash File System discusses the creation of a tiny file system (TFS)
which resides in flash memory. This simple file system is offered as an alternative to
some of the more complicated approaches taken by many flash file system designers.
I also describe some of the advantages and disadvantages of the trade-offs made in
the design of TFS.

Chapter 8: Executing Scripts describes a feature that, with a CLI for command exe-
cution and a TFS for file storage, lets a file execute as a script or small program. This
chapter examines the surprisingly simple details that combine the CLI and TFS to
create a simple interpreter. The CLI commands are chosen to provide the CLI/TFS
user with a simple but useful programming environment. Conditional branching and
subroutines are just a few of the capabilities of this system.
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Chapter 9: Network Connectivity examines the elements needed to connect as a
node on a network. Just as flash memory is becoming a standard boot memory
device, so too is Ethernet becoming a standard interface on many embedded systems.
This chapter discusses several protocols used with embedded systems, including
Ethernet, ARP, ICMP, IP, UDP, and BOOTP/DHCP. Finally, the chapter examines
encapsulation of network layers — one on top of another — by small blocks of code
that know only about their own piece of the packet payload.

Chapter 10: File/Data Transfer discusses two common file-transfer protocols: Xmo-
dem for serial interfaces and TFTP for networks. Here I explain each of these proto-
cols as implemented in the boot monitor package. The Xmodem and TFTP
implementations presented in this book can transfer files and raw memory both to
and from the target.

Chapter 11: Adding the Application shows you how the platform provides the base
on which applications reside. The example in this chapter is a simple application
with no RTOS, but it is clear that this platform supports just about any environment.
You, as the developer, decide how much of the platform remains accessible by the
application after the application takes over the system. This chapter discusses how
the application is built to reside within the TFS and how the platform’s loader auto-
matically transfers the file from flash memory space to RAM space for execution.

Chapter 12: Monitor-Based Debugging discusses some of the monitor’s on-board
debugging capabilities and shows the implementation of these capabilities because,
whether you want to admit it or not, you’re going to have to debug your code. Here
you’ll learn how to create a basic symbolic debugger that can display memory as a
structure (instead of as raw data), set breakpoints, single-step through a program,
profile a program’s execution, and dump a stack trace. The debugging techniques
described in this chapter do not require in-chip support or an external debugger.

Chapter 13: Porting MicroMonitor to the ColdFire™ MCF5272 explains the process
of porting the MicroMonitor firmware package to a Motorola MCF5272 (ColdFire)
evaluation board. The text introduces the directory structure of the source code on
the CD and walks through the monitor-specific details of the porting process. This
chapter completes the process begun in earlier chapters.

Appendix A: Building a Host-Based Toolbox provides snippets of code that might
prove useful for interfacing to files, serial ports, and sockets. Despite the fact that this
book is about firmware, you are likely to have to do some native programming even-
tually. Even if you’ve already done a lot of native programming, the code presented
here should speed your work.
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Preface

            
Appendix B: RTOS Overview introduces some of the basic concepts of a real-time
operating system (RTOS), which lets you expand your environment from supporting
single-threaded programs to multi-threaded ones. Several books are available on this
subject, so this appendix is not intended as an exhaustive study. I, however, present a
fundamental explanation of what multi-tasking can do for you and why preemption
is a beautiful yet dangerous feature.

Conventions
Throughout the book, I use different typefaces to differentiate between a) the book’s
regular text and b) special software tools, code, and so forth. General text is in
roman font. Terms used for the first time are in italic. A monospaced font indicates
code, software tools, hexadecimal numbers, filenames, data types, variables, and
other identifiers, as well as other special items.

Source Code
This book covers a lot of source code. When the text describes various portions of
the code in detail, snippets or entire functions are included. All code in this text has
been transferred from the original working C source code and is included on the CD.
Some implementation details that were not applicable to the discussion were
removed from the text listings to make the presentation clearer. I have made every
effort to maintain accuracy between the original code and the code presented in the
text; however, the code on the CD is the complete working version. If you have ques-
tions, please refer to the code on the CD.
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Chapter 1

A Hard Start
Although the primary focus of this book is firmware development, a good firmware
developer must have a reasonable understanding of the hardware on which the firm-
ware resides. You could compare a firmware programmer to someone who changes
oil at a gas station: if all that person knows is how to perform an oil change, he
won’t have the skills to notice warning signs that a fully trained mechanic would
pick up right away. A narrowly trained technician may change the oil competently
but not notice other problems like a leaky head gasket. Sooner or later something
else will go wrong, remain unnoticed, and cause additional trouble due to the techni-
cian’s limited knowledge.

 This chapter explains what a firmware engineer needs to know about the hard-
ware in a typical system. The goal is not to turn you into a hardware designer but
simply to explain enough so that you can do more than “change the oil.” To achieve
this goal, this chapter discusses some of the common CPU support peripherals and
examines how the hardware processor does its job. I will start by focusing in on the
type of system that this book addresses.You will learn about some of the most com-
mon features of today’s microprocessor-based systems, some of which reside within
the CPU silicon itself and others which are usually external to the CPU. I will also
discuss the sequence of steps that the CPU takes to retrieve an instruction and the
advantages and snags that are introduced by the use of cache.
1
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At the end of this chapter (although you will still not be a qualified hardware
designer) you will hopefully have a better understanding of the hardware platform
onto which you will be installing your firmware.

System Requirements
The hardware required for an embedded system varies greatly depending on its
intended use. Some tiny systems have barely 1K data space and 16K of instruction
space, while high-performance systems might run a 1GHz 64-bit processing engine
with 32MB CompactFlash and 128MB DRAM. In this book, I focus mostly on
systems with capabilities that fall somewhere in the middle. The firmware I’ll discuss
does require some memory space (ranging from 32K to 256K of flash memory and
8K to 128K of RAM) depending on what capabilities are built in, so it is not
appropriate for small microcontroller (8051, 68HC05/11/12, etc.) projects. On the
other hand, this code doesn’t need (or want!) a large machine to work successfully. 

Figure 1.1 represents a complete system. Using this system model, you can
program your own devices, talk to the PC, and even serve HTML pages to a network
browser. If you need to skimp, you can eliminate the reset/watchdog and
battery-backed-RAM/time-of-day (BBRAM/TOD) clock controller and still have the
capabilities I listed! I include these capabilities in our model because they are
extremely useful. They’re also quickly becoming standard equipment on most
microprocessor designs.

Figure 1.1 Block Diagram of a Typical Embedded System.

These are the components most common in embedded systems. All
embedded systems use some kind of nonvolatile storage (flash memory,
EPROM, ROM) and some form of RAM. Most have some channel they can
use to communicate with a development host (a serial port, Ethernet port,
or JTAG port.).
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Central Processing Unit
Embedded systems are designed around either a microcontroller or a microprocessor.
For our purposes, this distinction isn’t really significant, partly because the line
drawn between the two is getting a bit blurred with current development. A few
years ago, microprocessors were defined as execution units and everything else was
an external peripheral device. A microcontroller, on the other hand, was distin-
guished by the fact that it had everything it needed on one chip. This distinction isn’t
as clear today. Chips we once called microprocessors are becoming more and more
integrated with added peripherals. These chips include things like serial ports, pro-
grammable chip selects, interrupt controllers, DRAM controllers, internal timers,
and programmable I/O pins. Some chips go even further with a built-in Ethernet
device and PCI controller in the same chip. Some chip vendors refer to these chips as
microcontrollers, and others refer to them as microprocessors. (Some say potaeto
and some say potahto… Either way, it still makes french fries!) Don’t let the names
confuse you. In this text, I stick to the following usage:
• Microcontroller — those devices that can be configured to run 100 percent on

their own. With a microcontroller, there is no need for any other peripheral
devices (except maybe a power supply and crystal). Microcontrollers contain
some small amount of nonvolatile memory for program storage and volatile
memory for program use and typically come with an 8- or 16- bit internal CPU.
Devices that fall into this category include the 8051 and 68HCXX families.

• Desktop Microprocessor — those devices that contain almost nothing except the
processing engine. They immediately require complex support chips as their
peripherals. The low end of these devices are 32-bit chips, but 64- and 128- bit
processors are getting more and more common. This category includes devices
like the K6, Pentium, and G4 processors. 

• Embedded Microprocessor — those devices that contain a processing unit and
some set of peripherals typically seen in an embedded system. These devices gen-
erally fall in the 16- and 32- bit category and include processors like the 68332,
PPC860, and SH2. 

• CPU (Central Processing Unit) — this term can refer to any of the above, or it can
refer to just the processing section of a microcontroller or embedded microproces-
sor.
Keep in mind that these definitions are not the rule in the industry.  You should

also note that there is some overlap between the different terms. Both microcontrol-
lers and desktop microprocessors are used in embedded systems. In fact, back in the
1980s, microcontrollers were even used in some of the first desktop machines. 



4 Chapter 1: A Hard Start
Microcontrollers, as defined above, dominate the embedded systems market by
several orders of magnitude. However, silicon (both processor and memory) prices
are dropping, and the larger 16- and 32-bit processors are gaining ground in embed-
ded applications. This book generally focuses on systems based on embedded micro-
processors.

Embedded microprocessors come in a variety of shapes and sizes. They are even
becoming available as logic cores designed for integration into very large program-
mable devices called field programmable gate arrays (FPGA).  Companies that were
producing programmable logic at one time are now producing programmable logic
with a built-in processor.

Following is a brief description of some of the typical peripherals that are
included with today’s embedded microprocessors. I discuss each item using the anal-
ogy of a similar process in an office environment.

Programmable Chip Selects

Like a committee chairperson, programmable chip selects reduce confusion by coor-
dinating communication. Imagine you are in a meeting and you are trying to speak
to one person in the group. In this situation, you need some way to let that person
know that you want to talk to them. Ideally, this mechanism should also let all the
other people know that you are not addressing them. Chip selects perform this task
for the microprocessor. Devices that are peripheral to the processor occupy some
amount of space within the processor’s address range. When a peripheral device’s
chip enable input line is not active, its data bus is in a high-impedance state, or dis-
connected, condition. This idea is very important because electrically there can only
be one device actually writing data onto the data bus at any one time. (The term bus
contention refers to the illegal condition that occurs if more than one device is
attempting to write on the data bus at a given time.)

The firmware must know the address range for each peripheral device, which is
typically decided at the hardware design stage. Each peripheral has some set of char-
acteristics with which the processor must deal so that the two can interact with each
other. Some peripherals use a very small amount of address space while others can
use several kilobytes. Some peripherals are fast enough to keep up with the proces-
sor, and others force the processor to wait. In some cases, the peripheral tells the pro-
cessor asynchronously when the peripheral has done its task, and, in other cases, a
defined number of clock cycles must elapse between accesses to the peripheral device.
All of these pesky little details can add up to a significant amount of extra glue logic
between the processor silicon and the peripheral silicon. To reduce the need for glue
logic, most processors intended for the embedded market offer pins called program-
mable chip selects. The chip select is a pin that the CPU uses to access a unique
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address range on the processor bus. There are typically three to six of these lines on
an embedded processor, and the hardware attached to these lines can provide a sim-
ple one-device-per-chip select. Alternatively, there may be additional logic between
the CPU and peripheral that performs additional address decoding to allow multiple
devices to connect to a single chip select.

Glue logic refers to the extra circuitry (logic) that would be necessary to connect (or
glue) two devices together.

Interrupt Controller

An interrupt controller helps prioritize incoming messages, which is a task that any
office worker can appreciate. Consider the following small office scenario. Person_A
is in an office behind a desk, talking on the phone. Person_B walks down the hall
directly into Person_A’s office and asks a question. Person_A can do one of several
things:
• Totally ignore Person_B and continue the phone conversation.
• Quickly acknowledge Person_B’s request but respond with something like “OK,

I’ll get to that in a little while,” placing the request into a pile with a bunch of oth-
ers.

• Tell the person on the phone that the conversation will have to continue later and
then respond to Person_B. This outcome is likely if Person_A considers Person_B
to be more important than whomever is on the phone. 

• End the conversation. This outcome occurs automatically, regardless of whom is
on the phone, if Person_B is the boss.
You can say that Person_A processes the interrupt from Person_B. Several factors

determine whether or not Person_B is acknowledged, including the importance of
the person on the phone, the fact that Person_A’s door might have been closed, and
so on. Somehow Person_A must prioritize the interrupt based on what is currently
going on.

Now, consider Person_A having the phone conversation to be the CPU currently
executing instructions and Person_B to be a peripheral device that needs the CPU’s
attention. An integrated interrupt controller provides the CPU with this ability to
enable, disable, and prioritize incoming interrupts from both internal and external
peripherals. Usually all incoming interrupts are maskable (can be disabled) except
the NMI (non-maskable interrupt) and reset lines (the bosses).

OTE
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Timer-Counter Unit

Consider a scenario with several typists working in an office. For a little fun, they
decide to see who can type the most words in one minute. They gather around a
computer terminal, and each one gets a shot at the one-minute trial. However, they
find that they need some way to keep track of the 60-second interval of time from the
beginning to the end of the test. Alternatively, they might just count the number of
seconds taken to type a specific block of text. In this case, they are not measuring a
fixed amount of time but the elapsed time it takes each individual to complete the
challenge. 

The timer-counter unit within an embedded system can help with this process.
The unit provides the CPU with capability related to elapsed time. The timer-counter
unit provides the firmware with the ability to generate periodic events, including
events based on incoming pulse counts.

It is important to note that the microprocessor’s timer-counter unit usually does not
deal with time of day on its own, so don’t assume that “timer” means “wall clock.”
In most cases, “timer” means “stop watch.” A stop watch can be converted to a
wall clock if at some starting point the stop watch is synchronized with a wall
clock. This process is what is done with the microprocessor’s timer if time-of-day is
needed.

DMA Controller

Consider an office that contains a file cabinet. In that file cabinet is paperwork that
several office workers need to access. Some only need to access it once in a while,
while others require the paperwork much more often. The manager of the office sets
up a policy so that some of the individuals have a personal key to get into the file
cabinet, while others must get a shared key from the manager. In other words, some
office workers have direct access to the file cabinet, and others have indirect access.

In many embedded system designs, the CPU is the only device that is connected to
the memory. This means that all transactions that deal with memory must use the
CPU to get the data portion of that transaction stored in memory, just as some office
workers had to obtain the manager’s key. Direct memory access (DMA) is a feature
that allows peripherals to access memory directly without CPU intervention. These
peripherals correspond to the office workers with their own keys.

For example, without DMA, an incoming character on a serial port would gener-
ate an interrupt to the CPU, and the firmware would branch to the interrupt han-
dler, retrieve the character from the peripheral device, and then place the character
in a memory location. With DMA, the serial port places the incoming character in

OTE
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memory directly. When a certain programmed threshold is reached, the DMA con-
troller (not the serial port) interrupts the CPU and forces it to act on the data in
memory. DMA is a much more efficient process. Many integrated microprocessors
have multiple DMA channels that they can use to perform I/O-to-memory, mem-
ory-to-I/O, or memory-to-memory transfers. 

Serial Port

Consider the front door of an office building. The front door is where people can
come in and out and easily interact with the facilities provided by the business. This
fact doesn’t mean that there aren’t other ways to contact the business, but the front
door is a very convenient and standard way of doing it.

This task of providing access is the serial port’s job. The serial port provides basic
communication to a console or some other device that understands the same proto-
col. The serial port or universal asynchronous receiver transmitter (UART) provides
the CPU with an RS-232 bit stream, which is the same technology used for the PC’s
COM port. Different processors have different variations on this standard, but, in
almost all cases, the minimum is a basic asynchronous serial bit stream (using
RS-232 levels) consisting of one start bit, some number of data bits (usually between
five and nine), and one or two stop bits.

DRAM Control Unit

Imagine that you are a manager with some employees who have many useful talents
but also need the time to take care of their children. You could just tell them you
can’t deal with the kids in the office (and lose their talents), or you could be a bit
more flexible and offer to have some other employees in the office take care of their
kids.

This is the dynamic RAM (DRAM) story. RAM is very useful in all microproces-
sor-based projects. DRAM is a much cheaper alternative to SRAM, but, unlike
SRAM and flash memory, DRAM requires baby-sitting or extra logic in the hard-
ware to keep the bits in the DRAM stable. The type and size of the DRAM determine
how complex the baby-sitting needs to be. The DRAM control unit does the the
babysitting so that the CPU can interact directly with the dynamic RAM.

Memory Management Unit

A memory mangement unit’s (MMU) main responsibility is to define and enforce the
boundaries that separate different tasks or processes. To understand the effect of sep-
arating tasks, consider two different office environments. In the first one (the formal
environment), there is an individual office for each employee. Each employee has a
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key to the door of his or her office and is considered the owner of that space. The
second environment (the informal environment) uses a bullpen setup. There are no
walls between employees, and everyone is on the same floor in the same air space.
Each one of these configurations has its particular advantages and disadvantages. In
the formal environment, you don’t have to worry about one employee bothering
another employee because there are walls between them. No matter how noisy one
employee gets, the neighboring worker does not hear the disturbance. This is not the
case for an informal setup. If an employee is talking loudly on the phone in the open
environment, this inconsiderate individual distracts the other workers. If, on the
other hand, the employees are considerate, two employees can quickly communicate
with each other without needing to leave their seats. Similarly, if one employee needs
to borrow another employee’s stapler, it’s just a toss away. In the formal environ-
ment, each time communication needs to take place, the communicating employee
needs to go through some series of steps, like making a phone call or walking to the
other office.

Each employee can be compared to a block of code (or task) that is designed to
perform some specified job in an embedded systems program. The air space equates
to the memory space of the target system, and the noise generated by a misbehaving
employee can be equated to a bug that corrupts the memory space used by some
other task. The MMU in hardware, if configured properly, can be compared to the
walls of the formal office environment. Each task is bounded by the limitations
placed on it by the MMU, which means that a task that somehow has a bad pointer
cannot corrupt the memory space of any other task. However, it also means that
when one process wants to talk to another process, more overhead is required.

Later, in this book, you will see that code bounded by the MMU protection is
called a process and code not bounded by an MMU is called a task. A few years ago,
the full use of an MMU in an embedded system was rare. Even today, most embed-
ded systems don’t fully use the capabilities of the MMU; however, as embedded sys-
tems become more and more complex and CPU speeds continue to rise, the use of an
MMU to provide walls between processes is becoming more common. 

Cache

Let’s say you work at a desk and you regularly access folders from a file cabinet near
your desk. Some folders you access regularly, others you access less frequently. You
could return each folder to the file cabinet after each access. On the other hand, you
might decide to use some smaller shelf right on your desk for those folders that you
access frequently so that you don’t have to get up to get them as often. On any given
day, the set of folders that are in the shelf on your desk may change based on how
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much you plan to access them on that day. When properly organized, the local shelf
can save you several trips to your file cabinet.

The microprocessor and memory story is similar. Microprocessors have been
speeding up at a much faster pace than have the large memory subsystems with
which they interact. To compensate for this difference, smaller blocks of really fast
(and more expensive) memory are put between the microprocessor and system mem-
ory so that fetches to memory that happen frequently can be done through this faster
cache memory instead of through the slower standard memory. 

Programmable I/O Pins

As the manager of an office, you know that the ideal hiring scenario is to hire indi-
viduals that have multiple skill sets. Though each employee can only do one thing at
any one time, hiring multi-talented individuals gives you the option of using the same
group of people in several different ways.

The pin set of most modern processors also gives you this option. All of the previ-
ously mentioned peripherals require the use of a certain set of pins on the processor.
In many cases, the majority of those pins can be used for their specific function
(serial port receiver, timer output, DMA control signal, etc.), or they can be pro-
grammed to just act as a simple input or output pin (PIO). This flexibility allows the
silicon to be configured based on the needs of the design. For example, if you don’t
need two serial ports (and the processor comes with two), then the pins that are allo-
cated to the second port (RX2, TX2, and maybe DTR2, CTS2, etc…) can be pro-
grammed to function as simple PIO pins and used to drive an LED or read a switch.

Programmable pins are sometimes referred to as dual function. Note that this dual
functionality should not be assumed. How each pin is configured and the ability to
configure it to run in different modes is dependent on the processor implementa-
tion. Often a pin name is chosen to reflect the pin’s dual personality. For example if
RX2 can be configured as a serial port 2 receiver or as a PIO pin, then it will prob-
ably be labeled as RX2/PION (or something similar), where N is some number
between one and M, and M is the number of PIO pins on the processor. You should
be aware that some microprocessors may be advertised as having a set of features
but actually provide these features on dual-function pins. Hence, the full set of
advertised features (two serial ports and 32 PIO lines) may not be simultaneously
available (because the pins used for the second serial port are dual-functioned as
PIO lines). Make sure you read the datasheet carefully!

OTE
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Putting It All Together

The essential point of all these office analogies is that different offices can be config-
ured in quite a variety of different ways depending on the needs of the business that
the office supports. The same thing applies to embedded microprocessors.  

The discussion so far has assumed that these components exist on the chip with
the CPU, but they can also appear as physically separate components. The next sec-
tions discuss components that are usually found outside the microprocessor.

System Memory
Aside from the CPU itself, memory is the most fundamental building block in any
microprocessor-based system. The CPU fetches instructions from the memory, and
these instructions tell the CPU what to do. If the memory is programmed incorrectly
or connected to the CPU incorrectly, then even the most sophisticated processor will
be confused!

There are several different types of memory available. This range of selection
exists for the same reason that there are several varieties of almost anything in the
electronics industry: price/performance/density trade-offs. Different designs have dif-
ferent requirements that make different memory architectures attractive. For exam-
ple, some systems need a lot of memory, but not really fast memory; others require
small amounts of really fast memory; some need memory that does not lose its data
when the power is removed; and so on. Following is a discussion of the most com-
mon types of memory used today, along with some of their characteristics.

ROM, PROM, EPROM and EEPROM

The term ROM is an acronym for Read-Only-Memory.  This type of device is pro-
grammed as part of the manufacturing process and cannot be changed by the CPU or
by any in-house device programmer. A programmable read only memory (PROM)
can be programmed by an in-house device programmer, but cannot be erased. A
PROM gives the user of the device one shot at programming the device. If there is an
error in the program or if the program needs to be updated, the old PROM must be
discarded and replaced with a new, properly programmed device.  An erasable pro-
grammable read only memory (EPROM) can be programmed and erased in-house,
with the limitation that the programming is done with an external device program-
mer and erasure must be done with some ultra-violet light source.  Finally, an electri-
cally erasable PROM (EEPROM) is in-system byte-writable and byte-erasable. At
first glance, the EEPROM would appear to be the ideal storage device; however,
EEPROMs are relatively slow and fairly expensive, even at lower package densities.
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Generally, ROM, PROM and even EPROM are slowly fading into the sunset as new
emerging technologies (i.e., flash) gain in popularity and drop in price.

RAM

This name is also an acronym: random access memory (RAM). Unlike the EPROM
acronym, the term RAM doesn’t give a very good indication of its characteristics, at
least not from our point of view. The name reflects the fact that any byte can be
accessed at any time, which was a step ahead of its predecessor, sequential access
memory, when it first appeared on the electronics scene. For the sake of our discus-
sion, we assume that all memory is random access, but not all memory is writable by
the CPU. Therefore for us, the differentiating characteristic (compared to EPROM)
is the fact that the processor can write to RAM. RAM is read/writable but is also vol-
atile, which means that when power is removed, the data is not retained. 

There are two fundamental types of RAM: static (SRAM) and dynamic (DRAM).
SRAM is the easier of the two to interface with because it is “static,” meaning that it
does not require any baby-sitting from the processor to do its job. Simply wire it up
to the processor and use it. DRAM, on the other hand, requires external hardware to
refresh it periodically so that the internal capacitors hold their charge. DRAM tech-
nology is much cheaper, but it is also slower and requires additional hardware to
keep it running (the DRAM controller mentioned earlier). Because of these issues,
DRAM is typically used in systems that require large amounts (> 1MB) of memory
so that the added expense of the controller is justified. SRAM is simple but has a
higher cost per byte of storage. It is typically used in systems that require small
amounts of memory or in systems that need a small amount of fast writable memory
(like a cache). For example, on your typical PC, some DRAM is available for general
use, and a much smaller amount of SRAM is available for the CPU cache.

Flash Memory

Like EPROM, flash memory is also nonvolatile memory. The big advantage of flash
memory over EPROM is that it is in-system programmable, which means that no
separate device is needed to modify its contents. Early devices required a higher volt-
age (usually 12V), but today’s parts require the same voltage as the rest of the board.
Since the flash memory is in-system writable, no UV eraser is needed.

The architecture of flash memory comes in a few varieties, and although modern
flash memory is in-system programmable, it is still not as convenient as using RAM.
Typically, an erase procedure deals with a single “sector” of the memory. Sector sizes
are usually relatively large, and an erasure sets all the bits within that sector to one
(all bytes = 0xff). Writing to the individual bytes changes only some of the bits
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within each byte to a zero state. Each operation (erase, write, and so on) except read
is performed with a special programming algorithm. This algorithm is unique
enough that it does not interfere with the typical interaction between the CPU and
the memory.

Flash memory is quickly becoming the standard nonvolatile memory choice for
new designs. Aside from the algorithm needed to write/erase the memory, the only
other drawback of flash memory is that it has an upper limit to the number of times
a sector can be erased. Usually the limit is high (100,000 or 1,000,000 cycles), but,
nevertheless, it must be considered in the design.

Still Others

There are several other types of memory, most of which are some derivative of one or
more of the above types. These other standards are not as popular, but they typically
satisfy some niche in the market. For example, PSRAM (pseudo-static RAM) is a
DRAM with some kind of refresh controller built into it. It satisfies a system that
needs more SRAM than a single SRAM device supports but doesn’t need the densi-
ties offered by DRAM. Nonvolatile SRAM (NVRAM) is static RAM with a battery
backup. Some devices actually have the battery built into the plastic; others are non-
volatile simply because the hardware design has battery backup protecting the
device; still others provide some type of automatic backup of RAM to on-chip flash
when power is removed. Serial EEPROM is a type of EEPROM that communicates
with the CPU usually using two to four I/O pins. Access is slow, but physical size is
extremely small because there is no address or data bus.

CPU Supervision
This section discusses functions that help the CPU maintain itself through some oth-
erwise catastrophic situations. The functions covered here are (in order of impor-
tance) a power monitor for reset pulse generation, a watchdog timer, a power
monitor for SRAM nonvolatility, and a time-of-day clock. The latter two are not
actually considered part of CPU supervision, but it is very common to see various
combinations of these functions in the class of integrated circuits which are referred
to as “CPU supervisors.”

Reset

Before the CPU can do anything at all, it needs to be powered up, which simply
requires a connection to the power and ground pins on the device. Once powered up,
it’s essential that the internals of the device are allowed to synchronize and start up
in a sane state. A RESET signal forces key CPU components to a known initial state.
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Typical requirements on a reset input line of a processor are that it be held in a con-
stant active (usually low) state for some duration (say 100ms).  In some designs, a
simple resistor/capacitor (RC) combination is used to keep the RESET line in a low
state for the 100ms time period when power is applied to the system (this is referred
to as power-on reset). 

Without getting into a lot of detail, assume that the resistor/capacitor (RC) circuit
of Figure 1.2 provides a time-delay power-up. While the other pins have the supply
voltage applied immediately (Signal A), the RC connection to the RESET pin holds it
low for some delay longer (Signal B), thereby providing the minimum 100ms of low
state to RESET after power-up. Unfortunately, the RC pair is not very good at
detecting when it should apply the low level to the RESET pin. That means that it
doesn’t work well for systems that are in remote locations and must be automatically
reset after power outages and dips. In these situations, the power could dip and
cause the power supply level to fall, which would in turn cause the CPU to go insane,
but would not cause the RC circuit to pull the RESET line low enough to bring the
CPU out of its insane state. In some respects, the RC combination is an analog solu-
tion for a digital problem. The real solution for a safe power-up reset is to monitor
the supply line and pulse the RESET line for the designated amount of time whenever
it transitions from “out of ” to “within” CPU tolerance. Fortunately, there are compo-
nents out there that do just that! There are several different components available
that monitor the supply voltage and automatically generate a clean reset pulse into
the CPU when the supply drops below a certain level.

Figure 1.2 Conditioned Reset Input.

When power is applied to the system (Signal A), the charge time of the RC
circuit attached to the reset input (Signal B) delays the reset activation.
While this reset mechanism works when the power is cycled cleanly, it can
cause problems when power is momentarily interrupted.
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Watchdog Timer

The watchdog timer (WDT) acts as a safety net for the system. If the software stops
responding or attending to the task at hand, the watchdog timer detects that some-
thing is amiss and resets the software automatically. The system might stop respond-
ing as a result of any number of difficult-to-detect hardware or firmware defects.  For
example, if an unusual condition causes a buffer overrun that corrupts the stack
frame, some function’s return address could be overwritten. When that function
completes, it then returns to the wrong spot leaving the system utterly confused.
Runaway pointers (firmware) or a glitch on the data bus (hardware) can cause
similar crashes. Different external factors can cause “glitches.” For example, even a
small electrostatic discharge near the device might cause enough interference to
momentarily change the state of one bit on the address or data bus. Unfortunately,
these kinds of  defects can be very intermittent, making them easy to miss during the
project’s system test stage.

The watchdog timer is a great protector. Its sole purpose is to monitor the CPU
with a “you scratch my back and I’ll scratch yours” kind of relationship. The typical
watchdog (see Figure 1.3) has an input pin that must be toggled periodically (for
example, once every second). If the watchdog is not toggled within that period, it
pulses one of its output pins. Typically, this output pin is tied either to the CPU’s
reset line or to some nonmaskable interrupt (NMI), and the input pin is tied to an
I/O line of the CPU. Consequently, if the firmware does not keep the watchdog input
line toggling at the specified rate, the watchdog assumes that the firmware has
stopped working, complains, and causes the CPU to be restarted.

Figure 1.3 External Watchdog Timer.

The watchdog timer is a simple re-triggerable timer. When the application is
operating normally, it periodically resets the WDT by toggling its input. If
something causes the application to hang or crash, the WDT times out and
forces the CPU to restart.
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Battery-Backed SRAM

Not all systems need to maintain the integrity of their SRAM when power is turned
off, but this requirement is becoming more and more common because the compo-
nents that provide that capability are getting cheaper and easier to use. Not too long
ago, embedded systems used an arrangement of discrete components to determine
what voltage was higher (power supply or battery) and properly steer the higher sup-
ply to the power pin of the SRAM (or the whole system). Now a handful of compa-
nies provide nonvolatile SRAM modules that have the battery and the power supply
monitoring circuitry built right into the part.  These parts are guaranteed to retain
data for up to 10 years (with certain restrictions regarding the actual amount of time
the internal battery is powering the SRAM, of course). Modules with built-in batter-
ies are often available in versions that are pin-compatible with standard SRAM
chips. These pin-compatible packages can be a life-saver if you need to add nonvola-
tile read/write storage to an existing design. 

Time-of-Day Clock

For most embedded systems, the CPU provides all that is needed for maintaining
time. Typically, there is no need to keep track of the time of day; nevertheless, when
you need the time of day, you can’t get it without some type of battery-backed
time-of-day clock function. Even though the CPU has its own crystal and can keep
relatively good time, the CPU’s notion of time only persists as long as the CPU is
powered up and running. When the board is reset, the CPU’s clock is reset as well,
making it impossible for the CPU to maintain the time on its own. If you need time
of day in your system, then you need a battery and a time-of-day chip. An exception
to this case is if the embedded system knows that it has an external device from
which it can get the current time after being reset.

Serial Port Drivers
Many embedded systems use serial ports as an interface to the outside world.
Despite the serial port’s age (it has been around longer than dirt), serial ports are still
found on most modern single-board computers. The serial device on an embedded
system has two portions: the protocol and the physical interface. The protocol por-
tion takes care of start and stop bits, bits per character, the width of each bit based
on a configured baud rate, and the conversion of the serial bit stream into a parallel
byte stream easily digested by the CPU. The physical interface takes care of convert-
ing voltage levels on the CPU to the voltage levels needed by the interface. In many
cases, the physical interface also provides some electrical isolation between the phys-
ical connector and the CPU. Embedded systems use two fundamentally different
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transmission mechanisms for their serial ports: single wire and differential drive
transmission.

Single Wire Data Transfer

Single wire systems dedicate one wire to each direction of data transfer and use a
common ground reference. While simpler than differential drive transmission, single
wire transfer has limitations with regard to transmission speed and the length of the
wire from sender to receiver. The most common single wire standard is RS-232.
RS-232 is the serial interface used by the COM port on a PC and the TTY ports on
UNIX systems. RS-232 is by far the most common serial communications standard
in the industry.

Differential Drive Interface

Differential drive is not as widely used. It requires a few more wires, increases the
drive length substantially, and also supports transmission speeds in excess of 1MB.

The Many Flavors of RS-232

RS-232 is brought to the external world as a data terminal equipment (DTE) or 
data communications equipment (DCE) connection. If you want to connect two 
RS-232 ports together pin-to-pin and you want these two ports to be able to 
exchange data, one side must be configured as DTE, and one side must be config-
ured as DCE. This terminology originates from one of the earliest uses of the 
interface: connecting a dumb terminal port to a modem to provide remote access 
to a computer. In this scenario, the terminal is the DTE, and the modem is the 
DCE.
If there weren’t a DTE and DCE side to the interface and you tried to connect the 
two devices pin-to-pin (through a cable), the transmitter line on one would be tied 
to the transmitter line on the other, and the receiver line on one would also be tied 
to the receiver on the other. This wouldn’t be pretty! Configuring one side as DTE 
and the other side as DCE allows a straight-through cable to connect the two 
devices. The physical difference between DTE and DCE is the pinout of the con-
nector. For example, on DTE, pin 2 might be transmit, and on DCE, pin 2 would 
be receive. Similarly, pin 3 on DTE might be receive, and pin 3 on DCE would be 
transmit.
So what do you do if you have two devices that both have an RS-232 connection, 
but both are of the same type? That’s what a null-modem is for. The null-modem 
does all the required pin swapping through a special cable or a small adapter that 
is inserted between the cable and one of the device connectors.
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Differential drive interface can drive faster signals through greater distances because
of its inherent noise immunity. The idea behind differential drive is that opposite
polarity signals (a signal and its inverse) are applied to two wires that travel the same
path as a twisted pair. These wires are wrapped around each other, which minimizes
interference. The receiver determines the state of the signal based on the voltage
difference between the two wires. If noise hits the cable, it is likely to inject the same
corrupting signal on each wire, so it doesn’t contribute to the detected difference (see
Figure 1.4).

The most common embedded interfaces that use this technique are RS-422 and
RS-485. RS-422 is a differential drive replacement for RS-232. With no other
changes in firmware, an RS-232 interface could be replaced with RS-422, and its
maximum line drive and line speed would be increased. RS-485 adds the ability to
have more than a single transmitter and receiver on the connection. RS-485 can sup-
port single-master/multiple-slave or multi-master modes of communication between
serveral devices. RS-485 is commonly used on factory floor networks because of the
noise immunity and ability to connect multiple devices.

Figure 1.4 Differential Drive and Noise Immunity.

The line receiver uses analog techniques to compute A-B, giving
(+S+N)-(-S+N)=2S. Thus all induced transmission line noise is cancelled at
the receiver.

Ethernet Interface
While there are a few processor chips that include a portion of the Ethernet inter-
face on the chip, it’s still more common to find the Ethernet interface on a separate
device. Like the serial port, the Ethernet interface is partitioned into two layers (pro-
tocol and physical). The protocol layer is implemented as a single block called the
Media Access Layer (MAC). The physical layer consists of two blocks: a PHY and a
transformer. It is becoming more common to see the PHY and Ethernet controller
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integrated into one device, but the transformer is still separate; hence, the Ethernet
interface can consist of two or three distinct devices.

The Ethernet controller is the portion of the interface that does the packet-level
work. For incoming packets, it verifies that the incoming frame has a valid cyclic
redundancy check (CRC), ignores packets that do not match a specified MAC
address, organizes the incoming frames as packets that can be retrieved by the CPU
(usually through either a FIFO or DMA transfer), and generates interrupts based on
various configuration parameters established by the driver. For outgoing packets, the
Ethernet controller calculates the CRC, transfers data from memory to the PHY,
adds padding to small packets, and interrupts the CPU to indicate that the packet
has been sent.

The PHY takes care of the lowest level of the interface protocol. It is responsible
for various parameters (like bit rate) specific to the environment. 

The transformer provides isolation and electrical conversion of the signals passed
over the cable. 

Flash Device Options
All flash devices are structured as a number of sectors. On some devices, the sectors
are all the same size; on others the sector sizes vary. Some have features that allow
the firmware to lock a sector so that it cannot be erased unless a physical connection
is inserted onto the hardware. Some devices have reset input lines, and others do not.
Densities vary from 64KB to 8MB in a single flash device. 

Flash Locking Facilities

Erasing or writing flash memory involves a special, nontrivial algorithm. Thus, it is
relatively safe to assume that this algorithm will not be executed accidentally. How-
ever, it is still nice to have the option to protect certain sectors from misbehaving
code. Many of the available flash devices have the ability to protect one or more sec-
tors from write operations. Some of these devices allow you to protect a specified
sector or group of sectors by placing the device in an external programming device
and applying a high voltage to one of the pins. Others have a more flexible configu-
ration that uses an external write protect pin and a lock sequence. In this latter type
of device, a sector is write-protected or locked by executing a specific command
sequence. Once locked, a sector can only be modified after first being unlocked. This
process makes it even more difficult to corrupt a sector accidentally. Locking can be
used to assure that some very basic boot code is always available for the CPU regard-
less of what happens to the programming of the other sectors.
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If this safeguard is still not enough, an alternate technique can prevent a sector
from being modified until a power cycle occurs. This method is typically accom-
plished by enabling the write-protect pin and then initiating the lock sequence to a
particular device sector. Because there is no unlock sequence that works when the
write-protect pin is enabled and the write protect pin can not change state until the
next hard reset, the sector is protected from all erroneous writes except those that
happen immediately upon boot. If you need more protection than this method pro-
vides, use EPROM!

Bottom-Boot and Top-Boot Flash Devices

Some devices are organized as a few small sectors at the bottom address space, fol-
lowed by large sectors that fill the remaining space. Some devices have a few small
sectors at the top of the device’s address space and use large sectors in the lower
address space. Since boot code is typically placed in small sectors, flash memory is
some times described as bottom-boot or top-boot, depending on where the smaller
sectors are located.

Ultimately, one sector contains the memory space that the CPU accesses as a
result of a power cycle or reset (boot). This sector is usually referred to as the boot
sector. Because some CPUs have a reset vector that is at the top of memory space and
others have a reset vector at the bottom of memory space, the flash devices come in
bottom-boot and top-boot flavors. A processor that boots to the top of memory
space would probably use a top-boot device, and a processor that boots to the bot-
tom of its memory space would be more suited to a bottom-boot device.

When the boot sector of the flash device exists in the boot-time address space of
the CPU, it can be protected by making the boot sectors unmodifiable. Since only a
small amount of code is typically needed to provide a basic boot, there is little
wasted space if you dedicate a small sector to an unmodifiable boot routine. This
supports the ability to make as much of the flash space in-system reprogrammable
without losing the security of knowing that if all of the reprogrammable flash was
accidentally corrupted, the system would still be able to boot through the small
amount of code in the unmodifiable boot sector.

The CPU/Memory Interface
The most critical interface in any computing system is the connection between mem-
ory and the CPU. If this interface doesn’t function properly, the CPU cannot function
because it cannot retrieve instructions. If the processor can’t reliably retrieve instruc-
tions, it really doesn’t matter if anything else on the board works — you won’t be
using it anyway.
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Understanding the CPU/memory interface is important to more than just the data
and instruction stream. In most systems, peripherals share the data and address buses
with memory. Thus, understanding the protocol for these buses is important to
understanding much of the hardware. 

This section explains, in general terms, how the CPU uses the address and data
buses to communicate with other parts of the system. To make the discussion more
concrete, I describe the operation in terms of the hypothetical machine detailed in the
simplified schematics in Figure 1.5 and Figure 1.6. Don’t worry, you won’t need an
electrical engineering degree to interpret these drawings. I’ve omitted everything
except the relevant connections. The result is only slightly more detailed than the
typical functional block diagram, but it is also representative of the portion of a real
schematic that you would need to understand to work with most embedded proces-
sors. If you can identify the control, data, and address lines in your system, you
probably know all you need to know about how to read a schematic. 

Figure 1.5 Schematic CPU.

In this schematic, the signals have been grouped to show how they relate to
the various system buses. Notice that nearly all of the CPU pins are
dedicated to creating these buses. 

The CPU

In the CPU diagram (Figure 1.5), there is only one “big” part: the CPU. There are
also two other blocks of components on this page: the clock and the reset circuit.
The clock provides the CPU with the ability to step through processing states, which
can vary from one cycle per instruction (RISC) to sometimes over a dozen cycles per
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instruction (CISC). The clock can be a crystal, or it can be a complete clock circuit,
depending on the needs of the CPU. The reset/WDT circuit provides the processor
with a logic level on the reset pin that forces the CPU back to its starting point. This
particular circuit uses separate logic to assure that the processor’s reset pin is held
low for the required amount of time after a power-up or when the Switch_1 switch is
pressed. Notice that a PIO line out of the CPU feeds into this circuit to provide the
WDT with a periodic sanity pulse.

Figure 1.6 Schematic Flash and RAM.

The memory devices connect directly to the system buses. Because each
device is only 32K, each uses only 15 address lines. Notice how each device
is activated by a separate chip select.

The CPU in this design uses 16-bit addresses but transfers data eight bits at a
time. Thus, it has a 16-bit address bus and an 8-bit data bus. Using these 16 bits, the
processor can address a 64K memory space. In this design, half of that space is occu-
pied by 32K of flash memory and the other half by 32K of SRAM (Figure 1.6).  

Each CPU pin belongs to one of four groups: address, data, control, or I/O. 
In this simple design, the majority of the CPU pins are committed to creating

address and data buses.  Since each memory component houses only 32K of address
space the memory chips have only 15 address lines. In this design, the low-order 15
address bits are directly connected to these 15 lines on the memory components. Two
additional CPU control signals — ChipSelect_0 and ChipSelect_1 — are used to
activate the appropriate memory device. The most significant bit Addr_15 is unused.
(If the CPU did not provide conveniently decoded chip select lines, we could have
used the high-order bit of the address bus and some additional logic (called address
decode logic) to activate the appropriate memory device.

Whenever the CPU wants to read or write a particular byte of memory, it places
the address of that byte on the address lines. If the address is 0x0000, the CPU would
drive all address lines to a low voltage, logic 0 state. If the address were 0xFFFE, the
CPU would drive all except the least significant address line to a high voltage, logic 1
state. 
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When a device is not selected, it is in a high-impedance state (electrically discon-
nected) mode. Two more control lines (read and write) on the CPU control how a
selected device connects to the data bus. If the read line is active, then the selected
memory chip’s output circuits are enabled, allowing it to drive a data value onto the
data bus. If the write line is active, the CPU’s output circuits are enabled, and the
selected memory chip connects only its input circuits to the data bus. 

Collectively the read, write, and chip select pins are called the control/status lines.

Figure 1.7 summarizes the connections between the CPU and the flash device. If
you compare this diagram to the schematic, you can see that the only additional con-
nections on the flash device are for power and ground. 

Hexadecimal and Bus Signals

It’s common to refer to address and data bus values in ASCII-coded hex, for 
example “Put 0xBE at 0x26A4”. In this usage “put 0xBE” means place 0xBE on 
the data bus, while at “0x26A4” means place the address 0x26A4 on the address 
bus. To find out what happens to individual address or data lines, you need to 
expand the hex to its binary equivalent. Each hex digit represents four bits as in 
the following chart:

Hexadecimal Binary Hexadecimal Binary

0x0 0000 0x1 0001

0x2 0010 0x3 0011

0x4 0100 0x5 0101

0x6 0110 0x7 0111

0x8 1000 0x9 1001

0xA 1010 0xB 1011

0xC 1100 0xD 1101

0xE 1110 0xF 1111

Thus, 0xBE represents the eight bits 1011 1110.
Note that the number of hexadecimal digits implies the size of the bus. 0xBE con-
tains only two hexadecimal digits, implying that the data bus is only eight bits 
wide. The four hexadecimal digits in 0x26A4, on the other hand, suggest that the 
address bus is 16 bits wide. Because of this implicit relationship between the hex 
representation and the bus size, it is accepted convention to pad addresses and 
data values with zeros so that all bits in the bus are specified. For example, when 
referencing address 1 in a machine with 32-bit addresses, one would write 
0x00000001, not 0x1.
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Figure 1.7 Connection Between CPU and Boot Flash Device.

The CPU uses the read and write signals to control the output drivers on the
various memory and peripheral devices, and thus, controls the direction of
the data bus.

The CPU-to-flash device interaction can be summarized with the following steps:

1. CPU places the desired address on the address pins.
2. CPU brings the read line active.
3. CPU brings the appropriate chip select line active.
4. The flash device places the data located at the specified address onto the data bus.
5. CPU reads in the data that has been placed on the bus by the flash device.
6. CPU releases the chip select line and processes the data.

This sequence of steps allows the CPU to retrieve the bytes from memory that
ultimately become instructions. It’s commonly referred to as instruction fetching. If
you understand this interface, it’s easy to connect to other devices, because they are
all fundamentally the same. The SRAM interface is identical except that a different
chip select line is activated. The different chip select lines are configured so that each
line is active for a 32K address space. (ChipSelect_0 is used for the 0–32K range,
and ChipSelect_1 is used for the 32K–64K range.) A write access is essentially the
same thing except that now the Write line is used and the data flow is from CPU to
memory, not memory to CPU.

So that’s essentially it for the address, data, and control. You have a certain num-
ber of address bits (dependent on the actual size of the device), 8 data bits (16 or 32
if you were using a different device), and a few control lines (read, write, and chip
select).  All that remains in the schematic is the serial port. Since most modern pro-
cessors have a UART built in, there’s only a driver to attach, and that does not
involve any CPU interaction. In other words, you now understand the fundamentals
of a simple microprocessor-based hardware design!
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The Power (and Pitfalls) of Cache

For standard programming environments, cache is a blessing. It provides a real speed
increase for code that is written to use it properly (refer to Figure 1.8). Caching takes
advantage of a phenomenon known as locality of reference.1 Locality of reference
states that at any given point in a program’s execution, the CPU is accessing some
small block of memory repeatedly. The ability to pull that small block of memory
into a faster memory area is a very effective way to speed up what would otherwise
be a relatively slow rate of memory access.

Figure 1.8 Cache Between CPU and External Devices.

There are different levels of cache, the fastest (usually called level 1) cache
used by the CPU is located on the CPU chip.

Cache is a fast chunk of memory placed between the memory access portion of
the CPU and the real memory system in order to provide an enhancement to the
access time between the CPU and external memory. There are several different types
of cache implementations. Discussion of these various implementations is beyond the
scope of this text. Instead, this section focuses on the two major types of caches used
in today’s embedded systems: instruction cache (I-cache) and data cache (D-cache). 

As the names imply, the two different caches are used for the two different types
of CPU memory access: accesses to instruction space and accesses to data space,
respectively. Caches are divided into these two major types because of the difference
in the way the CPU accesses these two areas of memory. The CPU reads and writes

1. M. Morris Mano, Computer System Architecture, Second Ed. (Englewood Cliffs, NJ: Prentice Hall, 
1982), pg 501.
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to data space but tends to read from instruction space much more often than it
writes to it.

The only limitation that cache puts on typical high-level system programmers is
that it can be dangerous to modify instruction space, sometimes called self-modifying
code. This is because any modification to memory space is done through a data
access.  

The D-cache is involved in the transaction; hence, the instruction destined for
physical memory can reside in the D-cache for some undetermined amount of time
after the code that actually made the access has completed. This behavior presents a
double chance of error: the data written to the instruction space might not be in
physical memory (because it is still in the D-cache), or the contents of the instruc-
tion’s address might already be in the I-cache, which means the fetch for the instruc-
tion does not actually access the physical memory that contains the new instruction.

Figure 1.9 Data-Cache Instruction-Cache Inconsistency.

Cache increases performance by allowing the CPU to fetch frequently used
values from fast, internal cache instead of from slower external memory.
However, because the cache control mechanism makes different
assumptions about how data and instruction spaces are manipulated,
self-modifying code can create problems. Cache can also create problems if
it masks changes in peripheral registers.

Figure 1.9 shows how the cache gets between the data write and the instruction
read. Step A shows the CPU writing to memory through the D-cache. Step B shows
the transfer of the contents of that D-cache location to physical memory. Step C
represents the transfer of the physical memory to the I-cache, and step D shows the
CPU’s memory access unit retrieving the instruction from the I-cache. If the sequence
of events was guaranteed to be A-B-C-D, then everything would work fine. However,
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this sequence cannot be guaranteed, because that would eliminate the efficiency
gained by using the cache. The whole point behind cache is to attempt to eliminate
the B and C steps whenever possible. The ultimate result is that the instruction fetch
may be corrupted as a result of skipping step B , step C, or both.

For embedded systems, the problem just gets worse. Understanding the above
problem makes the secondary problems fairly clear. Notice in Figure 1.8 that there is
a flash device, DRAM, and a UART. Two additional complexities become apparent: 

1. The UART is on the same address/data bus as the memory, which means that
accesses to a UART or any other physical device outside the CPU must deal with
the fact that cache can “get in the way.” Hardware must be designed with this
consideration in mind (or the firmware must configure the hardware) so that cer-
tain devices external to the CPU can easily be accessed without the data cache
being involved. 

2. The UART may be configured to use DMA to place incoming characters into
memory space. In many systems, DMA and cache are independent of each other.
The data cache is likely to be unaware of memory changes due to DMA transfers,
which means that if the data cache sits between the CPU and this memory space,
more inconsistencies must be dealt with.
The complexity of the hardware and the “need for speed” make these issues tricky

but not insurmountable. Most of the prior problems are solved through good hard-
ware and firmware design. The initial issue of I-cache and D-cache inconsistency can
be resolved by invoking a flush of the data cache and an invalidation of the instruc-
tion cache. A flush forces the content of the data cache out to the real memory. An
invalidation empties the instruction cache so that future CPU requests retrieve a fresh
copy of corresponding memory.

Also, there are some characteristics of cache that can help resolve these problems.
For example, a write through data cache ensures that data written to memory is
placed in cache but also written out to physical memory. This guarantees that data
writes will be loaded to cache and will pass through the cache to real memory; hence
it really only provides a speed improvement for data reads. Also, a facility in some
CPUs called bus snooping helps with the memory inconsistency issues related to
DMA and cache. Bus snooping hardware detects when DMA is used to access mem-
ory space that is cached and automatically invalidates the corresponding cache loca-
tions. Bus snooping hardware isn’t available on all systems however. Additionally, to
avoid the problem with cache being between the CPU and the UART, devices can
usually be mapped to a memory location that doesn’t involve the cache at all. It is
very common for a CPU to restrict caching to certain specific cachable regions of
memory, rather than designating its entire memory space cacheable. The bottom line
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is that the firmware developer must be aware of these hardware and firmware capa-
bilities and limitations in order to deal with these complexities efficiently.

Summary
While embedded systems come in a fascinating array of variations, at the lowest
hardware levels they usually have many general similarities. Memory systems inter-
face with CPU via address and data buses. Systems interface with development hosts
via serial ports. Watchdog timers supply robust operation even in the presence of
intermittent software and hardware bugs. Knowing the general structure of these
common facilities gives you a useful framework for learning the specifics of new sys-
tems.

The hardware coverage in this chapter won’t make you a hardware guru, but it
should prepare you to better understand the documentation for your particular hard-
ware. More importantly (for the purposes of the book), it should prepare you to
understand the hardware issues discussed in later chapters. 

Where this chapter described primarily hardware features, the next chapter
focuses on software issues — specifically on how to compile and load programs for
an embedded target. More than anything else, these two issues, the need for greater
knowledge about the hardware and the need for tools that work in a cross-develop-
ment environment, separate embedded systems from application development.


	Embedded Systems Firmware Demystified
	Ed Sutter
	CMP Books Lawrence, Kansas 66046


	CMP Books CMP Media LLC 1601 West 23rd Street, Suite 200 Lawrence, Kansas 66046 USA www.cmpbooks.com
	Table of Contents
	Preface vii
	Chapter 1

	A Hard Start 1
	Chapter 2

	Getting Started 29
	Chapter 3

	Introducing MicroMonitor 61
	Chapter 4

	Assembly Required 69
	Chapter 5

	Command Line Interface 87
	Chapter 6

	Interfacing to Flash Memory 117
	Chapter 7

	A Flash File System 137
	Chapter 8

	Executing Scripts 173
	Chapter 9

	Network Connectivity 193
	Chapter 10

	File/Data Transfer 211
	Chapter 11

	Adding the Application 233
	Chapter 12

	Monitor-Based Debugging 247
	Chapter 13

	Porting MicroMonitor to the ColdFire™ MCF5272 301
	Conclusion 335
	Appendix A
	Building a Host-Based Toolbox 337
	Appendix B

	RTOS Overview 349

	Index 359
	What’s on the CD-ROM? 372

	Preface
	Who Is the Reader?
	What’s Covered in this Book?
	Conventions
	Source Code
	Acknowledgments

	Chapter 1
	A Hard Start
	System Requirements
	Figure 1.1 Block Diagram of a Typical Embedded System.
	These are the components most common in embedded systems. All embedded systems use some kind of n...


	Central Processing Unit
	• Microcontroller — those devices that can be configured to run 100 percent on their own. With a ...
	Programmable Chip Selects
	Interrupt Controller
	Timer-Counter Unit
	DMA Controller
	Serial Port
	DRAM Control Unit
	Memory Management Unit
	Cache
	Programmable I/O Pins
	Putting It All Together

	System Memory
	ROM, PROM, EPROM and EEPROM
	RAM
	Flash Memory
	Still Others

	CPU Supervision
	Reset
	Figure 1.2 Conditioned Reset Input.
	When power is applied to the system (Signal A), the charge time of the RC circuit attached to the...


	Watchdog Timer
	Figure 1.3 External Watchdog Timer.
	The watchdog timer is a simple re-triggerable timer. When the application is operating normally, ...


	Battery-Backed SRAM
	Time-of-Day Clock

	Serial Port Drivers
	Single Wire Data Transfer
	Differential Drive Interface
	Figure 1.4 Differential Drive and Noise Immunity.
	The line receiver uses analog techniques to compute A-B, giving (+S+N)-(-S+N)=2S. Thus all induce...



	Ethernet Interface
	Flash Device Options
	Flash Locking Facilities
	Bottom-Boot and Top-Boot Flash Devices

	The CPU/Memory Interface
	Figure 1.5 Schematic CPU.
	In this schematic, the signals have been grouped to show how they relate to the various system bu...

	The CPU
	Figure 1.6 Schematic Flash and RAM.
	The memory devices connect directly to the system buses. Because each device is only 32K, each us...

	Figure 1.7 Connection Between CPU and Boot Flash Device.
	The CPU uses the read and write signals to control the output drivers on the various memory and p...
	1. CPU places the desired address on the address pins.
	2. CPU brings the read line active.
	3. CPU brings the appropriate chip select line active.
	4. The flash device places the data located at the specified address onto the data bus.
	5. CPU reads in the data that has been placed on the bus by the flash device.
	6. CPU releases the chip select line and processes the data.



	The Power (and Pitfalls) of Cache
	Figure 1.8 Cache Between CPU and External Devices.
	There are different levels of cache, the fastest (usually called level 1) cache used by the CPU i...

	Figure 1.9 Data-Cache Instruction-Cache Inconsistency.
	Cache increases performance by allowing the CPU to fetch frequently used values from fast, intern...
	1. The UART is on the same address/data bus as the memory, which means that accesses to a UART or...
	2. The UART may be configured to use DMA to place incoming characters into memory space. In many ...




	Summary




