
Welcome to On Time RTOS-32
On Time RTOS-32 offers a complete solution for high performance embedded systems using x86
compatible CPUs. However, it is important to understand how the various components (RTTarget-32,
RTKernel-32, RTFiles-32, RTPEG-32, and RTIP-32) of On Time RTOS-32 fit together as parts of a
scalable architecture.

RTTarget-32 is the foundation of On Time RTOS-32. It includes all development tools required to run
32-bit applications on an embedded system. RTTarget-32 can process a single 32-bit application built
with a Win32 compiler to run on the embedded target. It supplies boot code to initialize the target’s
hardware and to subsequently invoke the application automatically. RTTarget-32 also supplies an
extensible subset of the Win32 API, allowing it to run programs developed for Windows NT in an
embedded environment under real-time conditions. RTTarget-32’s Win32 emulation is comprehensive
enough to support the startup code and run-time systems of most Win32 compilers unmodified. Both
source level and binary compatibility between Windows NT and RTTarget-32 are possible. Many
programs or libraries and DLLs for Windows NT can be ported without or with only minor changes to
RTTarget-32. RTTarget-32 can be regarded as a very small Windows NT kernel for embedded systems
with a minimum memory footprint of a mere 16k RAM/ROM.

Another advantage of RTTarget-32’s Windows NT compatibility is its support for NT development tools.
You can develop programs using Borland C++, Borland Delphi, Microsoft Visual C++, or Watcom C++.
The respective compilers’ command line tools as well as the IDEs such as Microsoft’s Visual Studio are
supported. RTTarget-32’s Win32 compatibility allows its compiler support to be extended to any tool
which generates standard Win32 PE files (Window’s executable file format).

RTKernel-32 is a real-time multitasking kernel for RTTarget-32. It is a high-performance real-time
scheduler supplied as a set of linkable libraries which can extend the functionality available to
RTTarget-32 programs. It adds most Win32 thread API functions for thread creation and management,
semaphores, critical sections, etc., to RTTarget-32’s Win32 emulation library. It also defines its own API
and functionality beyond the capabilities available under Windows NT to meet the needs of real-time
systems (e.g., deterministic scheduling, priority inheritance, a comprehensive interrupt handling API,
debugging functions, etc.).

RTFiles-32 is the file I/O component of On Time RTOS-32. It provides its functionality through the
Win32 API emulation of RTTarget-32, too. Therefore, all file I/O related functions of the C/C++ or Pascal
run-time system can be used. RTFiles-32 supports the DOS/Windows FAT file system structure on
floppy disks, IDE, and flash disks and adds enhancements for real-time file I/O. Just like RTKernel-32,
RTFiles-32 must be used with RTTarget-32. RTFiles-32 supports RTKernel-32, but does not require it.

RTPEG-32 is an event-driven, object-oriented C++ GUI library for embedded systems. It supports imple-
menting professional Windows 95 or custom look-and-feel user interfaces with mouse and keyboard
support. Device drivers for VGA and SVGA/VESA graphics hardware are included.

RTIP-32 is an add-on to provide networking capabilities for On Time RTOS-32. It implements the core
TCP/IP protocols for Ethernet and serial communications. RTIP-32’s functionality is provided to the
application using the popular Unix sockets API. RTIP-32 requires RTTarget-32 and can be combined
with RTKernel-32 and/or RTFiles-32. For applications requiring several simultaneous connections,
RTKernel-32 is recommended.

This manual describes RTTarget-32, RTKernel-32, RTFiles-32, and RTPEG-32. The RTIP-32 documen-
tation is provided in a separate set of manuals.

Welcome to On Time RTOS-32 1

Hardware and Software Requirements
The On Time RTOS-32 host tools run under the following operating systems:

• Windows 95/98/ME

• Windows NT/2000

In addition, one or more of the following compilers are required:

• Microsoft Visual C++ 2.0 or higher

• Borland C++ 4.5 or higher

• Borland C++ Builder 1.0 or higher

• Borland Delphi 2.0 or higher

• Watcom C/C++ 10.5 or higher

The On Time RTOS-32 run-time environment has the following minimum requirements on the target
computer:

• The target computer must be able to execute Intel x86 32-bit protected mode instructions. This
means that an i386 compatible CPU must be used.

• At least 8k of RAM and 16k of total memory is required. For development systems with source
level debug support, at least 32k of RAM is required. Depending on the size of the application and
optional components used, RAM and ROM requirements may be higher.

This Manual
This manual describes how programs developed with any of the compilers listed above can be executed
on an embedded system. Familiarity with at least one of the supported compilers and the Win32 API is
assumed. Furthermore, some knowledge of the Intel 386 CPU architecture (in particular, address trans-
lation, privilege levels, descriptor tables, etc.) is recommended.

Part I covers RTTarget-32, the core component of On Time RTOS-32. It describes how the development
environment is used. Parts II, III, and IV describe RTKernel-32, RTFiles-32, and RTPEG-32.

After installation, it is important to read the accompanying Readme.html file. This file may contain last-
minute changes and corrections to the User’s Manual.

Please refer to section Installation in this chapter for installation instructions.

Technical Support
If a program running under On Time RTOS-32 does not function as expected, please perform these
steps:

• Analyze the LOC file created by the locator RTLoc. If there are any error or warning messages,
check Part I, Appendix C for a problem description and a possible solution.

• If you are using RTKernel-32, be sure to link the Debug Version of RTKernel-32.

• Refer to Part I, Appendix A to verify whether any special considerations apply to your compil-
er/linker configuration.

• Please refer to the demo programs that come with On Time RTOS-32 for tasks similar to those in
your application. Compare your code and configuration files to those of the demo programs.

• Try to isolate the problem in a small test program which is much easier to test and debug.

If the problem persists, you may contact On Time for technical support. In this case, please supply the
following information:

• On Time RTOS-32 version and components.

• Software development tools being used (compiler, assembler, linker, debugger, third-party
libraries, etc.), including the exact version numbers as well as the exact version of your operating
system.

2 On Time RTOS-32

Installation

• If you want to contact On Time by email, do not attach .EXE/.DLL/.RTB/.RTA files or any other
large binary data to your message.

• If the problem is related to an RTTarget-32 configuration file, do not include the configuration file in
your support request. Instead, please attach the .LOC file produced by RTLoc.

All registered users of On Time RTOS-32 are entitled to free technical support for the current or the
previous major version. Support for older versions is not guaranteed.

Support Web Page and Mailing Lists
On Time offers extensive technical support facilities through its World Wide Web site at

http://www.on-time.com

The Web site provides information, examples, patches, maintenance releases, etc., for all On Time
products, which can be viewed online or downloaded. In addition, email addresses and mailing list
addresses are provided for private or public technical support.

Detailed information about our Internet technical support is available on our Web site.

Installation
On Time RTOS-32 comes as one or more self-extracting installation programs. To install On Time
RTOS-32 on your hard disk, simply execute the installation program under Windows. You will be
prompted to select an installation directory and a program group in your Start Menu. If you are installing
a full release of an On Time RTOS-32 component, you will also be prompted to enter an installation key.
The correct installation key is given on your license certificate.

Please be sure to read the Readme.html file after the installation program has completed. It may contain
important corrections or additions to this manual.

The following directories are created under the On Time RTOS-32 installation directory:

Directory Contents
Bin Executable programs and DLLs delivered with On Time RTOS-32.
Include On Time RTOS-32 include files.
Libbc Libraries and various object files for Borland C++.
Libdel Interface unit source files for Borland Delphi.
Libmsvc Libraries and various object files for Microsoft Visual C++.
Libwat Libraries and various object files for Watcom C++.
Demobc Example programs for Borland C++.
Demodel Example programs for Borland Delphi.

Demomsvc Example programs for Microsoft Visual C++.
Demomsdev Example programs for Microsoft Visual Studio 6.0 (IDE Projects).
Demowat Example programs for Watcom C++.
Boot Source code of RTTarget-32’s boot code.
Monitor1 Source code of RTTarget-32’s Debug Monitor.

1 This directory is only created if you have purchased the RTTarget-32 source code.

Welcome to On Time RTOS-32 3

Driver\Rtk322 Source code of all RTKernel-32 drivers.
Driver\Rtf323 Source code of all RTFiles-32 drivers.
Driver\Peg4 Source code of all RTPEG-32 drivers.
Source\Rtt321 Source code of the RTTarget-32 run-time library RTT32.LIB.
Source\Emu Source code of the 387 FPU emulator.
Source\Metaw Source code of the MetaWINDOW support library Rtmetaw.lib.
Source\Rtk325 Source code of the RTKernel-32 scheduler.
Source\Rtk32sup2 Source code of the RTKernel-32 supplemental modules.

Source\Rtf326 Source code of the file system core of RTFiles-32.
Source\Peg7 Source code of the GUI library RTPEG-32.
PegDoc4 RTPEG-32 HTML online reference manual.

Here are the steps required to run one of the demo programs to test the On Time RTOS-32 installation.

• Connect your host PC with the target PC using a NULL modem cable. If a port other than COM1 is
used on the host, click "Edit Settings" and record the COM port used in file Rttarget.ini. If a different
port is used on the target, edit the COMPort command in configuration file Demopc.cfg included
with each demo.

• Click on one of the demo program shortcuts created in the On Time RTOS-32 Start Menu folder.
For a command line demo, this will open a command prompt window with all required environment
variables defined and the current directory set to the directory of the selected demo. For Visual
Studio demos, the respective workspace and project files for the demo are loaded in Msdev.exe.

• Insert an empty formatted diskette in drive A:.

• For command line demos, build the demo using the MAKE utility of your compiler (MAKE for
Borland/Inprise, NMAKE for Microsoft, or WMAKE for Watcom). In Visual Studio, select "Target -
Win32 Debug" as the active configuration and build the project. Visual Studio will create the Debug
Monitor Boot diskette in this step.

• For command line demos, create a Debug Monitor boot diskette with command:
BootDisk Monitor A:

• Run the program under control of the debugger. For the command line demos, start the
RTTarget-32 debugger with:

RTD32 Hello

In Visual Studio, any command which starts the Visual Studio debugger (e.g., Build, Start Debug,
Step Into) will download the program and run it under the debugger. If you are prompted for the
name of the executable to run, enter Debug\<project name>.exe.

Note that GUI demo programs or demos not running on PC compatible targets may need customer
monitors.

To only download the program for execution, program RTRun can be used:
RTRun Hello

2 This directory is only created if you have purchased RTKernel-32.

3 This directory is only created if you have purchased RTFiles-32.

4 This directory is only created if you have purchased RTPEG-32.

5 This directory is only created if you have purchased the RTKernel-32 source code.

6 This directory is only created if you have purchased the RTFiles-32 source code.

7 This directory is only created if you have purchased the RTPEG-32 source code.

4 On Time RTOS-32

Licensing Terms and Liability

Licensing Terms and Liability
The software products RTTarget-32, RTKernel-32, and RTFiles-32 (programs, libraries, object code,
source code, and User’s Manual) are the proprietary property of On Time Informatik GmbH, Hamburg,
Germany.

By purchasing an RTTarget-32, RTKernel-32, or RTFiles-32 license, the licensee acquires the rights to
develop and distribute products linked with libraries, object code, or boot code delivered with
RTTarget-32, RTKernel-32, or RTFiles-32 under the following conditions:

1. The product does not contain files delivered with RTTarget-32 other than linked into the applica-
tion, with the exception of files marked as redistributable in this manual.

2. The product does not compete with any product produced by On Time Informatik to any degree.

3. The product is not a software development product or a library.

4. The product is shipped as a binary image. It must not be shipped as a Win32 PE (Portable Execut-
able, Win32 .EXEs and .DLLs) file if it has been linked with any library shipped with RTTarget-32,
RTKernel-32, or RTFiles-32. It is also not permitted to ship linkable object files or library files
containing any software components of RTTarget-32, RTKernel-32, or RTFiles-32.

Software products containing any RTTarget-32, RTKernel-32, or RTFiles-32 libraries may only be
distributed as binary images such as RTB files (RTTarget-32 binaries), RTA files (RTTarget-32 disk boot
images), BIN files (binary image files), HEX files (Intel HEX file format), DLM files (RTTarget-32 dynami-
cally loadable modules), or such images burned into non-volatile memory such as ROM, EPROM,
EEPROM, or Flash. If you plan to distribute products in a different form, please contact On Time for
further information.

Proof of a legitimate license is a unique License Certificate issued by On Time. The license certificate
bears On Time’s company logo and lists all license numbers and their installation keys. License serial
numbers are located on adhesive labels each of which also bears On Time’s colored company logo.

A single RTTarget-32, RTKernel-32, or RTFiles-32 development license must at no time be used by
more than one person. A license may be transferred to another person, if this person accepts these
licensing terms. When a license is transferred to another person, the complete product contents
including the License Certificate must be given to the new licensee; copies of RTTarget-32,
RTKernel-32, or RTFiles-32 materials must be permanently destroyed.

This software and documentation is sold "as is" without warranty as to their performance, merchant-
ability or fitness for any particular purpose. The entire risk as to the quality and performance of the
software is assumed by the user. On Time Informatik GmbH warrants that the CD-ROM or diskettes on
which the program is furnished will be free from defects in materials and workmanship under normal
usage for a period of ninety days from the date of original purchase. Your sole and exclusive remedy in
the event of a defect is expressly limited to the replacement of the CD-ROM or diskettes.

In no event shall On Time Informatik GmbH or anyone else who has been involved in the creation,
production, or delivery of this software be liable for any direct, incidental or consequential damages,
such as, but not limited to, loss of anticipated profits, benefits, use, or data resulting from the use of this
software, or arising out of any breach of any warranty.

Welcome to On Time RTOS-32 5

Part I RTTarget-32

Part I
RTTarget-32
RTTarget-32 is a cross development system for Intel 80386 and higher CPUs. Win32 console mode
applications can run without Windows on virtually any hardware with a 32-bit Intel 386 compatible CPU.
Cross debugging is available using a Win32 debugger.

Programs to run with RTTarget-32 are developed using standard 32-bit compilers that can produce
native Win32 console mode applications (such as Borland C++, Borland Delphi, Microsoft Visual C++,
Watcom C/C++). Executable files built with these compilers are processed by RTTarget-32 to run on the
target system.

RTTarget-32 consists of the following components:

• Target Boot Code
The boot code initializes the CPU and, possibly, other hardware. It locates and initializes the appli-
cation program. Applications can be loaded from floppy disk, hard disk, EPROM disk, flash disk, or
can run directly from ROM.

• BootDisk Utility
This program can be used to create bootable RTTarget-32 diskettes. All common disk formats
(5.25", 3.5", hard disks, EPROM disks, flash disks) with FAT-12, FAT-16, or FAT-32 file structure
are supported.

• Locator
RTTarget-32’s locator RTLoc assigns fixed addresses to the application (this process is called
fixing up). RTLoc can place a program anywhere in the target computer’s address space.
Read/write and read-only regions of the program can be separated into different memory areas.

• Debug Monitor Resident on the Target
RTTarget-32’s Debug Monitor can be installed on the target computer to handle program
downloads and communication with the source-level debugger on the host.

• Source Level Cross Debugger
RTTarget-32’s cross debugger RTD32 is an extended version of Borland’s Win32 debugger. It
supports Borland, Microsoft, and Watcom debug symbol tables. In addition, RTTarget-32 programs
can be debugged using Microsoft Visual Studio 6.0’s debugger.

• Run Utility
As an alternative to starting programs from diskette or EPROM, RTTarget-32’s RTRun utility can
be used to download and run programs over a serial link.

• Win32 Emulation Library
RTTarget-32 includes a library providing a subset of the Win32 API. This subset supports the
standard run-time systems of the supported compilers, making available functions like malloc() or
printf() on the target computer.

• Serial I/O Library
RTTarget-32 comes with a powerful serial I/O library. It supports simultaneous interrupt-driven
communication on up to four ports.

6 On Time RTOS-32

Features of RTTarget-32

Features of RTTarget-32
The main features of RTTarget-32 are:

• Target Booting
RTTarget-32 can boot the computer directly from floppy disk, hard disk, EPROM disk, flash disk,
ROM, or via MS-DOS. The boot code requires only about 6k of memory. In addition, the boot code
maintains system data structures such as the GDT, IDT, and the page table.

• Supports Borland C/C++, Borland Delphi, Microsoft C/C++, Watcom C/C++
Popular 32-bit development systems can be used to develop powerful 32-bit embedded systems
applications.

• Supports Cross Debugging
Source-level debugging is available for RTTarget-32 programs using RTTarget-32’s debugger
RTD32 and Microsoft’s Visual Studio 6.0.

• Supports C/C++ and Pascal Run-Time Systems
Run-time system routines like printf, malloc, WriteLn, etc., are available. Porting existing applica-
tions is simplified considerably. Alternatively, programs can run without run-time system for even
less memory overhead.

• Low Resource Requirements
32-bit programs developed with RTTarget-32 can run in as little as 16k of memory.

• Supports Privilege Levels
Programs can run at different privilege levels to optimize either for maximum protection or for best
performance.

• Supports Paging
Page-level protection is fully supported. The memory protection features of the Intel 386 and higher
CPUs are used to guarantee that programs cannot destroy protected data, code, or critical system
tables.

• RAM Remapping
In addition to using paging for protection, RTTarget-32 can rearrange memory pages to create
larger consecutive regions of RAM. RTTarget-32 can also create virtual regions of memory by
combining several different areas of physical memory. However, physical addresses remain fixed
in the virtual address space, making absolute memory addressing easy.

• Supports DLLs
Applications can consist of one main program plus up to 31 DLLs. Even DLLs not specifically
designed for RTTarget-32 may be used. DLLs can be statically linked into a program image or
loaded dynamically through a file system such as On Time’s RTFiles-32.

• Data compression
Program code and data can be compressed to save EPROM or boot disk space and to accelerate
downloads.

• RAM Files
Although RTTarget-32 does not include a file system, file I/O can be simulated with file images
located in reserved RAM on the target. This feature is useful to support code that performs file I/O
and cannot be changed or to easily generate different configurations of a program that reads infor-
mation from a file at run-time. If a true FAT file system is required, On Time’s file system
RTFiles-32 is fully supported by RTTarget-32.

Part I RTTarget-32 7

Terms and Definitions
The following terms will be used throughout this manual:

Host The computer used for software development. The host must run under 32-bit Windows
and have the RTTarget-32 tools and one or more of the supported compilers installed.

Embedded Computers that are typically embedded into some larger system (e.g., machine).
Systems Embedded systems usually have peripheral devices different from desktop PCs.

Frequently, embedded systems do not have a user interface (and no screen and/or
keyboard).

Target The computer used to run applications developed with RTTarget-32. It must have an
Intel 386 compatible or higher CPU. For cross debugging or downloading, it must be
connected with the host by an RS232 serial link.

Cross Software development on a host computer for a different target computer.
Development

Cross Debugging a program on the target with the debugger running on the host.
Debugging

Fixup A fixup is a location in a program image depending on an absolute address. Since
Win32 programs must be able to run at any address, the linker writes a fixup table to the
PE file containing a list of all such locations in the program. Windows will process the
fixup table when the program is loaded. RTTarget-32 performs this function in the locate
process.

Here is an example of a program sequence requiring a fixup:
int x;
int main(void)
{

x = 3;
...

The compiler might translate this to:
mov [12345678], 3

where 12345678 is the address of global variable x. However, if the program is not
loaded at the address assumed by the linker, the code will fail because an incorrect
address is used for x.

The fixup table will contain an entry for this code sequence. The fixup is simply a pointer
to the absolute address in the code (a pointer to the ’12345678’ value contained in the
’mov’ instruction above). Thus, the program loader (or RTTarget-32’s locator) will know
this address needs to be adjusted in the code, depending on where the program is
located.

The address of the absolute address in the code is known as the fixup location. The
referenced address (address of variable x in this case) is the fixup target or fixup value.

Locate The process of converting a relocatable executable file to an absolute image. The
absolute image can only run at the addresses assigned in the locate process. A desktop
operating system relocates a program when it is loaded, while RTTarget-32 locates a
program before it is loaded on the target.

NT Program 32-bit PE-file program as originally defined for Windows NT. Some environments that
can run such programs (with varying restrictions) are: Windows NT (of course),
Windows 3.1 with Win32s, Windows 95, Borland’s DOS extender 32RTM, and
RTTarget-32.

Windows This manual uses the general term Windows to refer to the Microsoft Windows operating
system family.

PE File Portable Executable file format used by Win32 for 32-bit applications. Both .EXE and
.DLL files use this PE file format.

8 On Time RTOS-32

Terms and Definitions

Program Any part of a program that requires memory on the target. Examples of program entities
Entity are: program code or data, stack, heap, boot code, page table, etc.

Discardable Special kind of Program Entity which is needed only for booting and program initializ-
Entity ation. The memory area occupied by discardable entities can be reused by other

program entities such as the stack or heap. Discardable entities in RAM are allocated
top-down (as opposed to bottom-up for other entities) by RTTarget-32.

Module A program module according to Win32. A module can be an .EXE or .DLL file, both of
which must be in the PE file format. RTTarget-32 supports one EXE and up to 31 DLLs.

386 The term 386 is used throughout this manual to refer to any processor compatible with
the Intel 80386.

TLS Data Win32 defines a special kind of data segment called TLS (Thread Local Storage). Data
Segments segments of this type are duplicated automatically for each thread. Declaring variables in

such a segment is compiler dependent. For example, Borland C/C++ uses the __thread
keyword while Microsoft uses _declspec(thread). RTTarget-32 alone does not support
multiple threads, but nonetheless supports TLS data for the program (which is a single
thread). TLS data segments are supported for a multitasking system running under
RTTarget-32 which might also support them (e.g., RTKernel-32). For further information
about TLS or thread variables, please consult your compiler’s documentation.

Uncommitted Uncommitted memory is a range of linear address space which does not have any asso-
Memory ciated physical memory. In systems which use paging, uncommitted memory can be

committed by mapping physical pages to that address range. More information about
uncommitted memory is available in the Win32 SDK documentation.

Image The portion of a program entity which has initialized data associated with it (e.g., all of a
code section, parts of the data section, none of the program stack).

Part I RTTarget-32 9

Chapter 1 Running Win32 Programs without Win32

Chapter 1
Running Win32 Programs without Win32

Windows NT/2000 and Windows 95/98/ME are very powerful and complex operating systems offering a
comprehensive set of API calls. They fulfil widely differing application program requirements, but their
drawback is a substantial overhead on system resources like main memory and disk space, even at
times when not all system services are actually required. Moreover, the security mechanisms provided
by these systems can further increase the run-time overhead. For example, hardware access and
interrupt processing must be placed in device drivers. However, device drivers are difficult to program
and to debug, and access from application programs is slow. Most importantly, high interrupt latencies
and the non-deterministic time behavior of Windows’ tasking makes Windows unsuitable for real-time
systems.

Embedded systems typically will not need all services offered by Windows, but will often require low
interrupt response times. Also, the high cost of RAM, disk space, and run-time royalties of systems
running Windows may be prohibitive for systems built in large quantities.

RTTarget-32 allows running Win32 programs without Windows. Basically, three steps are required to
achieve this goal:

• Absolute addresses must be supplied for the program. Windows can usually load a program at any
address. The executable file contains a fixup table specifying the locations in the program image
that need to be adjusted. This is called fixing-up or locating.

• Substitutes for commonly used Win32 API calls must be supplied. Most Win32 programs will
contain calls to the Win32 API library (Win32 supplies about 4000 functions). RTTarget-32
supports a subset of the Win32 API large enough to support the standard C/C++ and Pascal run-
time libraries and most programs using character-mode user interfaces.

• The target computer must be booted. This process includes initialization of the hardware and acti-
vating the application.

As an additional aid for software development, RTTarget-32 also supports debugging programs while
they are running on the target.

Benefits of Running without Windows
The most important advantages of not using Windows are:

• Low resource requirements. RTTarget-32’s boot code needs only about 6k of memory. Programs
not using the run-time system can run in as little as 16k total memory. If the run-time system is
used, about 64k is required for the heap and run-time system code.

• Low interrupt latencies. Using RTTarget-32, the interrupt latency can be as low as about
5 microseconds on a 16Mhz-386SX or EX. Under Windows, the same CPU can yield several milli-
seconds interrupt latency.

• Interrupt handlers in application code. RTTarget-32 allows the application to install interrupt
handlers. This greatly simplifies the interaction with interrupt-generating hardware and is much
faster than Windows device drivers.

• Hardware access. RTTarget-32 allows the application to directly access hardware through I/O
ports. No overhead is incurred by emulation or complicated device drivers. Windows does not
permit applications to access ports directly.

• Physical memory access. RTTarget-32 initializes the CPU such that physical addresses are equal
to virtual addresses used by the application, even if paging is used. This facilitates direct hardware
access through memory mapped devices and the use of DMA. Windows does not allow access to
physical addresses.

• Access to privileged instructions. RTTarget-32 can run applications at privilege level 3 or 0.
Windows supports only privilege level 3 for applications.

10 On Time RTOS-32

Benefits of Running with Windows

• Speed. Windows needs a substantial amount of CPU time for system management. With
RTTarget-32, this time is freed and made available to your application. Thus, most applications will
run faster under RTTarget-32 than under Windows. In addition, RTTarget-32’s deterministic
behavior makes it suitable for real-time systems.

Benefits of Running with Windows
The following operating system services are not (or only in part) supported by RTTarget-32:

• Running several processes concurrently. However, the real-time multitasking system RTKernel-32
from On Time is compatible with RTTarget-32 and can be used for real-time multithreading.

• File system. RTTarget-32 can load programs from disk at boot time, but it supports file I/O only for
the console, parallel ports, and for files located into the program (see Chapter 3, File). However,
the full-featured file system RTFiles-32 from On Time is compatible with RTTarget-32.

• Virtual memory. RTTarget-32 can remap unused RAM pages to create larger consecutive regions
of RAM and it can create virtual regions consisting of several different physical regions. However,
swapping pages to disk in order to enlarge the amount of available memory is not supported.

• Graphical user interface. RTTarget-32 supports character I/O only (e.g., printf, puts, etc.).
However, On Time RTOS-32 component RTPEG-32 is available for professional graphics user
interfaces.

• Complete Win32 API. RTTarget-32 supports only a subset of the Win32 API. However, this subset
can be extended by the application. The subset supplied is sufficient to support most parts of the
standard C/C++ or Pascal run-time systems.

Preparing a Program for RTTarget-32
Preparing a program for RTTarget-32 is very similar to preparing Win32 console mode programs. The
command line compiler or IDE compiles the program as if it were intended to run as a 32-bit console
mode application. The only difference is that RTTarget-32’s library RTT32.LIB is linked in. RTT32.LIB
contains special versions of some Win32 API functions. This library makes the program independent of
KERNEL32.DLL (Window’s main API DLL).

Locating a Program
Locating an application is accomplished using program RTLoc. It requires two sources of input: An .EXE
file (and possibly one or more DLLs) produced by a 32-bit compiler/linker and a configuration file. The
output is an absolute binary file (extension .RTB, RTTarget-32 Binary) and a listing file (extension .LOC)
which contains information similar to a linker map file. The configuration file specifies how to map the
program onto the given hardware.

Here is a short example configuration file for a simple program compiled with Borland C++:
Region MyROM F0000h 64k ROM
Region MyRAM 0h 256k RAM

Locate Header Header MyROM
Locate Section CODE MyROM
Locate Section DATA MyRAM
Locate Stack Stack MyRAM 16k
Locate Heap Heap MyRAM

First, two regions of memory are defined. The first is named MyROM, is located at address F0000h, and
is 64k bytes long. Its type is ROM. The second section is RAM and called MyRAM at address 0, size
256k. The Locate commands instruct RTLoc which parts of the program to map to which regions. The
Header is required by the boot code. It contains information about where the application is located, its
entrypoint, etc. Sections are data read from the .EXE file. RTLoc will determine their sizes from informa-
tion in the .EXE file. The stack and heap are only allocated; initially, there is no data associated with
them. The stack size is fixed at 16k in this example. Since we did not specify a size for the heap, RTLoc
will assign all remaining space in region MyRAM to the heap.

Part I RTTarget-32 11

Chapter 1 Running Win32 Programs without Win32

After running RTLoc, the .LOC file will contain the following Relocation Report (and several other
reports):

[Relocation Report]

Name Address Size Image Access

MyROM 000F0000 00010000 00006000
 Header 000F0000 00000096 00000096 ReadOnly
 CODE 000F1000 00005000 00004A00 ReadOnly
MyRAM 00000000 00040000 00040000
 DATA 00000000 00002000 00001200 ReadWrite
 Stack 00002000 00004000 00000000 ReadWrite
 Heap 00006000 0003A000 00000000 NoAccess

All regions are listed with their respective locations, sizes, and space used. Indented below each region,
all entities allocated to the region are listed with their locations, sizes, and data image sizes.

This example may seem trivial; real configurations can be more complex. For example, you could have
several disjoint RAM and ROM regions as well as DEVICE regions, virtual regions, DLLs, etc. Chapter 3
covers configuration files in detail.

Cross Debugging a Program
The Monitor program delivered with RTTarget-32 can be loaded on the target. The Monitor will
communicate with the debugger as soon as the latter has been started on the host. Subsequently, the
debugger will operate exactly the same as it would for local debugging (except for some RTTarget-32
extensions).

Chapter 5 describes how cross debugging with RTTarget-32’s RTD32 works in detail.

A Complete Example
Assume you have two PCs: a host running DOS or Windows and a target. We want to run a test
program compiled with Borland C++.

Let’s create the following test program in file HELLO.C:
#include <stdio.h>

int main(void)
{
 printf("Hello, RTTarget-32!\n");
 return 0;
}

Now we can compile and link the program like this8:
bcc32 hello.c rtt32.lib

To be able to run the program on the target, we must locate the program. For this purpose, a small
configuration file must be created (HELLO.CFG):

Region NullPage 0 4k RAM
Region LowMem 4k 636k RAM
Region HighMem 1M 1M RAM

Locate BootCode BIOSBOOT.EXE LowMem
Locate BootData SystemData LowMem
Locate DiskBuffer DiskBuffer LowMem
Locate Header Hello LowMem

8 Depending on your directory structure, you may have to use the -L and -I options to enable BCC32 to find all required header
and library files.

12 On Time RTOS-32

A Complete Example

Locate NTSection CODE HighMem
Locate NTSection DATA HighMem
Locate Stack Stack HighMem 16k
Locate Heap Heap HighMem

Now we can locate using command9:
RTLoc Hello

which will produce files HELLO.RTB (the relocated program image) and HELLO.LOC (a detailed map
file).

Now a bootable disk with our program is created. Insert an empty, formatted disk in drive A: and type:
BootDisk Hello A:

Place the disk in the drive of the target computer and reboot it. RTTarget-32’s boot code will then
initialize the PC, read your program from the diskette, switch to 32-bit protected mode, and execute the
program.

9 RTTarget-32’s BIN directory must be included in your system’s path to execute programs RTLoc and BootDisk successfully.

Part I RTTarget-32 13

Chapter 2 The i386 Microprocessor

Chapter 2
The i386 Microprocessor

This chapter introduces some important properties of the Intel 386 CPU. The information presented here
also applies to all higher CPUs compatible with the 386 (such as the 486, Pentium, etc.) and compatible
CPUs from other vendors (such as National Semiconductor, AMD, etc.). RTTarget-32 requires only
32-bit protected mode. Thus, even CPUs that do not support all the features described here can be
supported by RTTarget-32 (for example, the NS486SXF from National Semiconductor).

This chapter only covers some general concepts of interest to most programmers, mainly to introduce
terms used throughout the rest of this manual. Many subjects are not covered (e.g., hardware multi-
tasking, gates, etc.). The i386 is a very complex processor; for a complete description, please refer to
the 386TM DX Microprocessor Programmer’s Reference Manual from Intel (order number 230985).

The 386 can operate in one of three different modes described below; in addition, the basic mechanisms
of address translation, memory protection, and interrupt handling are discussed.

Real-Address Mode
In this mode (also referred to as Real Mode), the 386 behaves like a very fast Intel 8086 CPU with a few
new instructions and wider registers. The accessible address space is officially limited to 1 megabyte,
just like on the 8086 (although undocumented features of the 386 allow addressing 4GB even in real
mode). For compatibility with earlier CPUs, the 386 starts operating in this mode after power on or reset.

In real mode, the processor calculates the physical address of a memory reference by shifting the value
of a segment register to the left by 4 binary digits and then adding the offset address to this value. Thus,
two 16-bit values (segment and offset) are combined to form a single 20-bit physical address. There are
no linear addresses in real mode.

Under RTTarget-32, this mode is only used in the boot code. The boot code starts executing in real
mode and carries out most of the initialization. Subsequently, it switches to 32-bit protected mode and
never switches back.

Virtual 8086 Mode
Virtual 8086 mode emulates the real-address mode. However, some protected mode features of the 386
are in effect. For example, paging is enabled to allow the virtual 8086 machine to run anywhere in the
physical address space. The IDT is also in effect to route all interrupts to native protected mode. The
GDT and LDT are not used. Address calculation works just as in real mode; however, instead of
physical addresses, linear addresses subject to paging are generated by combining segment and offset
values.

Protected Mode
This mode was first introduced with the 80286 processor. The differences between this mode and
real-address mode are Protection and a larger address space. Except for some very minor differences,
the instruction set available in protected mode is the same as in real mode.

Segment registers are interpreted differently than in real mode. They hold Selectors, which are indices
into one of two tables, the Global Descriptor Table (GDT) or the Local Descriptor Table (LDT). These
tables contain Segment Descriptors. Each descriptor contains information about a Segment in memory.
This information includes the start address (Base), size (Limit), access rights, etc., of the segment. Each
time a segment register is loaded by the processor, the information about the corresponding segment is
loaded from one of the two tables. Every memory reference to the segment is executed by retrieving the
base of the segment and adding the offset to the base.

14 On Time RTOS-32

Protected Mode

Memory protection is also implemented using the segment descriptors. First, the processor checks
whether a value loaded in a segment register references a valid descriptor. Then it checks that every
linear address calculated actually lies within the segment. Also, the type of access (read, write, or
execute) is checked against the information in the segment descriptor. Whenever one of these checks
fails, exception (interrupt) 13 (hex 0D) is raised. This exception is called a General Protection Fault
(GPF).

16-Bit Protected Mode
This is the only protected mode available on 80286 processors. Segments can have any length between
1 and 216 = 64 kilobytes. A segment base has 24 bits on an 80286 CPU, limiting the available address
space to 16 megabytes. On 386 and higher CPUs, a segment base can have 32 bits. Thus, even in
16-bit protected mode, the complete 32-bit address space of 4 gigabytes is available (although many
segments are required to use the complete address space).

Near pointers are 16-bit offsets interpreted relative to a segment register. Far pointers consist of a 16-bit
selector and a 16-bit offset.

32-Bit Protected Mode
The 386 introduced 32-bit protected mode, the only mode supported by RTTarget-32. The difference
from 16-bit protected mode is that the size of segments is no longer limited to 64k; rather, a segment
can be up to 4 gigabytes in size. Thus, a single segment can be used to address the complete address
space.

Near pointers are 32-bit offsets which are also interpreted relative to a segment register. Far pointers
consist of a 16-bit selector and a 32-bit offset for a total of 48 bits.

In 32-bit protected mode, the address space is still segmented. However, since all available memory can
be addressed with a single segment, the CPU can be set up such that segmentation can (almost) be
ignored by the programmer. All segment descriptors to be used are initialized to refer to a segment
starting at linear address 0 and extend over the complete address space or at least to the highest
address that the system needs to access. Such an environment is referred to as a flat memory model.
RTTarget-32 (and Win32) use this flat memory model.

Descriptors and Descriptor Tables
The 386 maintains three different descriptor tables: the Global Descriptor Table (GDT), the Local
Descriptor Table (LDT), and the Interrupt Descriptor Table (IDT). The IDT can hold up to 256 interrupt,
trap, or task gates; GDT and LDT can hold up to 8191 descriptors. Most GDT and LDT entries hold
segment descriptors, although other descriptors (gates, TSS, etc.) are possible. Among other things, a
segment descriptor contains the following information:

• the linear start address of the segment (the Base)

• the size of the segment (the Limit)

• the descriptor privilege level (the DPL)

• execute, read only, or read/write access permission

The main purpose of the IDT is to hold Interrupt or Trap Gates. Basically, these gates simply point to the
entrypoint of an interrupt service routine.

RTTarget-32 manages a GDT with a total of 16 descriptors.

Part I RTTarget-32 15

Chapter 2 The i386 Microprocessor

The following table summarizes the properties of RTTarget-32’s GDT descriptors:

Index Selector DPL Description
0h 0h - Reserved by Intel (NULL selector)
1h 8h 0 Ring 0 code segment
2h 10h 0 Ring 0 data segment
3h 1Bh 3 Ring 3 code segment
4h 23h 3 Ring 3 data segment
5h 28h 0 RTTarget-32 Boot Code TSS
6h 30h 0 Reserved for RTKernel-32 (LDT)
7h 3Bh 3 Callgate to call Ring 0 from Ring 3
8h 40h 3 BIOS Data Segment (Base == 400h)
9h 4Bh 3 Win32 main thread TEB segment
Ah 50h | CPL10 CPL 16-bit call stub segment11

Bh 5Bh 3 16-bit data stub segment11

Ch 60h | CPL10 CPL 16-bit PnP BIOS code segment11

Dh 6Bh 3 16-bit PnP BIOS data segment11

Eh - - Reserved
Fh 7Bh 3 Reserved for MetaWINDOW

RTTarget-32’s IDT has 128 entries as follows:

Index Description
0h - 1Fh CPU Exceptions

20h Reserved
21h DOS Emulation

22h - 30h Reserved
31h DPMI Emulation

32h - 3Fh Reserved
40h - 4Fh IRQ 0..15
50h - 5Fh Reserved for IRQ 16..31

60h RTTarget-32 Boot Code API
61h RTTarget-32 Program Terminate

62h - 6Ch Reserved by RTTarget-32
6Dh - 6Eh Reserved by RTTarget-32 Debug Monitor

6Fh Reserved by RTTarget-32 (Boot Code Data Base)
70h - 7Fh Free for Application Use

By default, RTTarget-32 does not maintain an LDT.

10 Current Privilege Level. The privilege level the program is executing at.

11 Needed by RTTarget-32 to call 16-it PnP BIOS services. Applications which do not call any PnP BIOS functions can use these
selectors for other purposes.

16 On Time RTOS-32

Protected Mode

Privilege Levels
To provide a higher degree of control for protection, protected mode defines privilege levels: Descriptor
Privilege Levels (DPL), Current Privilege Levels (CPL), and Input/Output Privilege Levels (IOPL). Four
different levels (0 to 3) are defined. A higher numerical value implies a lower privilege level. The DPL
has already been introduced, it is stored in each segment’s descriptor. The CPL is the privilege level at
which the CPU is currently running (also frequently referred to as the Ring in which a program is
running). It corresponds to the DPL of the code segment being executed. The low 2 bits of the CS
register hold the CPL.

In the flat memory model, the application will usually not reload segment registers and is consequently
not concerned with segment level protection. However, the CPL also controls access to some privileged
instructions. Some instructions can only be executed at CPL 0. Also, the CPL affects how page-level
protection functions.

The IOPL defines the minimum CPL required to directly access I/O ports and to execute I/O Sensitive
Instructions (IN, INS, OUT, OUTS, CLI, STI). In addition, the POPF instruction behaves differently,
depending on CPL and IOPL. The IOPL is maintained by the CPU in the EFLAGS register.

RTTarget-32 can run programs at CPL 0 or 3. IOPL is always initialized to 3, allowing the program to
use I/O ports and I/O sensitive instructions without restrictions at any CPL.

Paging
Paging allows regions of memory to be mapped to different locations in the physical address space. In
addition, the memory access rights can be controlled, much as they can for segments. However, since
the flat memory model uses only one segment, page level protection is better suited here.

The paging mechanism uses pages (4096 bytes) of memory as the smallest mappable unit. Each page
can have one of the following access rights: none, system read only, system read/write, user read only,
or user read/write. System access means that only software running at CPL 0 can access the memory.
Write access checking is not performed at CPL 0. This is important to note, since it implies that memory
cannot be protected if applications run at CPL 0.

The following table shows the effective page access privileges enforced by the CPU at run time for code
executing at CPL 0 or 3:

NoAccess SysRead System ReadOnly ReadWrite
CPL 0 NoAccess ReadWrite ReadWrite ReadWrite ReadWrite
CPL 3 NoAccess NoAccess NoAccess ReadOnly ReadWrite

Each column represents a particular access privilege value for a page set in the page table. The rows
show which privilege actually applies at a particular CPL. Any violation will trigger exception 14 (page
fault) at run-time.

Unlike segmentation, paging is optional and must be enabled at boot time to become effective.
RTTarget-32 supports running either with or without paging.

Virtual, Linear, and Physical Addresses
The 386 memory management can become quite confusing. Here is a summary of the different types of
addresses and how one type is translated to another:

Virtual addresses are used by an application program. They consist of a 16-bit selector and a 32-bit
offset. In the flat memory model, the selectors are preloaded into segment registers CS, DS, SS, and
ES, which all refer to the same linear address. They need not be considered by the application.
Addresses are simply 32-bit near pointers.

Linear addresses are calculated from virtual addresses by segment translation. The base of the
segment referred to by the selector is added to the virtual offset, giving a 32-bit linear address. Under
RTTarget-32, virtual offsets are equal to linear addresses since the base of all code and data segments
is 0.

Part I RTTarget-32 17

Chapter 2 The i386 Microprocessor

Physical addresses are calculated from linear addresses through paging. The linear address is used as
an index into the Page Table where the CPU locates the corresponding physical address. If paging is
not enabled, linear addresses are always equal to physical addresses. Under RTTarget-32, linear
addresses are equal to physical addresses except for remapped RAM regions (see Chapter 3, Virtual
Command and FillRAM Command for details).

Consequently, addresses used by the application are equal to physical addresses under RTTarget-32.
Specifically, this will be true for any device access (such as video RAM, dual-ported RAM, some I/O
boards, etc.) The only exception is remapped RAM pages if they have been requested in the locate
process.

Exceptions and Interrupts

The 386 supports Exceptions, Software Interrupts, and Hardware Interrupts, which are summarized by
the term Interrupt. Interrupts are numbered 0 to 255. They are events that transfer control to an Interrupt
Handler (or Interrupt Service Routine, ISR) which must handle the event. The interrupt handler’s
address is read from the IDT. Each descriptor in the IDT contains a pointer to the corresponding handler
(along with some supplemental information).

Exceptions are triggered by the CPU in case of an error. For example, if a program attempts to write to a
memory location for which it only has read access, the CPU will trigger an exception. The exception
could be handled by an operating system to abort the misbehaved program or activate a debugger to
allow further investigation of the problem. RTTarget-32’s boot code will initialize all exception vectors to
point to a routine that simply displays a register dump and then stops. If a program wants to handle such
exceptions, it can instruct RTTarget-32 to map CPU exceptions to Win32 exceptions. The Debug
Monitor, RTTarget-32’s debugger interface, will handle all exceptions and allow debugging the cause of
the exception.

Software interrupts are explicitly triggered by a program using the INT instruction. Actually, this is similar
to a procedure call. However, the address of the procedure to be called is found in the IDT and a change
of privilege level can occur in the call. RTTarget-32 defines several interrupts for its API and for
emulating subsets of some other APIs such as DOS and DPMI. The use of interrupts allows the applica-
tion to run at CPL 0 or 3 while the RTTarget-32 boot code (which handles some API requests) always
runs at CPL 0.

Hardware interrupts are triggered by some hardware external to the CPU. The most significant differ-
ence from exceptions and software interrupts is that hardware interrupts can occur at any time and at
any place in the code. Since this may cause problems, the processing of hardware interrupts can be
suspended temporarily using the CLI/STI instructions. RTTarget-32’s boot code installs dummy interrupt
handlers and displays a warning message if an interrupt occurs (exception: timer and keyboard inter-
rupts on IRQ 0 and 1 are ignored). The application should install interrupt handlers before any external
hardware will generate interrupts. Interrupt handlers should not chain to the RTTarget-32 boot code
handlers.

18 On Time RTOS-32

Invoking RTLoc

Chapter 3
RTLoc: Locating a Program

This chapter describes the command line utility RTLoc. Its purpose is to locate a Win32 executable
program to run on the target.

Invoking RTLoc
To invoke RTLoc, use the following command line:

RTLoc [Options] Application [ConfigFile...]

Application is the name of the program to locate. If no path is specified, file Application.EXE must be
present in the default directory or in the directory RTLoc was loaded from.

Following Application, any number of configuration files may be specified. They are searched for in the
default directory, and, if not found there, in the directory from which RTLoc was loaded (usually
RTTarget-32’s BIN directory). If no configuration file is specified, Application.CFG is assumed.

RTLoc will produce two files: Application.RTB (the relocated binary image of the program) and Applica-
tion.LOC (a text file containing information about the relocation process). Optionally, an Intel HEX or
binary file can also be generated.

Example:
RTLoc -Rp Hello myconf.cfg

RTLoc Options
The general syntax for an option is:

-X[+|-]

where X is one of the options listed below. The option may be followed by a minus sign to disable it or a
plus sign to enable the option. If neither sign is supplied, RTLoc defaults to a plus (enable). Any number
of options may be specified on the command line.

The options are:

o ROMable, default: enabled if a HexFile or BinFile command is present, disabled
otherwise. If this option is enabled, RTLoc will issue a warning message if the application
is not ROMable. If it is disabled, a warning is produced if any data is placed in ROM.

b Binary, default: disabled if a HexFile or BinFile command is present, enabled otherwise.
Controls the generation of an RTTarget-32 Binary File (.RTB file). .RTB files are required
for the Reserve command, cross debugging, RTRun, and BootDisk.

g Debug symbol conversion, default: disabled if a HexFile or BinFile command is present,
enabled otherwise. Controls the generation of debug symbol tables for the RTTarget-32
debugger RTD32. Symbol table conversion is only required for Microsoft and Watcom
compilers. Disabling this option can speed up RTLoc significantly. Use this option if you
are using Microsoft or Watcom C/C++ and you do not need to debug the program with
RTD32.

c Compression, default: enabled if compression code is located, disabled otherwise.
Controls whether copied sections should be compressed.

d Discard discardable entities, default: enabled. Discardable entities are only needed for
program initialization. If they are discarded, their address space can be reused by the
program’s heap and stack. Disabling this option prevents RTLoc from allocating the same
address space to a discardable entity and the heap or stack. Discardable entities are:
copied sections, decompression code and data, boot vectors, and the disk buffer.
Discardable entities in RAM are allocated top-down (as opposed to bottom-up for all other
entities).

Part I RTTarget-32 19

Chapter 3 RTLoc: Locating a Program

h Hex files based, default: disabled. Intel hex files contain address information to inform the
reading program or device (usually an EPROM programmer) of the addresses to receive
data. Usually, an EPROM programmer will expect all addresses to be relative to the start
of the EPROM chip. However, other software (such as download utilities) or devices may
interpret these addresses as relative to the target system’s physical address space.
Adding option -h to RTLoc’s command line or configuration file will produce hex files with
addresses of the target’s address space. If the option is disabled (default), addresses
relative to the start address given in the HEXFILE directive are generated.

t Truncate bin files, default: disabled. If enabled, RTLoc will truncate bin files to the size
actually used instead of writing out a file of the size specified in the BinFile command(s).

s Start address record in hex files. When this option is enabled, the execution start address
(the address of the boot vector) is written into hex files for each hex file which contains a
boot vector (Locate BootVector... command). If option -s is not specified, RTLoc defaults
to -s+ if such a record can be generated and to -s- otherwise. A valid start address record
cannot be generated for targets booting in real mode with a boot vector outside the real
mode address space. However, even in this case, a start address record can be forced by
specifying -s+ on the RTLoc command line.

q Quiet, default: disabled. If enabled, RTLoc will write no messages to standard output;
however, messages are still written to the LOC file.

w Warnings, default: enabled. If disabled, no warning messages are issued. This option also
affects the LOC file.

i Information messages, default: enabled. If disabled, no information messages are issued.
This option also affects the LOC file.

m Max messages, default: disabled. Usually, RTLoc will stop when more than 20 warning or
error messages have been encountered. With this option enabled, there is no upper limit
for the number of warnings.

DSym[=Val] Defines a preprocessor symbol. Such symbols can be used in configuration files for
symbol substitution or for conditional processing with #ifdef.

FPath Search for data files in Path. The path given in this option is used by RTLoc to search files
given in Locate File... commands.

+Cmd Process string Cmd as a configuration file command. This option does not follow the
same syntax as other options. It must start with character "+" and it cannot have a trailing
"+" or "-". The string Cmd may not contain blanks or the whole option must be quoted.

Rc Configuration report, default: enabled. Controls the generation of a configuration report in
the LOC file.

Rr Raw configuration report, default: disabled. If enabled, all configuration file lines read will
be listed in the configuration report of the .LOC file, even if they are not executed due to
an #ifdef 0.

Ri When this option is enabled, all preprocessor symbols are replaced by their respective
values in the configuration report.

Ry When this option is disabled with -Ry-, the preprocessor symbol list at the end of the
configuration report is suppressed.

Re EXE file report, default: enabled. Controls the generation of an EXE file report in the LOC
file.

Rf Fixup table report, default: disabled. Controls the generation of a fixup table report in the
LOC file.

Rd Dynamic link report, default: disabled. Controls the generation of a link report for imported
functions.

Rl Locate report, default: enabled. Controls the generation of a locate report in the LOC file.

20 On Time RTOS-32

Configuration Files

Ro Compression report, default: enabled. Controls the generation of a compression report in
the LOC file.

Rp Page table detailed report, default: disabled. Controls the generation of a detailed page
table report in the LOC file.

Rs Summary page table report, default: enabled. Controls the generation of a summary page
table report in the LOC file.

Rb Boot code configuration report, default: enabled. Controls the generation of a boot code
configuration report in the LOC file. The option is ignored if the application does not
contain boot code.

Ra Application output report, default: enabled. Controls the generation of an application
output report in the LOC file.

R Reports: all reports. Enables or disables all reports in the LOC file.

? Shows a help screen with an options summary.

Options Command
Options are usually supplied on the RTLoc command line. However, you can also place them in a
configuration file using the Options command:

Options = Option [,Option...]

Up to 15 options can be specified on one line and several Options commands can appear in a configur-
ation file. Please note, however, that options placed in a configuration file take effect only after they have
been processed. For example, if you wish to disable the Configuration Report using the Options
command in a configuration file, all lines read up to the respective Options command will be included in
the report.

Example for the Options command:
Options = -o -Rp

Configuration Files
The main source of information for RTLoc are configuration files. These files are line-oriented. Each line
starts with a keyword followed by one or more parameters separated by spaces, tabs, commas, or equal
signs. If a parameter contains embedded spaces, tabs, commas, or equal signs, it must be enclosed in
single or double quotes. Blank lines are ignored. A comment can be placed in the file by preceding it
with a double slash (//), slash asterisk (/*) or a semicolon (;). The comment extends to the end of the
line.

Parameters placed in square brackets [] are optional. For example, the command
COMPort = Port [,Baudrate [,IRQ [,IOBase]]]

can accept 1, 2, 3, or 4 parameters. However, it is not valid to specify only the third, but not the second
parameter. For example, if you want to specify the IRQ of the port, you must also supply the desired
baud rate.

Specifying Numeric Values

Numeric parameters are assumed to be decimal by default. The following prefixes to numeric para-
meters can change the base of a number:

0 octal

0x hexadecimal

$ hexadecimal

The following suffixes are supported:

b binary

h hexadecimal

Part I RTTarget-32 21

Chapter 3 RTLoc: Locating a Program

k kilo (multiplies the number by 210 = 1024)

p page (multiplies the number by 212 = 4096)

M Mega (multiplies the number by 220 = 1048576)

G Giga (multiplies the number by 230 = 1073741824)

For example, the following numbers are all identical: 16M, 0x1000p, 040000k, 16777216.

Embedded underscore characters in numeric values are ignored. For example, value 3E98A4Ch is
identical to 0011_1110_1001_1000_1010_0100_1100b.

Numeric parameters may contain simple arithmetic expressions using operators +,-,*,/,%,&,|,^. For
example, the following directives are legal:

Region BootROM 64M-64k 64k-16 ROM
Region Reset 64M-16 16 ROM
Virtual VMem 1G+1M+4k
HexFile Hex 4G-64k 64k

The rules for numeric expressions are:

• Pre- and postfixes are processed first.

• Operators are processed left to right without precedence rules. Parenthesis are not supported.

• There must not be any white space characters within a single numeric expression. For example
"1k + 16" would be interpreted as three parameters: number 4096, string "+", and number 16.

Region names with an attribute can be used in place of a numeric value. Attributes .Start (address of
start of region), .Size (size of region), and .End (address after the region) are supported.

Example 1:
Region EPROM 4G-64k 64k ROM
HexFile Program EPROM.Start EPROM.Size

The second line would evaluate to:
HexFile Program FFFF0000h 10000h

Example 2:
Region NullPage 0 4k RAM
Region MoreLowMem 640k-128k 128k RAM
Region LowMem NullPage.End MoreLowMem.Start-NullPage.End RAM
Region Reset 4G-16 16 ROM
Region Boot 4G-64k 64k-Reset.Size ROM
Region EPROM Boot.Start-64k 64k ROM
...
HexFile Program EPROM.Start EPROM.Size+Boot.Size+Reset.Size

which evaluates to:
Region NullPage 00000000h 00001000h RAM
Region MoreLowMem 00080000h 00020000h RAM
Region LowMem 00001000h 0007F000h RAM
Region Reset FFFFFFF0h 00000010h ROM
Region Boot FFFF0000h 0000FFF0h ROM
Region EPROM FFFE0000h 00010000h ROM
...
HexFile Program FFFE0000h 00020000h

22 On Time RTOS-32

Defining the Target Hardware

Preprocessor Directives
RTLoc supports the following basic preprocessor commands with the same syntax as C/C++:

#include Filename

#define Symbol [Value]
#defineN Symbol Expression
#undef Symbol

#if Expression
#elif Expression

#else
#endif

#ifdef Symbol
#ifndef Symbol
#elifdef Symbol
#elifndef Symbol

#ifsection [ModuleName.]SectionName
#elifsection [ModuleName.]SectionName

#error String

Expressions for #if and #elif are numeric unsigned 32-bit integers. The supported operators are +, -, |, &
(high precedence) and ==, >, >=, <, <=, ||, && (low precedence). Parenthesis are not supported.

#defineN evaluates the specified expression and then assigns the result to Symbol. By contrast, #define
merely associates one string with another without any interpretation or evaluation.

RTLoc will expand symbols defined with #define/#defineN or RTLoc’s command line option -D.
However, such expansions cannot change the number of tokens. A single token is always expanded to
a new single token, whereby numeric expressions are considered a single token. The following symbols
are predefined:

OUTNAME = <base output directory and file name without extension>
APPLICATION = <Application name specified on RTLoc command line>
RTT32_VER = <RTTarget-32 version multiplied by 100>
RTLOC = TRUE
TRUE = 1
FALSE = 0

#ifsection and #elifsection evaluate to true if section SectionName exists in the DLL specified by Modu-
leName. If no ModuleName is given, the main .EXE file is assumed.

Macros
Configuration file macros can be defined using the Macro and EndM keywords:

Macro Name [Parameter...]
 ...
EndM

Up to 8 parameters and 256 source lines per macro are supported. Macro declarations cannot be
nested.

Macros are expanded by specifying the macro name followed by parameters. Numeric parameters are
evaluated and then passed (they are not passed as strings). Not all parameters need to be specified.
Inside the macro, #ifdef can be used to test if a parameter was specified. Macro expansions can be
nested up to 15 levels deep. Please refer to configuration file Bin\Bootdbg.cfg for several examples of
using macros.

Defining the Target Hardware
To locate a program, RTLoc must know the types of physical memory available at specific addresses.
This is done using the Region command in a configuration file. In addition, RTLoc can remap some
memory by creating virtual regions and appending unused RAM to enlarge a region.

Part I RTTarget-32 23

Chapter 3 RTLoc: Locating a Program

Region Command
The Region command defines the properties of a region of consecutive physical address space. The
syntax is

Region = RegionName, Address, Size, MemType [,Access]

Parameter RegionName is a string with a name you wish to assign to this region. The only restriction on
name usage is that no two regions can have the same name.

Parameter Address is a numeric value specifying the start address of the region. Size is the number of
bytes it occupies. Parameter MemType can have any of the following values:

RAM The region contains RAM. RTLoc assumes that this region can be used for any part of a
program requiring read only or read/write access.

ROM The region contains ROM. RTLoc assumes that this region can only be used for read only data
such as code.

Device The region contains a device. RTLoc makes no assumptions about such regions. Use this
memory type for video RAM, memory-mapped devices, etc.

The optional parameter Access can be used to specify the type of access your program needs for the
region. If not specified, RTLoc will assume Assign access:

NoAccess The region is inaccessible. RTLoc will issue a warning if you attempt to locate parts of your
program in this region.

SysRead The region cannot be accessed by the application, but the RTTarget-32 Boot Code has
read only access. This access is useful for protected data such as the boot code itself.

System The region cannot be accessed by the application, but the RTTarget-32 Boot Code has
read and write access. This access should be used for protected data managed by the boot
code (e.g., the boot data or the page table).

ReadOnly The application will have read only access to this region.

ReadWrite The application will have read/write access to this region.

Assign RTLoc will assign appropriate access rights to parts of the region as they are allocated to
program entities. For example, if a code section is located into this region, that part will be
assigned read only access. If a data section is also located here, only the data section will
be assigned read/write access. Unused parts of the region get NoAccess and - if the region
consists of RAM - can be remapped using the FillRAM command. It is recommended to
use Assign for all RAM and ROM regions.

Access rights are checked statically by RTLoc and at run time by the CPU if paging is enabled (see
section PageTable for details). RTLoc will make sure any access rights you have assigned are compat-
ible with the respective memory type.

Examples for the Region command:
Region = RealModeVectors 0 1k RAM NoAccess
Region = BIOSDataArea 1k 3k RAM NoAccess
Region = LowMem 4k 636k RAM Assign
Region = ColorGraphic A0000h 64k Device NoAccess
Region = MonoText B0000h 32k Device NoAccess
Region = ColorText B8000h 4k Device ReadWrite
Region = Ethernet D8000h 16k Device ReadWrite
Region = BIOS F0000h 64k ROM NoAccess
Region = HighMem 1M 3M RAM Assign

The above Region commands are typical for an AT class PC with 4 megabytes of memory. It assumes
that no monochrome video hardware is installed (or shouldn’t be used) and that the application will not
use graphics mode.

24 On Time RTOS-32

Defining the Target Hardware

Virtual Command
The Virtual command defines a region of memory which does not exist physically, but will be created by
remapping physical memory:

Virtual = RegionName, Address

Parameter RegionName is a string with a name you wish to assign to the virtual region.

Parameter Address is a numeric value specifying the start address of the virtual region. It must be page
(4096 byte) aligned. Since no two regions (either physical or virtual) may overlap, it is recommended to
use an address higher than any physical memory on the target.

Virtual regions initially have a size of zero and no physical memory is associated with them. As program
entities are located to the region, some physical memory is remapped from a physical region to success-
ively build the virtual region. Virtual regions can also acquire memory through the FillRAM command.
The advantage of virtual regions is that they can consist of different physical memory portions (for
example, a mixture of RAM and ROM). The address space created with a virtual region is independent
of the underlying physical memory structure.

Paging must be enabled using the Locate PageTable command to be able to use virtual regions (see
section PageTable in this chapter). All program entities to be allocated to a virtual region must be page-
aligned. The only entities supported in virtual regions are Section, NTSection, Stack, Heap, File, and
Nothing.

Example for the Virtual command:
Region LowMem 4k 636k RAM Assign
Region MyEPROM F0000h 64k ROM NoAccess
Region HighMem 1M 3M RAM Assign
Virtual VMem 4M
FillRAM VMem
Locate NTSection CODE VMem->MyEPROM
Locate NTSection DATA VMem->HighMem
Locate Stack Stack VMem->LowMem 16k
Locate Heap Heap VMem

Three physical and one virtual regions are defined. The first three Locate commands place entities in the
virtual region and also specify the physical region the memory should be taken from. The heap does not
specify a physical region, but since region VMem receives all unused RAM through the FillRAM
command, all available memory will be allocated to the heap.

FillRAM Command

The FillRAM command instructs RTLoc to remap unused RAM memory. The syntax is:
FillRAM = RegionName

Parameter RegionName is the name of a physical or virtual region to which all RAM pages remapped
from other regions should be appended. You can use this command to create larger regions of consecu-
tive RAM if your RAM address space is fragmented. For example, an AT class computer has RAM from
0 to 640k and some more starting at 1MB. If not all RAM in the region below 640k is used, the unused
pages of memory can be appended to the extended memory region above 1MB.

Example:
Region = LowMem 4k 636k RAM
Region = HighMem 1M 3M RAM
FillRAM = HighMem

The following example creates a region consisting of remapped pages only:
Region = LowMem 4k 636k RAM
Region = HighMem 1M 3M RAM

Region = Remapped 16M 0 RAM
FillRAM = Remapped

or alternatively:

Part I RTTarget-32 25

Chapter 3 RTLoc: Locating a Program

Virtual = Remapped 16M
FillRAM = Remapped

Please note, however, that remapped RAM can only be used for the program’s stack and heap. FillRAM
requires paging (see section PageTable in this chapter).

Defining Program Location
After the hardware memory layout has been defined, RTLoc needs to know whether the program
requires additional DLLs and in what regions which components of your program are to be located. This
is done using the DLL, Align, Reserve, and Locate commands described in this section.

DLL Command
Apart from the application’s .EXE file, RTLoc can be instructed to add a DLL to the program’s image:

DLL = DLLName

If DLLName has no file name extension, .DLL is assumed. If no path information is supplied, RTLoc will
search for the DLL in the default directory and then RTLoc’s load directory. Up to 31 DLLs can be used
by an application. All sections of the DLL required by the program must be located using Locate Section
or Locate NTSection, just like for the main EXE.

For additional information about DLLs, please refer to Chapter 9, Using DLLs through RTLoc. An
alternate method of using DLLs is described in Chapter 9, Loading DLLs through a File System.

Align Command
Align specifies the default alignment for the mapping process:

Align = Value

The starting address of each entity to be mapped is rounded up to a multiple of Parameter Value, which
must be a power of two. The smallest supported value is 4, the default is 4096 (one page). Note that you
can override the alignment in each Locate command.

RTLoc uses one page as the default alignment to make sure that each page will never be used by more
than one program entity. This allows optimum page protection. For example, assume you have a CODE
and a DATA section located to the same region. Code usually has read only access while data needs
read/write access. If the alignment is less than one page, the start of DATA could be located in the same
page as the end of CODE, forcing the access for that particular page to have the higher value
(read/write). Thus, parts of your code would not be protected from write accesses.

Of course, the disadvantage of using a large alignment value is wasted memory. For example, if the
next available address of a region is just one byte following a page boundary, 4095 bytes are wasted to
map a new entity.

Reserve Command
The Reserve command instructs RTLoc to reserve memory for another program:

Reserve = ApplicationName

Parameter ApplicationName specifies the name of the application whose address range must be
protected. RTLoc will search for the file ApplicationName.RTB in the default directory and in RTLoc’s
load directory.

This command is typically used to reserve space for the RTTarget-32 Monitor when the program is to be
debugged or run via download. When running under the debugger’s control, two programs must coexist
on the target: the Monitor and the application under test.

Example:
Reserve = Monitor

26 On Time RTOS-32

Defining Program Location

The reserved program must not have remapped pages (thus, FillRAM or virtual regions cannot be used
by it; however, they can be used by the application) and its heap (if any) must have Read/Write access.
It must not use RTTarget-32’s uncommitted memory support. The reserved program and the application
must both use paging or must both run without paging.

Locate Command

The Locate command maps a program entity to one of the memory regions of the target hardware. The
general syntax is:

Locate Entity Name Region[->PRegion] [Size [Align [Access [Alloc]]]

Parameter Entity specifies what kind of entity is to be located. All possible values of Entity are discussed
in the following sections. Parameter Name specifies the name of the entity. For some entities, the name
can have a special meaning (see the sections on different entities below). Parameter Region specifies in
which region the entity will be mapped. Region must have been defined in a previous Region or Virtual
command. If Region references a virtual region, the name of the physical region for the entity must also
be specified as parameter ->PRegion. There must be no spaces between parameters Region and
->PRegion. Parameter Size specifies how many bytes RTLoc should allocate to the entity. This
parameter is optional, since RTLoc can automatically determine the size for most entities; specify it only
to override RTLoc’s defaults. If zero is given, RTLoc will try to determine the size automatically.
Parameter Align can be used to override the default alignment for this particular entity. If zero is
specified, the default alignment is used. Optional parameter Access specifies the type of access you
want RTLoc to assign to this entity. Supported values are: Assign, NoAccess, SysRead, System,
ReadOnly, ReadWrite (see section Region Command for details). The default is Assign which instructs
RTLoc to select the appropriate access value automatically. Optional parameter Alloc supports values
AllocDefault, BottomUp, and TopDown. If it is not specified, AllocDefault is assumed which in turn
causes discardable entities in RAM to be allocated TopDown and all others BottomUp. BottomUp
allocated entities will receive the lowest available address in the specified region which TopDown
entities will receive the highest available address.

All supported values for parameter Entity are discussed in the following sections.

Section

Locate Section and Locate NTSection will map data from the application .EXE or a .DLL file. The data in
PE files (Win32’s portable executable file format) is divided into named sections. The Name parameter
in a Locate Section command maps to a name in the PE file.

Example:
Locate Section CODE LowMem

This command will map section CODE from the EXE file to region LowMem. RTLoc will determine the
type of access required and the size of section CODE.

What sections are required by a program depends on the compiler/linker used. RTLoc will write a
complete list of all the PE file’s sections to the LOC file in the EXE File Report. Appendix A contains an
overview of the sections generated by each compiler/linker.

The complete syntax for the Name parameter in Locate Section and Locate NTSection commands is:
[ModuleName.]SectionName or
[ModuleName.]#SectionNumber

The name of the section to be mapped may be prefixed with the name of the module containing the
respective section. If omitted, the application’s main .EXE file is assumed. Example:

Locate Section MyDLL.dll..idata LowMem

This command will map section .idata of module MyDLL.DLL. MyDLL.DLL must have been referenced in
a previous DLL command.

Some linkers may produce several sections with the same name or the name may contain unprintable
characters. In this case, the section’s number can be specified instead of its name. Section numbering
starts at 1 (see the EXE File Report in the .LOC file for a complete list of all sections). Examples:

Part I RTTarget-32 27

Chapter 3 RTLoc: Locating a Program

Locate Section .text LowMem
Locate Section SomeDLL.dll.DATA HighMem
Locate Section MyLIB.DLL.#3 MyROM

The module’s and the section’s names are not case sensitive.

The Size parameter has a special meaning for Sections and NTSections: it is used as the segment
index into the map file. If specified, RTLoc will try to determine the size of the section by interpreting the
module’s MAP file.

Example:
Locate Section CODE LowMem 1

The map file produced by the linker might contain the following information:
 Start Length Name Class
 0001:00000000 000005969H _TEXT CODE
 0002:00000000 000001300H _DATA DATA
 0002:00001300 000000000H _TLSCBA TLSCBA
 0002:00001300 000000024H _INIT_ INITDATA
 0002:00001324 000000000H _INITEND_ INITDATA
 0002:00001324 000000006H _EXIT_ EXITDATA
 0002:0000132A 000000000H _EXITEND_ EXITDATA
 0002:0000132C 000000000H CONST CONST
 0002:0000132C 000000624H _BSS BSS
 0002:00001950 000000000H _BSSEND BSS

RTLoc will find that segment 1 has a size of 5969h and will use this value instead of that from the PE
file. This has the advantage of reducing the program’s memory requirements, since some Win32 linkers
will round up a section’s size to a multiple of 512.

NTSection

NTSections are similar to Sections. However, RTLoc will make sure the relative offsets of the sections
are not changed.

Example:
Region MyRAM 1M 3M RAM Assign

Locate NTSection CODE MyRAM
Locate NTSection DATA MyRAM

If, for example, the PE file specifies section CODE to start at address 20000h and section DATA at
30000h, RTLoc will ensure that DATA is located exactly 10000h after CODE. This strategy of mapping is
highly compatible with the method used by Win32. If you intend to use source-level debugging, Locate
NTSection must be used instead of Locate Section.

The exact syntax for the Name parameter is identical to the Locate Section command (see previous
section).

The disadvantage of NTSections is that all NTSections must be located in the same region and that
more address space is used if the linker uses a generous alignment (e.g., Borland C++ 4.5 uses 64k
alignment). However, wasted RAM can be recovered if FillRAM is used. Programs located using NTSec-
tions are ROMable only if used with the Locate Copy command (see section Copy) for all sections or if
located to a virtual region.

Generally, command Locate NTSection is recommended over Locate Section (see also Chapter 9,
Choosing a Locate Method).

Header

Every application needs a header record which is automatically generated by RTLoc. It contains infor-
mation about how the program is mapped. This information is needed by the boot code to correctly
initialize and invoke the program.

28 On Time RTOS-32

Defining Program Location

The Locate Header command tells RTLoc where to place the header. Parameter Name is ignored but
must be present (you can use any arbitrary name). Parameter Size is also ignored; RTLoc determines
the size automatically. The default Access is ReadOnly.

Example:
Locate Header "Test Program Header" LowMem

BootCode

If an application must be booted (e.g., it doesn’t run under the Monitor which has booted the target
hardware already), you must include boot code. The Name parameter is the filename of a DOS EXE file
containing the boot code. Three standard boot codes, located in the BIN directory, come with
RTTarget-32:

BOOT.EXE This boot code is suitable for targets that boot in real mode from ROM (EPROM or
flash). It contains no BIOS dependencies or BIOS support.

BIOSBOOT.EXE Boots in real mode with BIOS support (e.g. booting from disk, DOS, or BIOS
extension). This boot code includes support for RTLoc’s GMode command and
function RTGetGMode(), function RTGetExtMem(), function RTCMOSExtendHeap(),
and A20 switching.

PMBOOT.EXE Boots in protected mode. This boot code is used on NS486 systems or when the
CPU has been put in 32-bit flat protected mode by some other means. This boot
code expects to be invoked at CPL 0 with CS, DS, ES, and SS set to zero-based flat
32-bit segments.

The boot code must be paragraph (16-byte) aligned.

Depending on the desired boot method, the following boot code and other entities must be located:

Boot from disk BIOSBOOT.EXE, BootData, and DiskBuffer

Boot from BIOS extension BIOSBOOT.EXE, BootData, and BIOSVector

Boot From MS-DOS BIOSBOOT.EXE, BootData, optionally a DiskBuffer

Boot from ROM BOOT.EXE or PMBOOT.EXE, BootData, and BootVector

By default, all three standard boot codes will detect an installed FPU, initalize interrupt controllers at port
addresses 20h and A0h, install dummy interrupt handlers for IRQ 0 and 1, and will set up the CPU to run
applications at CPL 3. BIOSBOOT.EXE also enables A20, if it is locked. See section BOOTFLAGS
Command later in this chapter on how to change this behaviour.

Apart from the interrupt controllers, none of the standard boot codes contain any chipset initialization.
Demo programs ExLED, HelloSC400, HelloSC520, and NSHello show how to initialize a controller using
configuration file commands.

BootData

If boot code was located, a boot data section is also required. It must also have at least 16-byte
alignment and be located in address space addressable in real mode.

Parameters Name and Size are ignored.

BootVector

If the target must boot without BIOS support, a boot vector must be located using this command. It will
usually be located at the end of the physical address space minus 16, the location all Intel 80x86 CPUs
boot from.

Parameter Name is ignored. Parameters Align and Size must be at least 16 (Size’s default is 16).
Access should be SysRead.

If RTLoc finds that the application uses real-mode boot code, it will generate a 16-bit near jump to the
boot code’s entrypoint. This requires that the boot code and the boot vector are located within the same
64k segment. If the protected mode boot code is used (e.g., for the NS486SXF CPU, which boots in
protected mode), a 32-bit near jump is used.

Part I RTTarget-32 29

Chapter 3 RTLoc: Locating a Program

BIOSVector

BIOSVector will generate a far jump to the boot code’s entrypoint. However, unlike the Locate Boot-
Vector command, the produced code has the format of a BIOS extension. It should be located at an
address scanned by the BIOS for an extension. These are usually all 2k aligned addresses in the range
C8000h - DF800h.

Parameter Name is ignored. Parameters Align and Size must be at least 16 (Size’s default is 16).
Access should be SysRead.

The BIOS extension’s size is automatically rounded up to a multiple of 512 bytes by RTLoc (this is
required by the BIOS). Since this can be wasteful, RTLoc can automatically combine the BIOSVector
with the boot code if these two entities are located exactly adjacent to one another in the same region.

Example:
Region NullPage 0 1p RAM
Region LowMem 4k 636k RAM Assign
Region ColorGraphic A0000h 64k Device ReadWrite
Region MonoText B0000h 4k Device ReadWrite
Region ColorText B8000h 4k Device ReadWrite
Region BIOSExt CA000h 8k ROM Assign
Region SomeROM D0000h 64k ROM Assign
Region BIOS F0000h 64k ROM NoAccess
Region HighMem 1M 1M RAM Assign

Locate BIOSVector BootVector BIOSExt 0 16 Assign BottomUp
Locate BootCode BIOSBOOT.EXE BIOSExt 0 16 Assign BottomUp
Locate BootData BootData LowMem
...

In this example, a BIOS extension of 8k is defined at address CA000h. Both BIOSVector and BootCode
are located with 16-byte alignment in this region. RTLoc finds that they are adjacent and will combine
the two.

Alternatively, BIOSVector and BootCode could have been placed in separate regions (e.g., BIOSExt and
SomeROM, respectively).

DiskBuffer

The Locate DiskBuffer directive is required for all programs that boot from hard disk or diskette. The
name of this entity is ignored by RTLoc, but must be present. The disk buffer is required by the disk
loader to read the application from disk. It must reside in memory addressable in real mode, must have
a size of at least 8k and needs a minimum alignment of one disk sector (512 bytes). Example:

Locate DiskBuffer "Disk IO Buffer" MoreLowMem

The disk buffer is a discardable entity with a default size of 64k. If booted from floppy disk, a disk buffer
which does not span a 64k boundary may result in improved boot time.

Stack

Every program needs a stack. Parameter Name is ignored. Access must be ReadWrite if specified. If
parameter Size is not specified or zero, RTLoc will assign all unused memory of the region to the stack
after all other entities have been located. Please note that if the stack and heap are located in the same
region, at least one of the two must specify a size.

If the stack is mapped to a virtual region and command FillRAM is specified for the same region, the
specification of a physical region can be omitted. In this way, the stack can span several disjoint areas of
physical memory.

30 On Time RTOS-32

Defining Program Location

Examples:
Region LowMem 4k 636k RAM
Region HighMem 1M 1M RAM

Virtual VMem 2M
FillRAM VMem

Locate Stack S VMem // all unused RAM
Locate Stack S VMem->LowMem // all unused LowMem
Locate Stack S LowMem // ditto
Locate Stack S VMem 16k // 16k of any RAM
Locate Stack S VMem->HighMem 16k // 16k of HighMem

Heap

Programs linked with a run-time system need a heap. Parameter Name is ignored. If parameter Size is
not specified or 0, RTLoc will assign all unused memory of the region to the heap after all other entities
have been located. If stack and heap are located in the same region, at least one of the two must
specify a size.

The default value for parameter Access is NoAccess. The heap manager must explicitly change page
attributes at run time to make the memory accessible. This prevents the application from accessing
heap memory before it has been allocated using malloc, new, or a similar function. However, this
requires the page table to be located in RAM. If you plan to locate the page table in ROM, ReadWrite
access must be specified for the Heap. In addition, each program that will run under another program’s
control (i.e., the program is referenced with a Reserve command by another program), must also commit
its heap, because it will run using a foreign page table.

If the heap is mapped to a virtual region and command FillRAM is specified for the same region, the
specification of a physical region can be omitted. In this way, the heap can span several disjoint areas of
physical memory.

The examples given in section Stack work identically for the Locate Heap command.

PageTable

If you intend to use paging, a Locate PageTable command must be present in the configuration file.
RTLoc will create a page table that will subsequently be used by the boot code when the program is run.
A page table is required for RAM remapping, virtual regions, and page-level protection.

RTLoc will determine the size of the page table automatically. However, it can arrive at an incorrect
value if the FillRAM command has been used or the configuration uses virtual regions. FillRAM or virtual
regions can actually extend the available linear address space, making a larger page table necessary. In
this case, RTLoc issues an error message. The problem is fixed by explicitly specifying the size. The
required size is calculated as follows:

Page Table Size = 4096 * (1 + Number of 4M regions touched)

Consider the linear address space to be divided into divisions of 4 megabytes each. The first division
covers addresses in the range 0 to 4M - 1, the second addresses 4M to 8M - 1, etc. The whole 32-bit
address space has 1024 such divisions. Each division overlapped by any region (physical or virtual)
defined in the configuration file contributes to the number of 4M regions touched in the formula given
above.

Example: Suppose you have a PC with 4M of RAM installed in the address range 0 to 4M - 1. The
formula above will give:

4096 * (1 + 1) = 8192

This is the size of the page table calculated by RTLoc. However, if only a single page is appended to the
last RAM region by a FillRAM command, the second 4M division of the linear address space is actually
used. Thus, the correct page table size would be:

4096 * (1 + 2) = 12k

which must be specified in the Locate command.

Part I RTTarget-32 31

Chapter 3 RTLoc: Locating a Program

If you are not sure of the proper page table size for your system, RTLoc can calculate it for you. Do not
specify any size in the Locate PageTable command and run RTLoc. If you get one or more Page table
too small errors, just specify the required value given in the error message in the Locate PageTable
command and run RTLoc again.

The alignment for the page table must be 4k or larger. This is required by the 386 CPU. Parameter
Name is ignored.

If no page table is located, paging is disabled for the application. In this case, the following features of
RTTarget-32 and the CPU are not available:

• No run-time checks for read/write accesses.

• System data structures such as IDT and GDT cannot be protected against corruption.

• FillRAM, virtual regions, and RTTarget-32’s virtual memory manager cannot be used.

If the page table is placed in ROM, the following restrictions apply:

• RTTarget-32’s virtual memory manager cannot be used.

• RTTarget-32’s memory mapping functions (e.g., RTMapMem) do not work.

Copy

To create ROMable programs, some entities must be copied from ROM to RAM before a program can
run. In particular, this is true for initialized data. The Locate Copy command instructs RTLoc to create a
copy of an entity already given in the configuration file. Optionally, the copy can be compressed to save
ROM or disk space. Compression is used if decompression code and data are also located and
compression has not been disabled using option -c-. Parameter Name specifies the entity to copy.

Example:
Locate Section DATA LowMem
Locate Copy DATA MyEPROM

Here, section DATA is allocated in region LowMem. However, the data associated with section DATA is
placed in Region MyEPROM and copied to LowMem before the application is started.

Parameter Size is ignored. The only Access value supported is SysRead (which is also the default).

For the program’s data, the Locate Copy command must be used to make the program ROMable.
However, Locate Copy can be used for any program entity that has data associated with it. For code,
this can be advantageous if the installed RAM is faster than ROM. If the code is copied from ROM to
RAM (and consequently executed from RAM), the program will run faster. During the development
phase of a program, copied entities can significantly reduce download times.

DecompCode

To enable data compression for copied sections, decompression code and decompression data must be
located on the target. Example:

Locate DecompCode Expand LowMem
Locate DecompData Buffer HighMem

Both entities are discardable and thus will not reduce the amount of memory available to the application.

Parameter Name is ignored. The Size parameter’s default value supplied by RTLoc cannot be over-
ridden.

32 On Time RTOS-32

Defining Program Location

The following table summarizes all available entity types and specifies whether they have an image, can
be copied or compressed, and whether they are discardable:

Entity Image Discardable Copiable Compressible
Section Yes No Yes Yes
NTSection Yes No Yes Yes
PageTable Yes No Yes Yes
File Yes No Yes Yes
Header Yes No Yes No
BootCode Yes No Yes No
BootVector Yes Yes No -
DecompCode Yes Yes No -
Copy Yes Yes No -
DiskBuffer No Yes - -
DecompData No Yes - -
BootData No No - -
Stack No No - -
Heap No No - -
Nothing No No - -

Just like the page tables, compressed page tables need some special treatment. Again, if a page table
is compressed, RTLoc must make an estimate on how large the compressed image will be. Since the
size of the page table can change during the locate process and because the achievable compression
ratio varies, this estimate may be inaccurate. In this case, RTLoc will issue an appropriate error
message and the size of the copied page table must be specified in the configuration file explicitly.

RTLoc will estimate the compressed image size of a page table to be 3% of the page table’s size
rounded up to the copied section’s alignment. If this size is too small, an error message is issued. If a
smaller value would save memory at the current alignment value, an information message is issued.

Please note that RTLoc’s compression algorithm for page tables is very efficient. Typical compression
ratios are 1% - 2%. In addition, the decompression of a page table is frequently faster than copying it
without decompression.

The achievable compression of other entities varies with the type of data. Program code will typically
compress to 50% - 60% of its original size.

DecompData

To enable data compression for copied sections, decompression data must be located along with
decompression code. Parameter Name is ignored and RTLoc’s default for the Size parameter cannot be
overridden.

For additional information, please see the previous section on command Locate DecompCode.

File

RTLoc can include a data file in the program image. Parameter Name in a Locate File command
specifies the File to include. At run time, the program can use standard file I/O operations to read the
file. If ReadWrite access is specified (ReadOnly is the default), write access to the file is also possible,
but the file’s size cannot be changed. The program should open such a file using the name given in the
Locate File command. Any path information is ignored at run time (but not by RTLoc).

Nothing

RTLoc can reserve memory on the target without associating it with anything using the Locate Nothing
command. Parameter Name can be an arbitrary string. You will have to supply the size parameter
because there is no default value. The default Access value is NoAccess.

Part I RTTarget-32 33

Chapter 3 RTLoc: Locating a Program

Nothing sections can be located at run time using the RTLocateSection function. Use Locate Nothing
when you need to reserve memory in a particular region.

Defining Program Options
Some additional options for program location can be defined using the commands Init and Link defined
in this section. Both commands deal with imported or exported functions of the program.

Set Command
RTTarget-32 supports a static program environment. A configuration file can contain any number of SET
commands to define environment variables:

SET Variable Value

where Variable is the name of the environment variable to define and Value is its value. Please note that
you must quote "Value" if it contains blanks, semicolons, slashes, or any other whitespace or comment
character.

Example:
SET PATH="C:\;C:\BIN"
SET COMSPEC myprog.exe
SET OS=RTTarget-32

Environment variables defined in this manner can be queried at run-time using the Win32 API function
GetEnvironmentStrings or GetEnvironmentVariable, or equivalent functions of the run-time system.

The program environment cannot be changed dynamically at run time.

Commandline Command

RTTarget-32 also supports a command line string with command:
Commandline string

where string is the command line passed to the program. Please note that you must quote "string" if the
command line contains blanks, semicolons, slashes, or any other whitespace or comment character.

Example:
CommandLine "hello.exe -q SomeParm"

The first part of the command line should always be the program’s name. If no CommandLine directive
is specified, RTLoc uses the .EXE file’s filename.

The command line is available at run time through Win32 API function GetCommandLine. Each portion
of the command line is passed to function main() in arguments argc and argv.

Init Command
Using the Init command, a function can be defined that will be executed before control is passed to the
program’s entrypoint:

Init [ModuleName.]FunctionName

FunctionName must be the name of an exported function without any parameters. If ModuleName. is not
specified, the function is assumed to reside in the main program. Otherwise, ModuleName must specify
the main program’s .EXE file name or the name of a DLL specified in a previous DLL command.
Function name matching is case sensitive; module names are not. Exporting a function is achieved
using the __export keyword for Borland and Watcom C/C++, with _declspec(dllexport) for Microsoft
Visual C/C++, or listing them under the EXPORTS keyword in Delphi. Alternatively, a .DEF file can also
be used for C/C++ programs. Please consult your compiler’s documentation or the RTTarget-32
examples for details.

34 On Time RTOS-32

Defining Program Options

Some important restrictions apply to init functions: since they execute prior to the run-time system’s
initialization, they cannot use run-time system functions that require the startup code to have been
executed. For example, an init function cannot use heap allocation or file I/O functions. In addition, an
init function cannot permanently change uninitialized data, since the startup code of the run-time system
(which executes after the init function) will set all uninitialized data to zero. However, initialized global
data can be changed and all such changes will be preserved.

Init functions are useful for initializations required for the run-time system. For example, the installation
of a floating point emulator must be done in an init function because the run-time system performs
floating point operations in its startup code. Another application could be extending the program’s heap
using RTCMOSExtendHeap.

Here is an example of an init function:
#ifdef _MSC_VER
_declspec(dllexport) void MyInitFunction(void)
#else
void __export __cdecl MyInitFunction(void)
#endif
{
 int Pages;

 RTSetFlag(RT_MM_VIRTUAL, 1); // force virtual memory manager
 Pages = RTCMOSExtendHeap(); // extend the heap
 RTDisplayString("Heap extended by ");
 RTDisplayInt(Pages*4);
 RTDisplayString("k bytes.\r\n");

 RTEmuInit(); // initialize emulator
 RTDisplayString("Emulator is up and running!\r\n");
}

For Microsoft Visual C/C++, the configuration file must contain the line:
Init MyInitFunction

For Borland and Watcom, use:
Init _MyInitFunction

Init functions are executed before the C/C++ startup code. The Watcom compiler generates calls to a
stack check routine at the entry of each function by default. However, this stack check routine does not
work correctly before the run-time system’s initialization has run. Thus, all code which can be executed
from an Init routine must be compiled with stack checking off (command line option -s).

Link Command

RTLoc will usually resolve DLL imports to DLL exports the same way as Win32 program loaders would.
However, to achieve greater flexibility, the Link command may be used to change such linkage.

The syntax of the Link command is:
Link ModuleName.ImportedName [ModuleName.]ExportedName

or
Link ModuleName.Ordinal [ModuleName.]ExportedName

ModuleName.ImportedName or ModuleName.Ordinal specifies that a DLL function referenced by one or
more modules of the application is to be replaced by function [ModuleName.]ExportedName. If [Module-
Name.] is not specified, the main program is assumed. Function name matching is case sensitive;
module names, however, are case-insensitive.

Parameters ModuleName, ImportedName, and ExportedName may be replaced by the wildcard ’*’. In
this case, RTLoc will match up imports against exports. If several Link commands are used, they are
processed in the order given in the configuration file. If ModuleName is ’*’, it matches any module. If
ImportedName is ’*’, it matches any DLL import. If both ImportedName and ExportedName are ’*’, the
two names must be identical for a match. ExportedName must not be ’*’ if ImportedName is not ’*’.

Part I RTTarget-32 35

Chapter 3 RTLoc: Locating a Program

Parameter Ordinal cannot contain wildcard characters; it must be a single numeric value. Please note
that RTLoc does not support ordinal exports. If a module contains ordinal imports (which are discour-
aged by Win32), you must use the Link command to resolve them.

Examples:
Link SomeLIB.DLL.SomeFunc MyFunc
// all calls to SomeLIB.DLL.SomeFunc are rerouted to MyFunc

Link SomeLIB.DLL.* OtherDLL.DLL.MyFunc
// all calls to any function of module SomeLIB.DLL rerouted
// to MyFunc in OtherDLL.DLL

Link *.SomeFunc MyFunc
// calls to function SomeFunc of any module are rerouted
// to MyFunc of the main program

Link *.* MyFunc
// all calls to any imported functions are rerouted to MyFunc

Link SomeLIB.* *
// all calls to imported functions from module SomeLIB are
// rerouted to functions with the same name in the program

Link *.* *
// all calls to imported functions are rerouted to functions
// of the program with the same name

Assume you want to link functions A and B of DLL SomeDLL to your own functions MyA and MyB,
function C of OtherDLL to MyOtherC, and all other functions to a handler for unsupported calls:

Link SomeDLL.DLL.A MyA
Link SomeDLL.DLL.B MyB
Link OtherDLL.DLL.C MyOtherC
Link *.* UnsupportedAbort

The Link command requires the import table of the program to be located with a Locate command. The
import table is usually named .idata.

If you are unsure about the exact names of imported or exported functions, use RTLoc option -Rd and
look them up in the .LOC file’s .EXE file report. Naming conventions may vary depending on the
compiler, compiler version, and calling conventions.

RTLoc attempts to resolve static DLL references with the following methods in the given order:

• All Link commands are processed as described above.

• Function and module names are matched up exactly as a Win32 program loader would.

• Any references to modules KERNEL32.DLL, USER32.DLL, ADVAPI32.DLL, OLEAUT32.DLL, and
RTT32DLL.DLL are resolved against functions in the module containing RTTarget-32’s Win32
emulation (library RTT32.LIB or RTT32DLL.DLL).

IgnoreMsg Command
The IgnoreMsg directive in configuration files can be used to suppress the generation of information or
warning messages:

IgnoreMsg "string"

"string" should be replaced with the beginning of a message to be suppressed. All information or
warning messages which begin with the given string (not case sensitive) will be ignored. They will not be
displayed and are not listed in the .LOC file.

Example: The Debug Monitor shipped with RTTarget-32 does not use a heap or a C/C++ run-time
system which might need a heap internally. Thus, RTLoc does not need to allocate any heap space for
the Monitor. However, this causes warning message "No heap region specified" to be issued. Since this
warning can safely be ignored for the Monitor (but not for programs using a run-time system), the
directive:

IgnoreMsg "No heap" // ignore all messages which start with "No heap"

36 On Time RTOS-32

Defining Boot Code Options

can be placed in the Monitor’s configuration file. This way, the Monitor can be built successfully without
generating any warnings.

This directive must be used with care. Use it only if you are 100% sure that an information or warning
message can be ignored. If possible, the cause of the message should be corrected. For example, the
warning message

Section Something has no size and is not mapped

is usually due to superfluous "Locate NTSection Something ..." commands which should be removed.

Defining Boot Code Options
If boot code is included in an application, a number of options for it can be set in the configuration file.
Each of these options has a default; therefore, you need include only the options whose defaults are not
appropriate for a target.

BOOTFLAGS Command
The BootFlags command specifies boot code options:

BOOTFLAGS = Value

Value can be an "ored" combination of the following values:

BF_CPL_0 Current privilege level 0. The application will run in ring 0 instead of 3. At
CPL 0, the program can execute all privileged instructions (such as HLT,
LGDTR, etc.). However, memory access to read only and system pages is not
protected at run time.

Please note that the Halt instruction can only be executed at CPL 0 if the target
hardware actually supports Halt. For example, the Halt instruction is not
supported by some 386EX boards, because these boards do not detect the
Halt bus cycle and do not generate the required Ready signal to acknowledge
the cycle. Please refer to functions RTHalt and RTHaltCPL3 for further informa-
tion.

BF_NO_FPU No 387 compatible floating point unit. The boot code should not attempt to
detect an FPU. This is required on many 386EX and AMD Élan targets
because any attempt to communicate with a non-existent FPU can hang the
CPU. This flag can also be used to test the 387 FPU emulator on a target
which has an FPU.

BF_NO_A20 No A20 enabling. The boot code BIOSBOOT.EXE should not attempt to enable
A20. Use this flag if the boot code’s algorithms to enable A20 are incompatible
with the target. If this flag is specified and A20 is disabled, and access to
memory above 1M is required at run-time, use OUT and InitCode commands to
enable A20 instead. By default, BIOSBOOT.EXE tries BIOS function
int15h/ax=2401h, the PS/2 method via port 92h, and tbe keyboard controller
command D1h to enable A20. Boot codes BOOT.EXE and PMBOOT.EXE
never attempt to enable A20 and ignore this flag.

BF_NO_KEYBRD No PC compatible keyboard. When this flag is specified, the boot code will not
install and enable a handler for IRQ 1. BIOSBOOT.EXE will not attempt to use
the keyboard controller to enable A20. In addition, this flag is also checked by
the keyboard driver of RTTarget-32.

BF_NO_PCTIMER No PC compatible 8253 timer chip. When this flag is specified, the boot code
and RTTarget-32’s Win32 function GetTickCount will not install and enable a
handler for IRQ 0. Programs not using RTKernel-32 must override function
GetTickCount of library RTT32.LIB to use any time functions. RTKernel-32
programs need custom clock and high resolution timer drivers.

Part I RTTarget-32 37

Chapter 3 RTLoc: Locating a Program

BF_NO_SLAVE_PIC No PC compatible slave 8259 programmable interrupt controller at port address
A0h. When this flag is specified, the boot code will not initialize the slave PIC
found on PC compatible systems and it will not enable IRQ 2 on the master
PIC.

BF_NO_MASTER_PIC No PC compatible master 8259 programmable interrupt controller at port
address 20h. When this flag is specified, the boot code will not initialize the
master PIC found on PC compatible systems. Note that functions RTEna-
bleIRQ, RTDisableIRQ, and RTIRQEnd must be replaced in library RTT32.LIB
and the Debug Monitor must be recompiled if no 8259a master PIC is available.
RTKernel-32 programs must be linked with a suitable replacement interrupt
driver.

BF_NO_VESA_LFB This flag can be used to allow the BIOS boot code to accept VESA graphics
modes without a linear frame buffer. The RTPEG-32 and MetaWINDOW drivers
can support such modes if the required video RAM address space is smaller
than or equal to 64k. The boot code applies this flag automatically to VESA
mode 102h (800x600x16 = 60000 byte addresses in 4 bit planes), but not to
others.

Example:
BOOTFLAGS = BF_NO_FPU|BF_NO_KEYBRD // no blanks around "|" operator

VideoRAM Command
The boot code supports API calls to display characters and strings. Application programs can inquire the
location of the video RAM from the boot code for their own screen I/O. For example, function printf or
object cout will use these functions. To accomplish this, RTTarget-32’s boot code must know where the
video RAM (if any) is located. The syntax for the VideoRAM command is:

VideoRAM = RegionName | None

where parameter RegionName must have been defined in a previous Region command. The video RAM
is assumed to be located in the given region. If None is specified, the boot code will assume that no
display adapter is installed and program output will be sent to the serial port specified with the COMPort
command.

If an application is booted with boot code BIOSBOOT.EXE and the configuration file does not contain a
VideoRAM = None command, the boot code will enquire the location of the video RAM from the BIOS at
startup, overriding whatever value was specified in the configuration file. This allows the same program
configuration to run on targets with color or monochrome displays. However, this feature only works if
both video RAM areas at B0000h and B8000h have ReadWrite access permission.

The default value for the VideoRAM is None.

GMode Command

If the BIOS boot code BIOSBOOT.EXE is used, the boot code can place the video hardware into a
different graphics mode during the boot process using BIOS interrupt 10h. Calling int 10h at run-time is
not possible, because the BIOS can only operate in real mode or virtual 8086 mode, both of which are
not supported by RTTarget-32.

The GMode directive has the following syntax:
GMode Mode [Mode...]

Up to 15 BIOS video modes may be specified. At boot time, the boot code will attempt to set each
graphics mode specified until one is found which is accepted by the video hardware. At run time, the
graphics mode actually set can be enquired with function RTGMode().

The mode parameters must be in the range 0..7Fh for standard BIOS modes or in the range 100h..17Fh
for VESA BIOS modes. If the boot code successfully sets a VESA mode, it will query the VESA BIOS for
the VbeInfoBlock and the ModeInfoBlock and store them at physical address 00000C00h and

38 On Time RTOS-32

Creating Output Files

00000E00h, respectively. Thus, it is important not to use the first page of physical memory for other
purposes. RTLoc will issue a warning if a GMode parameter is 100h or larger (a VESA mode) and
address range 3k - 4k has been allocated to something other than a Nothing section.

The hardware configuration file Graphpc.cfg (used by all RTPEG-32 demos) defines most commonly
supported VESA modes. Graphpc.cfg attempts to set graphics modes in the order 105h 103h 101h 102h
12h (256 color modes with resolutions 1024x768, 800x600, 640x480, and then 16 color modes with
resolutions 800x600 and 640x480).

Only VESA modes with a linear frame buffer are supported, which requires a VESA BIOS version 2.0 or
higher to be present on the graphics card (see boot flag BF_NO_VESA_LFB in Chapter 3, BOOTFLAGS
Command to change this behavior). Program VESATEST.COM can be used to check which modes are
supported. VESATEST can be executed under MS-DOS or a DOS Box of Windows 3.1/95/98/Millen-
nium to display all available VESA graphics modes and a list of MetaWINDOW and RTPEG-32 drivers
which will support the respective modes. Use this program to determine which parameters the RTLoc
directive GMode will support on a specific target.

If a non-text mode is set, directive VideoRAM None should be included in the same configuration file,
because RTTarget-32’s char out handler cannot display characters in graphics mode. Instead, all text
output is then sent to the Host.

COMPort Command
The COMPort command can be used to supply configuration information for a serial port to be used for
cross debugging or as an output device to display fatal errors if no display is available:

COMPort = Port [,Baudrate [,IRQ [,IOBase]]]

or
COMPort = None // No serial port is available

Parameter Port can be any of the strings COM1, COM2, COM3, or COM4. It is used to initialize the
default values for parameters IRQ and IOBase. Optional parameter Baudrate specifies the speed of
host <-> target communication (default: 115200). Parameters IRQ and IOBase specify the Interrupt
Request and port I/O address used by the UART. These parameters need only be specified if non-stan-
dard values are used.

Parameter Port is ignored if all optional parameters are specified. The default is:
COMPort = COM1

RTTarget-32 assumes that the UART uses a clock input of 1.8432MHz (the value normally used on
PCs). If a different input clock frequency is used by the target hardware, the baud rate specified in the
COMPort command must be adjusted according to the following formula:

B = (1,843,200 / Clock Frequency) * Baudrate

where B is the value to be supplied in the COMPort command and Baudrate is the effective baud rate to
be used.

Example: The target computer has a 386EX CPU running at 25Mhz, and you want to use COM2 (the
second internal serial port of the 386EX) at 57600 baud. The input frequency for the serial ports is CLK2
(50Mhz in this example) divided by 4, giving 12.5 MHz. The value required in the COMPort command is:

(1.8432 / 12.5) * 57600 = 8493

Creating Output Files
RTLoc will usually create an RTTarget-32 binary file with extension .RTB (RTTarget-32 Binary). These
files are used by program BootDisk, the RTTarget-32 debugger, and the download utility RTRun. Alter-
natively, RTLoc can also produce HEX files with its HexFile command or Binary Images using the
BINFile command. Such files can be processed by most EPROM programming devices or EPROM
emulators.

Part I RTTarget-32 39

Chapter 3 RTLoc: Locating a Program

Output Command
RTLoc’s default output file format is .RTB. The Output command can specify a path and location for the
.RTB and .LOC file:

Output Name

Parameter Name may optionally contain a path, but it should not specify a file name extension. If this
command is not used, the name used is the Application command line parameter of RTLoc.

HexFile Command
The HexFile command instructs RTLoc to produce one or more Intel HEX files containing the program
image:

HexFile Name Address Size [,Split [,RecLen]]

Parameter Name is the base name of the hex file to be produced. Address specifies the location in the
target’s address space where the HEX file should start. This will usually be the start address of an
EPROM to be programmed with the HEX file. Parameter Size specifies the number of bytes to be
covered in the target’s address space. Optional parameter Split may be set to 1, 2, or 4 and defines how
many EPROMs are used in parallel. For example, if you use two 8-bit EPROMs to implement a 16-bit
memory system, Split must be set to 2. For 32-bit systems built with 8-bit EPROMS, 4 must be specified.
The default value is 1 (no splitting). Parameter RecLen can be used to change RTLoc’s default HEX file
record length of 16. Any value which is a power of two in the range 4 to 64 may be used.

Any number of HexFile commands can be used in a single configuration file. Each command should
describe a portion of the address space implemented by EPROMs. The number of files actually
produced per HexFile command depends on the Split value. If Split is equal to 1, a single file named
Name.HEX is produced. For other Split values, one file is produced per EPROM. They will have the
names Name.HE0, Name.HE1, etc. The last digit in the file name specifies the byte offset of the data
contained in each file.

RTLoc does not fill unused portions of an EPROM with a specific pattern. Unused parts of the EPROM’s
address space are not written to the HEX file(s).

Example 1:

The target system uses a single 64k EPROM at address F0000h to implement 8-bit wide memory:
HexFile MyEPROM F0000h 64k

RTLoc will produce a single HEX file named MyEPROM.HEX. It will contain any data mapped into the
given address range.

Example 2:

The target system uses 16-bit memory implemented with 8-bit EPROMs. One EPROM pair is located at
address F0000h to cover 64k (using 32k EPROMs), and a second pair is located at 100000h and imple-
ments 512k with 256k EPROMs:

HexFile EPROM1 F0000h 64k 2
HexFile EPROM2 100000h 512k 2

RTLoc will produce four HEX files named EPROM1.HE0, EPROM1.HE1, EPROM2.HE0, and
EPROM2.HE1. EPROM1.HE0 will contain the byte data at address F0000h, F0002h, F0004h, etc.
EPROM1.HE1 will contain the byte data at F0001h, F0003h, F0005h, etc.

BinFile Command
The BinFile command instructs RTLoc to produce one or more binary images of the target’s address
space:

BinFile Name Address Size [,Split [,FillByte]]

This command is very similar to command HexFile. Please refer to the previous section for a detailed
parameter description.

Parameter FillByte specifies the value to use for target memory without any data. It defaults to CCh (x86
opcode to trigger a breakpoint software interrupt 3).

40 On Time RTOS-32

Initializing Target Hardware

Depending on the Split value, the output file name is Name.BIN or Name.BI0, Name.BI1, or Name.BI0,
Name.BI1, Name.BI2, and Name.BI3.

RTLoc option -t can be used to truncate bin files to the actual required size.

Initializing Target Hardware
OUT and InitCode commands described below can be placed in an RTLoc configuration file to be
executed by the standard boot codes at power-up or reset. OUT and InitCode commands can be used
to initialize the target’s chipset, such as RAM/ROM and all required peripherals.

Most target initializations should only need to use OUTB, OUTW and Delay. Please refer to files Ex386i-
ni.cfg, Sc400ini.cfg, Sc520ini.cfg, and Ns486ini.cfg of demos ExLED, HelloSc400, HelloSc520, and
NSHello for complete examples using these commands to initialize a controller. Configuration file
Bin\Bootdbg.cfg contains a few macros for debugging a chipset initialization.

OUT Commands
Out commands can be used to send 8, 16, or 32 bit values to I/O ports at boot time:

OUTB Port Value
OUTW Port Value
OUTD Port Value

OUTB sends the byte Value to port address Port. OUTW sends the word Value to port address Port.
OUTD sends the dword Value to port address Port.

Delay Command
The delay command pauses further processing of OUT or InitCode commands by the boot code:

Delay Value

Parameter Value specifies the value loaded into register CX before the assembler code sequence
L1: LOOP L1

is executed. Value must be in the range 0..FFFFh. On an Intel 386EX at 25MHz, each loop iteration
requires 11 clock cycles, which is approximately 0.44 microseconds. On a Pentium 133MHz, we have
measured one iteration to take about 0.038 microseconds.

The use of the Delay command may be required for chipset initializations to become effective (e.g.,
RAM refresh, etc.).

InitCode Commands
For advanced initializations, the following commands can be used to have the boot code execute addi-
tional code on the target:

InitCode
InitCode Filename
InitCodeB Value [,Value...]
InitCodeW Value [,Value...]
InitCodeD Value [,Value...]
InitCodeS "String" [,"String"...]

Each of these commands emit code to be executed by the boot code. Code sequences are grouped in
InitCode sections. The order of OUT... and InitCode sections is observed. All adjacent InitCode
commands contribute to the same InitCode section. If the command InitCode (without parameters) or
another command except InitCode is specified, the current InitCode section is closed. The InitCode
Filename command always creates a unique InitCode section which is not concatenated with other
sections. When a section is closed, RTLoc will append a jmp [e]bx instruction to the section, since
register [e]bx contains the return address.

Part I RTTarget-32 41

Chapter 3 RTLoc: Locating a Program

InitCode Filename appends the content of the MS-DOS .EXE file Filename to the InitCode data. The
program must not contain fixups and its entry point must be the start of the program. InitCodeB/W/D
emit bytes, word, or dwords, respectively. InitCodeS writes strings to the InitCode data and interprets
embedded escape sequences following the C/C++ rules for string constants (e.g. \n, \r, \x123, etc). No
zero byte is appended to such strings.

The offset with the InitCode data to receive the next emitted code can be changed with command:
InitCodeOrg Value

Pseudo symbol $ can be used to determine the current offset. Example:
Macro LONG_DELAY COUNT
 InitCodeB 66h 8Bh C1h ; mov eax, ecx ; preserve ecx
 InitCodeB 66h B9h ; mov ecx, <dword>
 InitCodeD COUNT
 #defineN LDL $
 InitCodeB 67h E2h LDL-$-2 ; loop $; use ecx
 InitCodeB 66h 8Bh C8h ; mov ecx, eax ; restore ecx
 #undef LDL
EndM

BOOT.EXE and BIOSBOOT.EXE invoke InitCode sections in 16-bit real mode with the following register
context. PMBOOT.EXE invokes InitCode sections in 32-bit protected mode:

Register Contains Preserve
ss:[e]sp boot code stack must be preserved

ds ss must be preserved

ebp reserved must be preserved
cs:[e]si address of current InitCode section must be preserved
cs:[e]di start of InitCode table may be clobbered
[e]bx near return address may be clobbered
eax undefined may be clobbered
edx undefined may be clobbered
ecx preserved may be clobbered
es preserved may be clobbered

Registers es and ecx are not modified by the boot code while it processes InitCode commands. They
can be used to pass information from one InitCode section to another.

Note that RAM might not be usable as long as the chipset initialization has not been completed. In this
case, not even the stack can be used. The boot code itself will not use the stack or any other RAM until
all OUT... and InitCode commands have been processed.

The LOC File
Apart from the .RTB and/or .HEX and .BIN files, RTLoc generates a LOC file with extension .LOC. The
LOC file has a purpose similar to that of a MAP file produced by a linker. It contains detailed information
about how the program is mapped to the target hardware.

The LOC file is divided into several reports. Each report can be enabled or disabled with the -Rx options
(see section RTLoc Options in this chapter).

The Configuration Report contains a copy of all configuration files lines processed with blank, comment,
and inactive lines removed.

42 On Time RTOS-32

The Locate Process in Detail

The EXE File Report contains information about the application’s PE file(s). In particular, parts of the PE
file header and a list of all sections found is included. If the Dynamic Link Report is enabled, this report
also lists all exported and imported functions. RTLoc produces a separate EXE File Report for the main
program and each DLL of the application.

The Fixup Table Report lists all fixups processed by RTLoc. For each fixup, its location in the PE file’s
address space and in the target image’s address space, the original value, and the new value are given.
This report is disabled by default, because it can become rather long. It is usually required for
trouble-shooting only.

The Dynamic Link Report shows how RTLoc has matched DLL imports to DLL exports. For each DLL
import, the importing module, the import’s module and function name, the matched exporting module
and function name, and the address of the exported function are given. In addition, this report lists all
exported functions which are never referenced. However, these unreferenced functions could still be
required at run-time if they are called locally or are accessed through functions LoadLibrary/GetProcAd-
dress. This report is disabled by default. However, whenever any Link commands are changed or
added, it is strongly recommended to enable the Dynamic Link Report at least temporarily to verify that
the linkage is correct.

The Compression Report lists all program entities which have been compressed. This includes the
entities’ names, full size, compressed size, ratio of compressed to full size in percent, and the time
required to compress and decompress the data. The times are given in milliseconds. The times for
decompressing the data are measured on the host when RTLoc verifies that the compressed data
indeed decompresses to its original. The time required on the target will depend on the processing
speed of the target. The numbers in the Compression Report are supplied to allow estimates of how
long the target will need to initialize.

The Relocation Report is probably the most interesting report. It contains a list of all regions and
program entities with their addresses, sizes, images’ sizes, and effective access privilege levels. In this
report, you can see how your program has been mapped onto the target. For regions, the Image column
contains the size of the region which is actually being used by non-discardable entities. Discardable
entities are marked with an asterisk (’*’) character in front of their respective names.

The Page Table Detailed Report lists all pages of memory with their respective linear and physical
addresses and access rights. Since this report can be rather long, it is disabled by default.

The Page Table Summary Report shows the number of pages with identical properties (e.g., pages with
the same access rights, etc.).

If boot code has been included, the Boot Code Configuration Report lists all configuration options and
parameters available for the boot code.

The Application Image File Report includes information about the binary file produced by RTLoc. The
application header is shown followed by a list of program entities and modules with their respective
attributes.

If RTLoc produces any error, warning, or information messages, they are listed in order of their occur-
rence in the Message Report. Please be sure to read this section carefully and understand all warnings
(if any). A list of all possible messages is given in Appendix C. If any errors or fatal errors are
encountered, no .RTB or .HEX file is created.

The Locate Process in Detail
This section contains some information about how RTLoc relocates the application. This information
helps to better understand the sequence used to map program items and why the sequence of Locate
commands can be important.

RTLoc processes all command line parameters from left to right. Each configuration file is processed
before the rest of the command line. If no configuration file is specified, the default configuration file
(AppName.CFG) is processed after the command line.

Next, RTLoc will attempt to process map files for all modules with segment numbers given in their
Locate Section or Locate NTSection commands. The respective sizes of such sections are calculated in
this step.

Part I RTTarget-32 43

Chapter 3 RTLoc: Locating a Program

The .EXE file of the main program and all DLLs are read. The sizes of all sections that don’t have a size
yet are calculated now. The image of each section is also saved.

If Locate PageTable was specified, the page table is created and - if no size was given - its size is deter-
mined from the Region commands. Since RAM remapping and the creation of virtual regions take place
later, the size found may be too small.

If boot code is included, the boot code .EXE file is read and the size of the boot code and data is deter-
mined.

If a Reserve command was given, the reserved application image file is read and its application header
retrieved. RTLoc will go through all program entities of the reserved application and look for overlaps
between it and regions defined for the current locate process. If overlaps are found, the first available
address of the region is set to the first byte following the overlap. This algorithm is used because RTLoc
does not support fragmented regions. Each region is filled from low to high addresses. RTLoc maintains
a high water mark for each region to which the next entity can be mapped. Thus, if the reserved applica-
tion and the current application have been built using different Region commands, memory can be
wasted.

In addition to processing the program entities of the reserved application, RTLoc will also analyze the
imported page table (if any) and merge it with the current page table.

The application header is initialized and its size is calculated.

If any entities are mapped to virtual regions, the sizes of the pseudo entities to hold the physical data of
these entities are determined.

The next step involves mapping all entities except copies and entities without a fixed size (e.g., stack
and heap are not located yet if no size was specified for them). All entities are allocated to their
respective regions in the sequence the entities were created. Discardable entities in RAM are allocated
top-down (as opposed to bottom-up for all other entities).

All program entities that can contain fixups are now mapped and fixups are applied. The method
depends on whether Locate Section or Locate NTSection is used. With Locate NTSection, all fixups are
simply incremented by the difference between the image base address of the PE file and the image
base assigned by RTLoc. For Locate Section, RTLoc determines the location and target of each fixup
location and adds the difference of the PE-file’s target location and RTTarget-32’s target location to the
fixup. All DLL references are also resolved in this step.

If any Locate Copy commands are present, the copies are created (with compression, if appropriate)
and mapped now. Again, their sequence is observed in the mapping process.

If stack and heap have not been mapped and do not map to the FillRAM region, they are mapped now.

If a FillRAM command was specified, RTLoc will now go through all regions and look for pages of RAM
which are not used and have Assign access. Such pages are remapped and appended to the region
given in the FillRAM command. Please note that this process may require the Page Table to grow,
which can lead to an error at this stage.

If the stack and heap are still unmapped, they are processed now. Since this is performed after RAM
remapping, they can benefit from the enlarged region that has received all unused pages.

44 On Time RTOS-32

Booting from Disk

Chapter 4
Running a Program on the Target

Chapter 3 described how a program is prepared to run on the target. This chapter describes how it
actually gets there.

Before the program can be invoked, the computer’s CPU and vital hardware components must be initial-
ized. Then, the program data must be initialized (e.g., copied entities must be copied or decompressed,
uninitialized data must be set to 0, etc.). These steps are performed by the RTTarget-32 boot code. Four
forms of booting are supported: booting from disk, from a BIOS extension, from MS-DOS, and booting
through the CPU’s reset vector. In addition, RTTarget-32’s Remote Debug Monitor can be used to
download programs via a serial link.

Booting from Disk
The BIOS boot code BIOSBOOT.EXE supports booting from hard disk, floppy disk, or any other kind of
disk device supported by the target computer’s BIOS. To configure a program to boot from disk, simply
include a Locate BootCode BIOSBOOT.EXE, a Locate BootData, and a Locate DiskBuffer in the appli-
cation’s configuration file. All program entities should be located in RAM regions.

Booting from disk is the simplest boot method. It does not require any ROM or EPROM and applications
do not have to be ROMable. Updating and changing applications is easily accomplished by simply over-
writing the diskette.

Program BootDisk

Command line utility BootDisk must be used to transfer an application to a bootable floppy or hard disk.
The target disk must have been formatted as a standard DOS disk (FAT-12, FAT-16, or FAT-32). The
application to be placed on the disk must contain the BIOS boot code disk and a sufficiently large disk
buffer. To invoke BootDisk, use the command line:

BootDisk Application Drive[:] [BIOS_ID [Loader]]

or
BootDisk /remove Drive[:]

Parameter Application is the name of the program to write to the target drive. If no path information is
given, the .RTB file is searched in the default directory and then in the directory BOOTDISK resides in.

Parameter Drive is the logical (not physical!) drive to receive the boot image. BOOTDISK does not
check whether the target drive is bootable. For example, you cannot boot from a logical drive in an
extended partition; it must be a primary partition.

Optional parameter BIOS_ID specifies the BIOS ID byte the bootstrap loader should use during booting
to load itself. If not specified, BOOTDISK will assume value 0 (for diskette drive A:) for parameter Drive
’A’ and ’B’. For all other drive letters, BIOS_ID 128 (80h) for hard disk drive C is assumed. If your BIOS
boots from a drive other than ’A’ or ’C’, you must specify this parameter.

Optional parameter Loader is the file name of an MS-DOS .EXE file which will load the application from
disk at boot time. When this parameter is not specified, the disk loader built into BootDisk is used. The
source code of the default disk loader is contained in file Boot\Diskload.asm.

If parameter /remove is specified instead of an application’s name, BOOTDISK will delete all .RTA files
from the target drive and restore the original boot sector which was saved by BootDisk in file BOOT-
SECT.RTT the first time it wrote an RTTarget-32 application to the disk.

Program BootDisk will write the boot sector, a disk loader program, and the application to a file named
Application.RTA (RTTarget-32 Application) in the target drive’s root directory. In addition, BootDisk will
check that the file written is located in a single chain of clusters. This is required because the disk loader
code is unable to load fragmented files. If the check fails, delete all files on the target drive and try again
(sometimes, simply trying again without deleting any files will also work).

Part I RTTarget-32 45

Chapter 4 Running a Program on the Target

Disks prepared by BootDisk are standard DOS disks and you can store other files on them. However,
you should never delete an .RTA file and you should never use any method other than BootDisk to
write an .RTA file. If you wish to use the diskette for other purposes, restore the original boot sector with

BootDisk /remove Drive[:]

or reformat it using FORMAT, or run SYS on it to write a new MS-DOS boot sector to the disk.

RTTarget-32 in conjunction with RTFiles-32 also supports writing boot images to a disk under program
control using function RTMakeBootDisk described in Chapter 7.

Booting from a BIOS Extension
If the target has a BIOS but no mass storage device such as a diskette, hard disk, or EPROM disk,
RTTarget-32 can be booted from a BIOS extension. After the BIOS has completed its initialization, it
scans the address range 0C8000h to 0DFFFFh in 2k increments for an expansion ROM signature. Such
a signature is produced by the Locate BIOSVector command in the configuration file. If the BIOS finds
an expansion ROM, it transfers control to it.

A BIOS extension signature consists of the following byte sequence: 55h, AAh, and the number of 512
byte blocks in the BIOS extension. At offset 3, the actual BIOS extension code starts. The BIOS reads
the signature and then calculates the checksum over the complete BIOS extension. Control is passed to
the entrypoint only if the checksum is zero. The Locate BIOSVector ensures that the BIOS extension
has the required format and provides the correct checksum.

To boot from a BIOS extension, BIOSVector, BootCode, and BootData must be specified in Locate
commands. The BIOSVector must be located at an address searched by the BIOS. All program entities
having an image must be located in ROM.

The boot code BIOSBOOT.EXE delivered with RTTarget-32 is suitable for booting by this method for
targets with PC compatible hardware.

Booting from the CPU Reset Vector
This process is similar to booting from a BIOS extension. However, no BIOS is required. RTTarget-32
controls the complete boot process which starts at 16 bytes before the end of the physical address
space after power-on or reset.

To boot using the reset vector, ResetVector, BootCode (either BOOT.EXE or PMBOOT.EXE), and
BootData must be specified in Locate commands. The ResetVector must be located at the end of
physical address space minus 16. All program entities having an image must be located in ROM. The
boot code must take care of all system initializations, since no BIOS code is executed. In particular, the
motherboard chip set and - if dynamic RAMs are used - the RAM refresh must be initialized before any
RAM can be accessed. This is achieved using OUT.. and InitCode commands.

Downloading
To download a program from the host to the target, the program Monitor included with RTTarget-32
must be installed on the target computer. The monitor can be generated from file Bin\Monitor.exe
supplied with RTTarget-32 and suitable configuration files (sample configuration files for the Monitor are
supplied in the Demo.. directories). Subsequently, the Monitor can be booted using one of the methods
described above (e.g., booted from diskette).

An application to be downloaded or debugged using the cross debugger or the download utility should
not contain any boot code (the Monitor has already booted the target) and it must contain the command

Reserve Monitor

in its configuration file.

Program RTRun
Once the Monitor is installed on the target, programs can be downloaded using program RTRun. RTRun
is invoked using the following command line:

RTRun [-d-] [-q+] [Application]

46 On Time RTOS-32

Booting from MS-DOS

Parameter Application should have no file name extension. RTRun will look for the file Application.RTB
in the default directory and send it to the target.

Option -d (detach) controls whether RTRun should wait for any program output sent from the target to
the host. The default -d+ causes RTRun to detach immediately and terminate after the program has
been downloaded. With -d-, RTRun will wait and any program output from the target is displayed on the
host and recorded in file RTTARGET.LOG. In this case, RTRun will terminate either when the target
program terminates or the user presses Ctrl-C.

Please note that the RTTarget-32 run-time system sends program output to the host only if the boot
code option VideoRAM None has been specified.

Option -q (quiet) can be used to surpress the display of download progress information.

Communication parameters to use by the host (e.g., serial I/O port, baud rate) are retrieved from file
RTTARGET.INI. See Chapter 5, section File RTTARGET.INI for details.

RTRun can also be started without any command line parameters. In this case, it will merely wait for and
display/log any raw data coming from the target. You can use RTRun in this way to check whether a
displayless target is booting properly. For example, if the target has no display or runs in graphics mode
and is expected to boot the Debug Monitor, RTRun previously started without command line parameters
would display the following output:

RTTarget-32 3.0 32-Bit Boot Code (c) 1996,2000 On Time Informatik GmbH

RTTarget-32 Debug Monitor 3.0 (c) 1996,2000 On Time Informatik GmbH

Monitor Header at: 00046A54, Current CPL: 3
Port: IOBase: 03F8, IRQ: 4, Baudrate: 115200

To terminate RTRun, press Cntrl-C. If RTRun is unable to communicate with the Debug Monitor, you
must press Cntrl-C three times to terminate. If the Monitor was booted successfully, a program can then
be downloaded using RTRun, RTD32, or Visual Studio 6.0.

Booting from MS-DOS
Program RTTBOOT allows booting an RTTarget-32 program from MS-DOS. RTTBOOT.COM is a small
MS-DOS loader program which loads an RTB file given on its command line and transfers control to it.
The file is read via DOS and all program entities are copied to their target addresses. Subsequently, a
far jump to the application’s boot code is performed.

RTTBOOT cannot load and boot every RTTarget-32 program. In particular, the following restrictions
apply:

• The computer must be running in real mode (i.e., not in virtual 8086 mode).

• No program entity with an associated image can overlap any address range currently occupied by
DOS or RTTBOOT.COM itself.

To satisfy the first requirement, no memory manager such as EMM386, QEMM, etc. may be loaded
(EMM memory managers run the computer in virtual 8086 mode).

The second requirement will usually also not allow using an XMS memory manager such as
HIMEM.SYS, since HIMEM will allocate all available extended memory. The only exception are
RTTarget-32 programs which do not load any images into extended memory.

Apart from a suitably configured DOS system, an application to be loaded via RTTBOOT must also be
configured correctly:

• BIOSBOOT.EXE must be used as boot code.

• BIOSBOOT.EXE and the boot data must be allocated within the first MB of address space.

• Memory allocated by DOS and RTTBOOT must not be used for program images.

Since RTTBOOT transfers control to the application, a boot vector is not required. If one is used, RTLoc
will issue a warning that the vector is not located at a suitable address. If no boot vector is used, RTLoc
will warn about a missing boot vector. Both warnings can safely be ignored. Locating a DiskBuffer can
surpress the warning (and keep the program compatible with booting from disk).

Part I RTTarget-32 47

Chapter 4 Running a Program on the Target

DOS will typically occupy the first 64k of real-mode address space. RTTBOOT is a COM file and thus
will occupy exactly another 64k. Therefore, on a minimal DOS system, it is sufficient to reserve the first
128k for DOS (note: these 128k can still be used for RAM remapping, as in example HELLODOS, or for
entities not requiring an image). However, to be on the safe side, it is recommended to reserve at least
256k for DOS. Example:

Region DOSMem 0 256k RAM
Region LowMem 256k 256k RAM
Region MoreLowMem 512k 128k RAM
Region Mono B0000h 4k Device ReadWrite
Region Color B8000h 4k Device ReadWrite
Region HighMem 1M 1M RAM

FillRAM HighMem

Locate BootCode BIOSBOOT.EXE LowMem
Locate BootData BootData LowMem

Locate PageTable PageTable HighMem
Locate Header Header HighMem
Locate NTSection CODE HighMem
Locate NTSection DATA HighMem
Locate Stack Stack HighMem 16k
Locate Heap Heap HighMem

VideoRAM Color

This example uses the scarce conventional memory only for entities which must reside in real mode
address space: boot code and boot data.

RTTarget-32 takes complete control of the hardware and thus cannot return to DOS. When the
RTTarget-32 application terminates, the PC is rebooted.

Demo program HELLODOS shows how to use RTTBOOT.

Program RTTBOOT
RTTBOOT loads and starts an RTTarget-32 program from DOS:

RTTBOOT [Options] RTBFileName

The following options are available:

-A- Disable A20 control. With this option, RTTBOOT will not attempt to enable A20, and it will not
check whether A20 is enabled. Use this option only on systems which do not have any extended
memory or which always have A20 enabled. A20 control requires BIOS int 15h support as well as a
keyboard controller. If you need to use this option, RTLoc command BOOTFLAGS=BF_NO_A20
will also be required.

-F- Disable floppy motor control. This option instructs RTTBOOT not to attempt to turn off the diskette
motor(s). Floppy motor control requires a BIOS with floppy disk support.

-X- Disable XMS memory overlap check. This option prevents RTTBOOT from checking whether any
extended memory area needed by the loaded application is currently in use. The XMS memory
overlap check requires BIOS int 15h support.

-M- Disable DOS memory overlap check. This option prevents RTTBOOT from checking whether any
conventional memory area needed by the loaded application is currently in use. The DOS memory
overlap check requires BIOS int 12h support.

-R- Disable real-mode execution check. This option will prevent RTTBOOT from executing instruction
SMSW to detect the current CPU mode.

Parameter RTBFileName must be the file name - with file name extension - of the .RTB file to load.

Example:
RTTBOOT hello.rtb

48 On Time RTOS-32

File RTTARGET.INI

Chapter 5
Cross Debugger RTD32

RTTarget-32 supports source-level cross debugging with its debugger RTD32 and with Microsoft Visual
Studio. Cross debugging means that the debugger runs on the host and controls the program running on
the target. This chapter describes configuring the host - target communication, the Debug Monitor, and
the cross debugger RTD32. Information on using Visual Studio for cross-debugging is available in
Chapter 6.

File RTTARGET.INI
The cross debugger and download utility RTRun must know how to communicate with the target
computer. This information is read from file RTTARGET.INI located in the default directory or RTTarget-
32’s BIN directory. In addition, options for the debugger can be specified in this configuration file.

RTTARGET.INI is an ASCII text file divided into sections. Each section starts with a section name in
square brackets, followed by keywords and their respective values.

Section [COM] supports the following keywords:

Keyword Values Description
Port COM1 Serial port used by the host to communicate with the target. The default

: value is COM1.
COMx

Baudrate any Speed of host <-> target communication. The value specified must match
numeric the value given in Monitor’s configuration file. If both host and target have
value buffered UARTs, it should not be necessary to use a baud rate lower than

115200. If the host <-> target communication is unreliable, try using a
lower value. The default value is 115200.

Start- 1000 .. Timeout value to apply for program initialization in milliseconds. After
Timeout downloading, RTRun or RTD32 have to wait until the program has initial-

ized. Especially with compressed entities, the required time may vary
significantly depending on program size, target processing speed, etc. If
you get a timeout error after program download, increase this value. The
default is 10000 (10 seconds).

OverlappedIO 0 or 1 Specifies whether the host <-> target communication link can be used for
simultaneous send and receive. If this option is set to 0, targets with low
processing power may be able to run at higher baud rates. Download
performance is reduced slightly. This option defaults to 1 (enabled).

DBGBaud any Alternate host baud rate to use after initialization of the debugger. With
numeric this value, the communication speed can be changed without rebuilding
value the Monitor. The default value is Baudrate.

MonBaseBaud any Initial baud rate used by the Monitor. Only required if DBGBaud is different
numeric from Baudrate and the target uses a non-standard UART frequency. The
value default value is Baudrate.

MonBaud any Alternate baud rate to be usd by the Monitor after initialization. Only
numeric required if DBGBaud is different from Baudrate and the target uses a
value non-standard UART frequency. The default value is DBGBaud.

Part I RTTarget-32 49

Chapter 5 Cross Debugger RTD32

Section [Options] supports the following keywords:

Keyword Values Description
SwapVectors 0 or 1 Controls whether the Debug Monitor should always install its own

interrupt vectors when it gains control and restore the application’s
vectors when it resumes. The default value 1 (enable) ensures that no
part (not even hardware interrupts) of the target program runs when the
debugger has suspended it. Setting this value to 0 will allow application
hardware interrupts to continue even when the program has
encountered a breakpoint.

RTKPreemptOff 0 or 1 This option is only relevant for RTKernel-32 programs and defaults to 0.
If set to 1, the Debug Monitor will execute RTKPreemptionsOFF() each
time a breakpoint is encountered and restore preemptions when it
resumes. This option is not required when SwapVectors is set to 1,
because RTKernel-32 will not get any interrupts for preemptive task
switches. However, if SwapVectors is set to 0, this option may be
required to prevent other tasks from running while the debugger has
suspended the program.

SendBreak 0 or 1 If set to 0 (default is 1), the debugger will never send a BREAK signal to
the target. This may be required on some target computers with UARTs
not 100% 16450 compatible. By default, the debugger sends a BREAK
before each program download and when the running target needs to
be interrupted.

TargetLog Filename If the target computer has no screen (or VideoRAM = None has been
specified for some other reason), all program output is sent to the host
and is displayed on the host’s screen. In addition, it is written to the file
given in this option. If the name is blank, no target log is maintained.
The default value is RTTarget.log.

KillVirtual- 0 or 1 If set to 0 (default is 1), the debugger will close the Target Virtual
Console Screen on the host immediately when the target program terminates.

By default, the Target Virtual Screen remains on the desktop until a
new debug session is started or the debugger is closed.

Rows 0..127 Defines the number of screen window rows to be used by RTD32. The
default value is 0, which instructs RTD32 to select a suitable default.

Columns 0..127 Defines the number of screen window columns to be used by RTD32.
The default value is 0, which instructs RTD32 to select a suitable
default.

RestoreScreen -1, 0, 1, 2 Defines how RTD32 should restore the window when it terminates.
Value 0 causes the screen window not to be restored. 1 will restore the
window, and value 2 instructs RTD32 to run in a separate console to be
closed when the program terminates. -1 (the default) instructs RTD32
to pick a suitable default depending on the host operating system (1 for
NT/2000, 2 for Win9x).

Example RTTARGET.INI file:
[COM]
Port=COM3
Baudrate=57600
OverlappedIO=1
StartTimeout=5000

[Options]
SwapVectors=0
RTKPreemptOff=1

50 On Time RTOS-32

Prerequisites for Cross Debugging

Prerequisites for Cross Debugging
To use the debugger, the following conditions must be met:

• The RTTarget-32 Debug Monitor must be installed on the target.

• The program to be tested must be compiled with full debug information. Please consult your
compiler documentation for details. It is recommended to disable compiler optimization for
debugging. Otherwise, the compiler’s elimination of common subexpressions, multiple register allo-
cation to variables, etc., can make debugging difficult.

• The program must be located with the same target hardware definition (Region commands) as the
Monitor. Usually, this is ensured by using the same configuration file containing all Region
commands for the Monitor and the test program.

• The configuration file of the test program must contain the command:
Reserve Monitor

This prevents RTLoc from allocating the same memory to both the Monitor and your test program.

• The program must be located using command Locate NTSection rather than Locate Section. This
restriction only applies to EXEs and DLLs for which source level debugging is required. CPU level
debugging also works with Locate Section.

• The configuration file of the test program must not include boot code. The Monitor already has boot
code.

• Both the .EXE/.DLL file(s) and the .RTB file of the application to be tested must reside in the
default directory. DLL files may also optionally be on the current path.

• The debugger’s configuration file RTTARGET.INI must contain the host’s COM port configuration.

• The application to be tested must not use the same serial port as the Monitor.

The Debug Monitor
The Monitor will initialize the COM port on the target according to the parameters specified in the
COMPort... command in its configuration file. In addition, it understands the following case sensitive
command line options:

Halt While the Monitor is idle (e.g., waiting for commands to be sent by the host debugger),
CPU instruction HLT shall be executed. Executing Hlt can reduce power consumption and
heat generation on the target. If the Monitor is running on a virtual target of VMware, it will
require significantly less CPU time of the host OS.

NoFIFO Instructs the Monitor not to use the FIFO of 16550 compatible UARTs. Use this option if
the target’s UART contains too many bugs for the Monitor to handle.

Instructions on how the Monitor is best located are given in the Monitor.cfg file included with each On
Time RTOS-32 demo.

Differences from Borland’s TD32
The RTTarget-32 debugger RTD32 behaves just like Borland’s TD32 for Win32 would for local
debugging, with the following exceptions:

• Pressing Ctrl-C while the program under test is running will suspend execution immediately. This
can be useful to get out of endless loops. Ctrl-C only works if interrupts are not disabled on the
target. If the target no longer responds, pressing Ctrl-C more than three times will abort the debug
session.

• A non maskable interrupt (NMI) is treated like a breakpoint, interrupting program execution. This
feature can be useful to regain control when the program has entered a dead loop with interrupts
disabled. Of course, it must be possible to trigger an NMI manually on the target to use this feature.

• Resetting the debugger will restore all interrupt vectors to their original values.

Part I RTTarget-32 51

Chapter 5 Cross Debugger RTD32

• Program output of displayless targets is displayed in a separate window on the host and written to
file RTTARGET.LOG. RTTARGET.LOG is overwritten each time RTD32 is started. The log file
name can be specified in RTTARGET.INI.

• Menu options View | Global Descriptors and View | Interrupt Descriptors have been added.

• In the CPU window, local menu option I/O for reading from or writing to I/O ports has been added.

A Quick Example
To get a general idea of using the debugger, please try to reproduce the following little debug session
using demo program SerInt.

First, the program must be compiled. Change into one of the DEMO... directories and type:
MAKE SERINT

or whatever the make utility of your compiler is called. Then, the Debug Monitor must be installed on a
boot diskette for the target PC:

BOOTDISK MONITOR A:

With this diskette, the target PC can be rebooted. Make sure the file RTTARGET.INI contains correct
port parameters for your host <-> target communication. Then you can start the debugger:

RTD32 SERINT

The debugger will download the program and execute it until it has reached function main(). A module
source window is opened automatically and the cursor is positioned at the current execution position.

Use the mouse or Alt-W, S to make the source window a bit smaller. Then, open the Interrupt Descriptor
View with Alt-V, I and position it below the source window. In the Interrupt Descriptor View, press
Alt-F10 or the right mouse button to see the local menu for this window. Select Goto... and enter number
67 (or 0x43) to see the descriptor of vector 43h, which is the vector which will be modified by the
program. Switch back to the source window by clicking on it or by pressing Alt-1. Move the cursor to
source line SetupSerial(... and hit F4 (run to cursor). The debugger will execute the program until the
requested source line has been reached. You will notice that the interrupt 67 vector in the IDT display
has changed, it now displays _ASMHandler next to it. Alt-F10, V in the IDT windows will position the
cursor in the source window to the source code of that interrupt handler (_ASMHandler in SERISR.ASM
in this case). Press Ctrl-O (or Alt-F10, O) to get back to the current execution point. Press F7 to step into
the function to be called (SetupSerial). Pressing F8 (step over) twice will take you to the first RTOut()
statement. Position the cursor on variable Divider (click the left mouse button anywhere on the identifier
or use the cursor keys) and press Ctrl-I to open a data inspector for that variable. Alternatively, use
Ctrl-F4 which would also allow modifying the value.

To continue the program, press F9. Because no breakpoints are set, the debugger will not regain control
automatically, but you can interrupt it by pressing Ctrl-C. Since it is unlikely that the Ctrl-C interrupt has
hit the program exactly on a C or Pascal source line, the debugger will open a CPU window and position
the cursor on the interrupted instruction. Go back to the source window and position the cursor on the
first statement of the program loop and press F4 to run to that statement.

Suppose we want to restart the debug session: Just press Ctrl-F2 or select Run | Program reset from
the menu.

To exit the debugger, press Alt-X or select menu option File | Quit.

Debugger Reference
This section describes how to use the RTTarget-32 debugger RTD32.

RTD32 Command Line

The debugger is started with command line:
RTD32 [options] [Program]

52 On Time RTOS-32

Debugger Reference

Parameter Program is the name of the program to be debugged. It should be located in the current
directory. If no file name extension is specified, .EXE is assumed. If no program is given on the
command line, you can load one using the File | Open command.

The following options are available:

-cfile Use configuration file file.

-h or -? Display short help screen.

-l Assembler startup. For C/C++ program, this option causes the debugger not to run to
function main(). Instead, the debugger stops the program at the run-time system entry-
point.

Please note that it is not easily possible to debug an RTTarget-32 Init routine or DllEntry-
Point functions of statically referenced DLLs since they are executed even before the
run-time system startup code. To debug such code, you must explicitly call Win32 function
DebugBreak in such a function.

-sddir Search for source files in dir.

-tdir Use dir as the initial default directory (as opposed to the directory the program is located
in).

Navigating in RTD32

RTD32 can be controlled with a mouse or the keyboard. The menu options in the menu bar at the top of
the screen contain pull-down menus, all of which can be selected by left mouse clicks or the highlight
letter with the Alt-key pressed.

The status line at the bottom of the screen lists frequently used function keys, which are shortcuts for
menu commands. Holding down the Alt or Ctrl key will display what Alt- or Ctrl-keys are available,
depending on the current context. It is recommended to frequently press Alt or Ctrl to see the available
shortcuts.

Data is presented by RTD32 in windows described later in this chapter. Some of the windows are further
divided into panes. Each window or pane has a local menu which contains commands specific to this
pane. The local menu is activated with the right mouse button or Alt-F10. You should have a look at the
local menu in each pane to get familiar with all of the debugger’s available features.

RTD32 has a context sensitive, hyperlink help system. You can always press F1 to get help about the
window, menu option or whatever has the focus. Menu option Help can be used to access a help index.

Expressions
Frequently, the debugger will prompt you for a value. This can be a source line, an address, or any other
kind of value.

The syntax with which values are supplied can depend on the programming language used. RTD32
defaults to the language of the current source file, but you can also force a particular language under
Options | Language.

Under some circumstances, you must override the scope of a variable. Consider debugging inside a
function which contains a variable X, but there is also a global variable X, which you want to inspect.
Just typing ’X’ into the Data | Evaluate dialog box will access the value of the local X. However, with a
suitable scope override, the global X can also be accessed. Example (for C/C++):

#MyModule#X

Or for Pascal:
MyModule.X

The full syntax for scope overrides is:
[#module[#filename]]#linenumber[#variablename]

or
[#module[#filename]][#functionname]#variablename

Part I RTTarget-32 53

Chapter 5 Cross Debugger RTD32

The optional components module, filename, linenumber and functionname specify the lexical scope for
interpreting the expression. The default for each value is the program’s current execution location.

Numeric values follow the language conventions of the currently selected language. The default is
always decimal. Hex can be specified with a 0x prefix for C/C++, a $ prefix for Pascal, and an h postfix
for assembler.

In some cases, address ranges are required. They can be specified either as
address, size

or
address address

The second case specifies the range’s start and end addresses. Of course, each address can be a
numerical value or a symbol of the program.

More information about expressions is available in RTD32’s online help.

Menu Commands
This section briefly introduces the main menu commands available in RTD32. To get a feeling for them,
it is recommended to try each one in a real debug session.

Menu commands can be activated with the left mouse button or the keyboard (using either F10 or Alt
with the highlighted menu option key pressed).

File

The Open option allows loading a program (either because no program was specified on the command
line or because you want to debug a different program). Option Quit exits the debugger.

Edit

The Edit menu contains commands to copy and paste highlighted items to the RTD32 clipboard or the
log.

View

The View menu is used to open different kinds of windows such as source modules, CPU, watches, etc.
All available windows are described later in this chapter.

Please note that most windows can have only one instance open at any given time. To open another
instance of a Module, Dump, or File window, please use the View | Another option.

Run

The Run menu allows executing the program in a variety of ways as described below:

54 On Time RTOS-32

Debugger Reference

Command Shortcut Description
Run F9 Run until breakpoint, program termination, or Ctrl-C.
Go to F4 Run to cursor location in the current source or CPU window.
cursor
Trace into F7 Execute one line, follow function calls.
Step over F8 Execute one line, skip function calls.
Execute to Alt-F9 Prompt for an address to run to (e.g., a function name).
Until Alt-F8 Execute the program until the current function or procedure returns to its
return caller.
Animate Auto-repeating Trace Into command. Instructions or source lines are

executed continuously until a key is pressed. RTD32’s display changes to
reflect the current program state between each trace, which allows you to
watch the flow of control in your program. You are prompted for the rate at
which to step.

Back Alt-F4 Undo the last instruction or source statement. The processor and memory
trace state are restored to the way they were before the instruction or source line

was traced over. The history pane of the Execution history window contains
a list of saved steps and allows you to control when stepping and tracing
information is saved. The Full history option in the Execution history windows
must be selected for this command to work.

Instruction Alt-F7 Executes a single machine instruction. After using this command, you are
Trace usually taken to the CPU window.
Program Ctrl-F2 Reload (if required) and reinitialize the program.
reset

Breakpoint

The Breakpoint menu can be used to set, delete, or change various breakpoint types. Please note that
you can also set breakpoints using F2 in the source module or CPU window.

Command Shortcut Description
Toggle F2 Sets or clears a breakpoint at the current cursor position in the source

module or CPU window.
At Alt-F2 Sets a breakpoint at a specific location. A dialog box is displayed which

allows you to specify the location, group ID, and other options of the break-
point. The group ID allows grouping several breakpoints together. In the
local menu of the Breakpoint window, you can change attributes of complete
breakpoint groups.

Change Stops the program when a memory location changes value. This command
memory sets a hardware breakpoint for write accesses. The program is stopped
global when the value changes. Only memory ranges of one, two, or four bytes are

supported.
Expression Sets a breakpoint that occurs when the value of an expression becomes
true true. You are prompted for the expression that must become true for the
global program to stop. Program execution is significantly slowed down by such

breakpoints.

Hardware Sets a breakpoint using the 386 debug registers. The great advantage of
breakpoint such breakpoints is that they do not incur any run-time overhead. The

program can run at full speed and stops when the breakpoint condition is
met. Up to four such breakpoints can be set on memory Write, Access, or
Fetch instruction accesses. Memory location sizes of one, two, or four byte
sizes are supported.

Delete all Removes all currently defined breakpoints.

Part I RTTarget-32 55

Chapter 5 Cross Debugger RTD32

Data

The Data menu allows inspecting and changing the program’s variables.

Command Shortcut Description
Inspect Ctrl-I The Inspect command opens an Inspector to show the value of a variable or

a memory-referencing expression. You are prompted for the variable or
memory-referencing expression to inspect. If the cursor was in a source
module window when you issued this command, the prompt is initialized to
contain the variable under the cursor, if any. If you have marked an
expression using the Ins key, the prompt is initialized to the marked
expression.

Evaluate/ Ctrl-F4 The Evaluate/Modify command evaluates an arbitrary expression. Enter an
modify expression followed by an optional format control string that is separated

from the expression with a comma (,). The value appears in the middle pane.
You can move to this pane to scroll long value displays or error messages. If
the result is changeable, you can change the expression’s value by moving
to the bottom pane using the Tab key, typing a new value, and pressing
Enter.

Add watch Ctrl-W The Data Add Watch command places an expression or variable on the
watch list displayed by the Watches window. If the cursor was in a source
module window when you issued this command, the prompt is initialized to
contain the variable under the cursor, if any. If you have marked an
expression using the Ins key, the prompt is initialized to the marked
expression.

Function This command lets you examine the value that is about to be returned by the
return current function. You can only issue this command just before the function

returns.
Heap The Data Heap tracking command lets you collect information about the
tracking memory that your program allocates and frees on the heap. This is useful for

finding locations in your program where you allocate memory but fail to free
it at a later time. The online help contains more information about this
feature. Heap tracking is only supported for C/C++ programs.

Options

This menu allows customizing RTD32 to your needs.

56 On Time RTOS-32

Debugger Reference

Command Shortcut Description
Language Defines the programming language to use for the syntax of expressions.
Macro Lets you set and clear keystroke macros assigned to different keys.
Display Lets you customize the Debugger’s display screen.
Options
Path for This option lets you set where the Debugger looks for the source files that
source make up your program. Source files are searched for first where the compiler

found them, then in each directory specified by this command or the -sd
command line option, then in the current directory, and finally in the directory
that contains the program you are debugging.

Set restart The Set restart options command lets you control how the Debugger will use
options the restart information saved from the last time you were debugging a

program. A separate restart file is maintained for each program you have
been debugging.

Save Saves the current options to a configuration file.
options
Restore Restores options from a configuration file.
options

Window

The Window menu allows managing the desktop.

Command Shortcut Description
Zoom F5 Enlarges the current window to its maximum size, or, if it is already

maximized, restores its default size.
Next F6 Moves the focus to the next window. Each window has a number displayed

in the upper right-hand corner. Pressing Alt-Number or clicking on the
window moves the focus to the respective window directly.

Next Tab If the current window contains several panes, the focus moves to the next
pane Shift-Tab pane. Shift-Tab moves one pane backwards.
Size/move Ctrl-F5 Change the size and/or position of the current window. Use the cursor keys

to move the window and Shift plus the cursor keys to resize it. Dragging the
lower right-hand corner of a window with the mouse also resizes it. Dragging
the title bar moves the window.

Iconize/ Makes the current window as small as possible and parks it at the bottom of
restore the screen. This command acts as a toggle, so that if a window is already

iconized, this command restores it to its previous size and position on the
screen. This command is useful when you want to free up screen space and
memory, but don’t want to lose the context of an open window.

Close Alt-F3 Closes the current window.
Undo Alt-F6 Restores the last window closed. Only the last closed window can be
close restored.
User Alt-F5 Display program output. This command only works under DOS/Windows 3.1
screen and is thus obsolete.

Help

Use the help menu to access the online help. You can also press F1 at any time to get context sensitive
help.

Part I RTTarget-32 57

Chapter 5 Cross Debugger RTD32

Debugger Windows
Most of the debugger’s windows are opened using the View menu. The following sections briefly
describe the information available in each window, along with information about local menu commands.

Source Module

The View | Module command allows selecting a module from all currently loaded EXEs and DLLs. If
available, the source code of the module is displayed. Source lines with associated code (which is
required to set breakpoints) are marked with a bullet in the window’s left-most column. The local menu
(accessed with Alt-F10 or the right mouse button) allows maneuvering in the module. The online help
explains all local menu options in detail.

Inspect

The Inspect window is opened through Data | Inspect, or by pressing Ctrl-I in the source module window
with the cursor positioned on the variable to inspect. The inspect window displays the variables content
and its type. For structured types such as arrays, structures, or classes, you can select a member with
the highlighted bar followed by a carriage return and inspect the member. With this technique, complex
data structures can be walked through.

Watch

The watch window can contain a list of variables to be displayed continuously. Press Ctrl-W in the
source module window to add the variable under the cursor to the watch window. Local menu options
allow editing, deleting, and inspecting watched variables.

Breakpoints

The breakpoint window lists all currently defined breakpoints in the left pane with their respective prop-
erties in the right pane. Local menu options allow adding, deleting, and changing breakpoints.

Stack

The stack windows display all currently active stack frames which have been built up by function calls.
The stack display only works for functions which set up a standard EBP-based stack frame. Most
compilers can be instructed to produce such stack frames with compiler options. In many cases,
disabling all optimization will also produce standard stack frames.

Selecting a particular stack will display the corresponding source code (or CPU instructions if no source
code is available).

Local menu options allow inspecting the local variables of active functions.

Log

The log window displays a log of actions the debugger has taken. You can also write information to the
log using menu command Edit or the log window’s local options. A local menu command allows saving
the log to a disk file for later inspection. In addition, logging can be enabled or disabled.

Variables

The variables window shows a list of symbols and their values for the current module and function, as
well as a list of your program’s global symbols and their values. The pane in the lower part of the
window contains all local variables of the current function (if any). Use the TAB key to change between
the two panes. Local menu options allow inspecting, watching, etc. these symbols.

File

Use the file window to inspect the contents of an arbitrary file. The data can be displayed in ASCII or hex
format. The local menu allows selecting the format, searching, and positioning.

CPU

The CPU window has five panes displaying data on the CPU (as opposed to source) level.

58 On Time RTOS-32

Debugger Reference

Code Pane

This pane displays assembler instructions interleaved with source lines (if available). This pane’s local
menu allows setting display options, positioning the cursor (current EIP value, caller, previous position,
searching, etc.), setting a new EIP value, assembling (modifying) instructions, and inspecting/modifying
the CPU’s I/O ports.

Register Pane

All user mode accessible CPU registers are displayed here and can be modified using local option
commands. Highlighted registers have changed during the last program execution.

Flags Pane

This pane displays the state of user mode accessible CPU flags. Highlighted flags have changed during
the last program execution. Local options allow changing flag values.

Part I RTTarget-32 59

Chapter 5 Cross Debugger RTD32

Data Pane

The data pane displays an arbitrary memory region on the target. Question marks (????) indicate that
the respective linear address is not accessible. Local menu commands allow setting display options
(such as BYTE, WORD, floating point, etc.), searching for data, editing data, and setting a block of data
to a constant or file supplied values.

Stack Pane

The stack pane contains the topmost double words on the stack. The current ESP value is indicated with
a small triangular mark in the pane’s left-hand column (press Ctrl-O to position the cursor on that line).
Local menu commands allow positioning and changing values.

Register

The register window is identical to the register and flag pane of the CPU window.

Numeric Processor

View | Numeric Processor displays the state of the coprocessor or emulator (if installed). The three
panes contain the register stack, control, and status flag. Each pane has a local menu allowing manipu-
lation of all values.

Dump

The data dump window is identical to the data pane of the CPU window (see above).

Execution History

The execution history window shows the last CPU instructions that were executed. Previously executed
instructions are only recorded when you use the Run/Trace command (F7). If you are tracing through
source code in a source module window, you must make sure that you have Full history set to Yes in the
local menu of this window. If the executed instruction corresponds to a source line, you will see the
source code, otherwise the disassembled machine code is shown. Local menu commands allow viewing
the associated code, running the code backwards and enabling/disabling execution history recording.

Please note that execution history recording can slow down program execution dramatically, because
the debugger must execute the program one CPU instruction at a time and save the program state after
each step. Enable this option only when needed.

Class Hierarchy

The hierarchy window shows an alphabetical list of all the object types in the program. The local menu
allows inspecting and viewing a class hierarchy tree view for each type.

The right-hand pane of this window shows all the object types in the program as a tree, indicating ances-
tor/descendant relationships between object types.

Global Descriptor Table

This window displays the contents of the global descriptor table (GDT). GDT values cannot be modified
except by the user program. Undefined Descriptors are displayed as blank lines. The local menu allows
positioning the cursor on a particular selector value.

Interrupt Descriptor Table

This window displays the contents of the interrupt descriptor table (IDT). IDT values cannot be modified
except by the user program. Undefined Descriptors are displayed as blank lines. The local menu allows
positioning the cursor on a particular selector value or positioning the source module or CPU window on
a particular handler.

Clipboard

This window shows all the items that have been put on the clipboard with the Edit | Copy command. The
local menu has commands to inspect, remove, delete, or freeze values in the clipboard.

60 On Time RTOS-32

Debugger Reference

Keyboard Shortcuts
The following table lists the most frequently used (but by no means all) keyboard shortcuts with their
respective actions for the source module, CPU, and dump windows. Alt-Letter will always select the
main menu with the respective highlighted letter.

Shortcut keys are always displayed in the status line at the bottom of the debugger’s window. Ctrl- and
Alt-keys are displayed when the respective key is pressed.

Key Action Key Action
F1 Help Alt-F1 Last help topic
F2 Toggle breakpoint Alt-F2 Breakpoint at
F3 Open source module Alt-F3 Close window
F4 Run to cursor Alt-F4 Back trace

F5 Zoom window Alt-F5 User screen
F6 Next window Alt-F6 Undo close
F7 Step into Alt-F7 Instruction
F8 Step over Alt-F8 Run to return
F9 Run Alt-F9 Run to
F10 Menu Alt-F10 Local menu
Ctrl-B Block operations Ctrl-M Module select
Ctrl-C Caller Ctrl-N Next

Ctrl-D Display options Ctrl-O Origin
Ctrl-F Follow Ctrl-P Previous
Ctrl-G Goto Ctrl-S Search
Ctrl-I Inspect Ctrl-V View source
Ctrl-L Line number select Ctrl-W Watch
Ins Mark text

Part I RTTarget-32 61

Chapter 6 Using Microsoft Visual Studio

Chapter 6
Using Microsoft Visual Studio

Microsoft Visual Studio 6.0 or higher can be used to develop On Time RTOS-32 programs. All steps
required during the development phase can be performed within the IDE. This chapter describes how to
set up Visual Studio projects and how to use the Visual Studio integrated debugger to debug On Time
RTOS-32 programs running on the target.

Program DBGShell
Program DBGShell intercepts Visual Studio’s debugger to use RTTarget-32’s host <-> target communi-
cation module for debugging. You must use program DBGShell to start Visual Studio to be able to
perform cross debugging. The command line syntax of DBGShell is:

DBGShell [IDE] [ProjectFile]

Parameter IDE is the full path name of Visual Studio (the path to Msdev.exe). Parameter ProjectFile
should be a workspace file to load. Both parameters are optional, but at least one of them must be
specified. If the IDE parameter is missing, DBGShell will attempt to locate Visual Studio by looking for an
"open" or "open with Msdev" association for the given project file. If only the IDE parameter is specified,
but no project or workspace file, the IDE is started without loading a project. Examples:

dbgshell "C:\Program Files\Microsoft Visual Studio\Common\MSDev98\Bin\msdev.exe"
Hello.dsw

or
dbgshell hello.dsw

Ideally, On Time RTOS-32 projects should be launched through a Start Menu or Desktop shortcut which
invokes DBGShell. The On Time RTOS-32 installation has created such shortcuts for the demo projects.

Another advantage of DBGShell is that it defines environment variable RTTARGET to point to the On
Time RTOS-32 installation directory and that it places the On Time RTOS-32 Bin directory on the PATH
before Visual Studio is started.

Setting up a Project
On Time RTOS-32 programs are essentially Win32 console mode programs. Thus, setting up an On
Time RTOS-32 project in Visual Studio is best performed by creating a new Win32 console mode project
and then modifying it to fit On Time RTOS-32’s needs. This section describes step-by-step how to set up
such a project. Additional in-depth information about the Microsoft compiler and linker and general
compile/link guidelines are available in Appendix A.

An On Time RTOS-32 project must have the following properties:

• The project type is Win32 Console Application.

• The On Time RTOS-32 include path must be known to the compiler.

• On Time RTOS-32 libraries must linked.

• The linker must be instructed to produce a relocation table (option /fixed:no).

• After an .EXE file has been created, RTTarget-32’s locator must be run. We will define a second
project called "Target" for this purpose.

In addition, it would be desirable to write boot diskettes directly from the IDE. We will define a custom
build steps for RTB files to accomplish this.

The sample project will have two configurations: Win32 Debug and Win32 Release. The Debug
configuration assumes that it will run under the debugger’s control with the RTTarget-32 Debug Monitor
installed on the target. The Release configuration will produce a self-booting version of the application.
The project will also build a suitable Debug Monitor.

62 On Time RTOS-32

Setting up a Project

The project setup described below assumes that environment variable RTTARGET is defined to contain
On Time RTOS-32’s installation directory. If Visual Studio is started using DBGShell, DBGShell will
define RTTARGET correctly.

Of course, the easiest way to set up such a project is to copy one of On Time RTOS-32’s examples.
Nevertheless, here are step-by-step instructions to create the Hello project shipped with RTTarget-32.

• Create a new Workspace (named Hello in this example).

• Add a new, empty Win32 Console Application project to the Workspace. Place it into the same
directory as the Workspace. We will also call this project "Hello".

• Add a new Utility project to the Workspace. Again, place it into the same directory as the
Workspace. We will call this project "Target".

• For projects Hello and Target, verify that the Intermediate and Output files for the Win32 Debug
and Win32 Release Configuration are "Release" and "Debug", respectively.

• Make Project Target depend on Project Hello. This will ensure that the application’s .EXE file is
built before the locator is run.

• Add all required source and header files to the "Source File" and "Header Files" folders of project
Hello.

• Create a new file folder called "Config Files" in project Target and add all RTTarget-32 configur-
ation files to this folder. In this example, we need the files Hello.cfg, Demopc.cfg, and Monitor.cfg.

• In the project settings for project Hello, All Configuration, tab C/C++, Category Preprocessor, Addi-
tional include directories, enter $(RTTarget)\Include.

• In the project settings for project Hello, All Configuration, tab Link, Category Input:

Object/library modules: delete all libraries and enter rttheap.lib12 rtt32.lib13

Ignore Libraries: enter kernel32.lib

Force symbol references: enter _malloc,_EnterCriticalSection@4,_RTFileSystemList14

Additional library path: enter $(RTTarget)\Libmsvc

• If the project is a multithreaded RTKernel-32 application, select the Multithreaded run-time library
on tab C/C++, Category Code Generation, for both configurations. Do not use the DLL version of
the run-time system.

• In project settings for project Hello, both Win32 Release and Win32 Debug Configurations, tab
Link, Project Options: manually add option /fixed:no.

• In project Target, settings for file Monitor.cfg, Win32 Debug configuration, tab Custom Build, enter:

Description: Locate Monitor

Commands: "$(RTTarget)\Bin\RTLoc" -DBOOT $(OutDir)\Monitor Demopc.cfg Monitor.cfg

Outputs: $(OutDir)\Monitor.rtb

Dependencies: Demopc.cfg

• In settings for file Hello.cfg Win32 Debug configuration, Custom Build, enter:

Description: Locate Hello

Commands:"$(RTTarget)\Bin\RTLoc" -g- $(OutDir)\Hello Demopc.cfg Hello.cfg

12 Linking RTTHeap is optional but recommended. More infomation about RTTarget-32’s alternate heap manager RTTHeap is
available in Chapter 7, section RTTarget-32’s Memory Managers.

13 If you need more On Time RTOS-32 libraries, insert them here. Please observe the rules for the order of On Time RTOS-32
libraries explained in Appendix A.

14 These settings are required to work around a Microsoft linker bug. More information is available in Appendix A, section
Microsoft Visual C++. Do not force a reference to these symbols if they reside in a different .DLL or .EXE file.

Part I RTTarget-32 63

Chapter 6 Using Microsoft Visual Studio

Dependencies: $(OutDir)\Hello.exe, Demopc.cfg

• In settings for file Hello.cfg, Win32 Release configuration, Custom Build, enter:

Description: Locate Hello

Commands:

"$(RTTarget)\Bin\RTLoc" -g- -DBOOT $(OutDir)\Hello Demopc.cfg Hello.cfg

Dependencies: $(OutDir)\Hello.exe, Demopc.cfg

• Create folder "Boot Diskettes" in project Target and Add files Debug\Monitor.rtb and Release\Hel-
lo.rtb. Ignore any warnings such as "the file does not exist" and choose to add the files to the
project anyway.

Settings for files Debug\Monitor.rtb and Release\Hello.rtb, All Configurations:

Description: Creating Boot Diskette for $(InputPath)

Commands:

"$(RTTarget)\Bin\BootDisk" $(InputPath) A:
if not errorlevel 1 echo New boot disk > $(OutDir)\BootDisk.txt

Outputs: $(OutDir)\BootDisk.txt

The active configuration should be set to "Target - Win32 Debug" or "Target - Win32 Release". To
produce a new boot diskette either for the Monitor or the application itself, simply right-click the corre-
sponding .RTB file in project Boot Diskette and click Compile.

Here are a few recommendations to streamline the project:

• Remove all subdirectories under the workspace directory other than Debug and Release. They
have been created by Visual Studio before the correct paths had been defined.

• Delete the "Resource Files" folder of the Hello project.

• In the Hello project, Linker, General, disable incremental linking. This will reduce program size by
up to 64k and thus reduce download times. However, this will also require to change Debug Info in
the Win32 Debug Configuration, C/C++, General to "Program Database".

• In the Hello project, Win32 Debug Configuration, C/C++, Code Generation, Use Run-time library,
select a non-Debug Library. This will avoid linking the Microsoft debug libraries, which are very
large. However, they can be useful if you encounter bugs related to run-time system functions.

• If you plan to use the Microsoft debug libraries, remove RTTHEAP.LIB from the Win32 Debug
Configuration.

• Instruct the linker to generate MAP files and add the MAP files to the project. A MAP file is
frequently useful to analyse whether the correct libraries have been linked. A MAP file can be
enabled in Link category General.

• Add separate folders for the Debug and Release configurations to contain all .MAP and .LOC files.
These files should be inspected frequently to verify that linking and locating is performed as
intended.

Cross Debugging
When Visual Studio has been started using DBGShell (see the corresponding section earlier in this
chapter), its integrated debugger is automatically configured to act as a cross debugger for On Time
RTOS-32. Chapter 5 has described the prerequisites that must be met for cross debugging. This section
only addresses issues specific to Visual Studio.

To start debugging, make sure the active project configuration is Win32 Debug and that the project is
up-to-date. Menu command Build, Start Debugger, can then be used to start a debug session. When
Visual Studio asks for the executable file to debug, enter Debug\<project name>.exe. The program will

64 On Time RTOS-32

Cross Debugging

be downloaded to the target and all of the Visual Studio Debugger’s features are available. Please note
that the project should not be configured for remote debugging within Visual Studio. Redirecting the
debugger is performed by DBGShell and not by Visual Studio.

The Visual Studio Debugger used with On Time RTOS-32 is not thread-aware. When the target is
suspended at a breakpoint, the debugger’s context is set to the current thread. If you need to inspect
local variables of another thread, set a breakpoint in that thread and run to that breakpoint. Global data
is always accessible in the debugger, regardless of the current thread.

Part I RTTarget-32 65

Chapter 7 RTTarget-32 Library

Chapter 7
RTTarget-32 Library

RTTarget-32 applications must contain library RTT32.LIB. It contains functions to communicate with
RTTarget-32’s boot code, emulation of about 200 Win32 API functions, and functions for interrupt-driven
serial communication. RTT32.LIB may be linked directly into the main program’s .EXE file or as a DLL.
The DLL RTT32DLL.DLL supplied in RTTarget-32’s BIN directory is such a DLL; it contains RTT32.LIB
completely. For more information about multi-module applications, please refer to Chapter 9, Using
DLLs through RTLoc.

RTTarget-32 Flags
RTTarget-32 maintains a global 32-bit flags variable initialized to zero by default. The application can
simply declare its own instance of RTTarget32Flags to override RTTarget-32’s default.

Example:
DWORD RTTarget32Flags = RT_MM_VIRTUAL | RT_CLOSE_FIND_HANDLES;

A module containing such a declaration can be linked into the EXE or DLL containing the RTTarget-32
library RTT32.LIB.

The following flags are defined:

RT_KEY_BY_INTERRUPT Force RTTarget-32’s keyboard driver to translate scan codes to
virtual key codes within the keyboard interrupt handler.

RT_MOUSE_BY_INTERRUPT Force RTTarget-32’s text mode mouse driver to translate raw
mouse data to Win32 mouse events and to update the mouse
cursor on the screen within the mouse interrupt handler.

RT_MM_FIXED Force use of RTTarget-32’s fixed memory manager.

RT_MM_VIRTUAL Force use of RTTarget-32’s virtual memory manager with uncom-
mitted memory support.

RT_CRT_NO_ACCESS Instructs RTTarget-32 not to attempt accessing the CRT controller
to position the cursor.

RT_CLOSE_FIND_HANDLES Win32 API function FindNextFile should automatically close find
handles when no more files are found. This feature can be useful
to avoid running out of handles in programs that do not close
handles created and returned by FindFirstFile. For example,
programs using Borland’s run-time system functions findfirst/find-
next are affected by this bug.

RT_DBG_OUT_TO_HOST This flag controls how strings passed to the Win32 API function
OutputDebugString should be displayed. If set, all strings are sent
to the host if the program is running under the Debug Monitor and
ignored otherwise. By default, such strings are displayed locally if
the Debug Monitor is not present.

RT_DBG_OUT_NONE With this flag set, all calls to OutputDebugString are ignored.

RT_KEYS_US Use US keyboard layout (default).

RT_KEYS_GERMAN Use German keyboard layout.

RT_KEYS_FRENCH Use French keyboard layout.

RT_NO_LANG_HOTKEYS Do not intercept Left Ctrl-Alt-F1 and Left Ctrl-Alt-F2 to switch
keyboard language.

RT_NUMLOCK_OFF Set the initial NUMLOCK state to off. Other keyboard options can
be set with function RTSetKeyboard.

66 On Time RTOS-32

RTTarget-32’s Native API

RT_NO_KEYB_LEDS Instructs the keyboard driver never to send data to the keyboard
controller to control keyboard LEDs or to set the keyboard repeat
rate.

RT_HEAP_MIN_BLOCK_SIZE_32 Sets the minimum block alignment of memory allocated through
RT_HEAP_MIN_BLOCK_SIZE_64 Win32 Heap functions. The default value is 16 bytes. Larger
RT_HEAP_MIN_BLOCK_SIZE_128 values can improve speed at the expense of memory efficiency.

Flags RT_KEY_BY_INTERRUPT and RT_MOUSE_BY_INTERRUPT improve response times for
keyboard and mouse events at the cost of higher interrupt latencies. More information is available in
section Console Input Event Management of this chapter. Additional information about RTTarget-32’s
memory managers is available in section RTTarget-32’s Memory Managers later in this chapter.

RTTarget-32’s Native API
The functions described in this section can be used by applications to display data on the screen, install
interrupt handlers, perform port I/O, reboot the computer, etc. Prototypes for all of these functions are
given in include files RTTARGET.H and RTTARGET.PAS which must be included in every source file
using any of these functions.

Function RTSetFlags
This function can be used to change RTTarget-32’s run-time options:

DWORD RTSetFlags(DWORD Flags, int SetReset)

Parameter Flags must be a combination of the values given in the previous section. Parameter SetReset
specifies the value for the the respective flag(s) (1 or 0).

RTSetFlags must be used to change any of the RTTarget-32 flags from an .EXE or .DLL which has not
linked RTT32.LIB.

The return value contains all flags set after the call. To merely inquire the current flags, Call RTSet-
Flags(0, 0).

By default, RTTarget-32 will choose the memory manager to be used when the first memory allocation
function is called. If the application uses paging and the application consists of more than one module
(.EXE/.DLL), the virtual memory manager is used. Once the memory manager has been chosen, it
cannot be changed. Since the run-time systems frequently call memory allocation functions before the
main program is called, RTSetFlags must be called in an Init routine to be effective, or you should define
your own instance of global variable RTTarget32Flags. Init routines are described in Chapter 3, Init
Command.

Function RTSetDisplayHandler
RTSetDisplayHandler installs one of the predefined display handlers to handle characters to be
displayed by TTY type functions (e.g., WriteFile for stdout/stderr, printf, writeln, RTDisplayString, etc.).
Console I/O functions such as WriteConsoleOutput are not affected by the display char handler.

RTDisplayType RTSetDisplayHandler(RTDisplayType Type);

Parameter Type can have one of the following values:

RT_DISP_DETECT If a video RAM is present, the RT_DISP_SCREEN handler is installed. If
command VideoRAM None was specified and the program is running under the
Debug Monitor’s control, the RT_DISP_HOST handler is installed. If neither a
video RAM nor the Debug Monitor are present, the RT_DISP_NONE handler is
used.

RT_DISP_NONE Any data to be displayed is discarded.

RT_DISP_SCREEN Characters are displayed by writing them to the video RAM. The output position
for the next character is advanced automatically. Characters CR, LF, TAB, and
BS only move the output position and do not display any text. Character FF clears
the screen and returns the output position to the upper left-hand corner. The
physical cursor is not used.

Part I RTTarget-32 67

Chapter 7 RTTarget-32 Library

RT_DISP_HOST The data is passed on to the Debug Monitor which will in turn send it to the host. If
the debugger or RTRun is running in non-detached mode, the data is displayed
on the host.

The function will not install the requested display handler if the resources required by that handler are
not available. Instead, RT_DISP_DETECT is assumed (for example, RT_DISP_HOST is requested and
the program does not run under the Debug Monitor, or RT_DISP_SCREEN is used, but VideoRAM =
None was specified in the configuration file).

When this function is never called by a program, RT_DISP_DETECT is assumed.

The return value of the function corresponds to the actual handler used. It will never be RT_DISP_DE-
TECT.

If none of the predefined char out handlers are suitable for your program, you can install a custom
handler in global variable:

extern void (RTTAPI * RTCharOutHandler)(char c);

For example, such a handler could be used to redirect all screen output to a serial port.

Function RTDisplayChar
This function calls RTTarget-32’s display char handler whenever a single ASCII character is to be
displayed:

void RTDisplayChar(char c);

Parameter c is the character to be displayed. RTDisplayChar calls (*RTCharOutHandler)(c) internally.
Please see the previous section on function RTSetDisplayHandler on details about RTTarget-32’s
available display char handlers.

Function RTDisplayString

This function displays a zero-terminated ASCII character string on the target’s screen:
void RTDisplayString(const char * s);

Parameter s is a pointer to the string to be displayed. Function RTDisplayString calls RTDisplayChar
internally.

Function RTDisplayInt
This function displays a decimal integer on the target’s screen:

void RTDisplayInt(int i);

Parameter i is a 32-bit integer to be displayed.

Function RTDisplayHex

This function displays an unsigned integer in hex format on the target’s screen:
void RTDisplayHex(DWORD h);

Parameter h is a 32-bit unsigned integer to be displayed.

Function RTDisplayHexW
This function displays an unsigned short integer in hex format on the target’s screen:

void RTDisplayHexW(WORD h);

Parameter h is a 16-bit unsigned integer to be displayed.

Function RTSaveVector
This function saves an entry of the Interrupt Descriptor Table:

void RTSaveVector(BYTE Vector, RTInterruptGate * Gate);

Parameter Vector specifies which entry to save. Gate is a pointer to a buffer to which the descriptor is
copied. Use this function to save/restore vectors which are modified by the program.

68 On Time RTOS-32

RTTarget-32’s Native API

Function RTRestoreVector
Function RTRestoreVector restores an Interrupt Descriptor previously saved by RTSaveVector:

void RTRestoreVector(BYTE Vector, const RTInterruptGate * Gate);

Function RTSetIntVector
RTSetIntVector installs an application interrupt handler in the Interrupt Descriptor Table:

typedef void (RTTAPI * RTIntHandler)(void);

void RTSetIntVector(BYTE Vector, RTIntHandler Handler);

Parameter Vector specifies the interrupt to be processed by Handler. Handler is a pointer to a routine
that will be invoked when the specified interrupt occurs. Please note that hardware interrupts are
mapped to interrupt vectors 40h to 4Fh under RTTarget-32.

The address of the specified handler is directly placed in the IDT. The handler must be terminated with
an IRETD instruction and must save/restore all registers it uses. See Chapter 2, Descriptors and
Descriptor Tables for an overview of all interrupt vectors. Demo program SERINT.C shows how to use
RTSetIntVector to install a hardware interrupt handler.

Function RTSetTrapVector

This function is similar to RTSetIntVector:
void RTSetTrapVector(BYTE Vector, RTIntHandler Handler);

However, the handler is installed as a trap gate and not as an interrupt gate. The handler will be entered
without changing the interrupt flag in the flags register.

Function RTInstallISR
This function installs a handler for a hardware interrupt:

void RTInstallISR(int IRQ,
 RTIntHandler HighLevelHandler,
 RTIntHandler LowLevelHander);

Parameter IRQ should be in the range 0 .. 15 and specifies the Interrupt Request on which the handler
should be installed. HighLevelHandler should be a C function handler without interrupt stack frame.
LowLevelHandler should contain a complete interrupt stack frame (save/restore all registers, return with
IRETD).

RTInstallISR behaves differently depending on the presence of RTKernel-32. Without RTKernel-32,
RTInstallISR does:

RTSetTrapVector(RTIRQ0Vector+IRQ, LowLevelHandler);

With RTKernel-32, this function does:
RTKSetIRQHandler(IRQ, HighLevelHandler);

Function RTEnableIRQ
RTEnableIRQ instructs the interrupt controller to pass interrupts for a specific IRQ to the CPU:

void RTEnableIRQ(int IRQ);

Parameter IRQ must be in the range 0 .. 15. RTTarget-32 disables all IRQs except 0, 1, and 2 at boot
time. Please note that there is no IRQ 2 on PC compatible systems. Hardware that claims to generate
IRQ 2 actually uses IRQ 9.

RTEnableIRQ assumes the target hardware to have IBM-PC compatible interrupt controllers at port
addresses 20h and A0h.

Part I RTTarget-32 69

Chapter 7 RTTarget-32 Library

Function RTDisableIRQ
RTDisableIRQ instructs the interrupt controller not to pass interrupts for a specific IRQ to the CPU:

void RTDisableIRQ(int IRQ);

Parameter IRQ must be in the range 0 .. 15. RTTarget-32 disables all IRQs except 0, 1, and 2 at boot
time. Please note that there is no IRQ 2. Hardware that claims to generate IRQ 2 actually uses IRQ 9.

RTDisableIRQ assumes the target hardware to have IBM-PC compatible interrupt controllers at port
addresses 20h and A0h.

Function RTIRQEnd
RTIRQEnd disables interrupts and notifies the master and slave interrupt controllers that processing of
an interrupt has been completed:

void RTIRQEnd(int IRQ);

Each hardware interrupt handler must perform this call. If it is omitted, no additional interrupts of the
same or lower interrupt priorities can be accepted.

RTIRQEnd assumes the target hardware to have IBM-PC compatible interrupt controllers at port
addresses 20h and A0h.

Function RTDisableInterrupts

This function executes CPU instruction CLI to disable interrupts.
void RTDisableInterrupts(void);

Function RTEnableInterrupts
This function executes CPU instruction STI to enable interrupts.

void RTEnableInterrupts(void);

Function RTSaveAndDisableInterrupts
This function disables interrupts and returns the previous interrupt state. This value can later be passed
to function RTRestoreInterrupts to restore the interrupt state (interrupts enabled or disabled).

DWORD RTSaveAndDisableInterrupts(void);

Function RTRestoreInterrupts

This function restores the interrupt state previously read with RTSaveAndDisableInterrupts.
void RTRestoreInterrupts(DWORD IntState);

Functions RTIn, RTInW, RTInD
These functions read a byte, word, or dword value from an I/O port:

BYTE RTIn (unsigned int addr);
WORD RTInW(unsigned int addr);
DWORD RTInD(unsigned int addr);

Parameter addr specifies the I/O port to read from.

Functions RTOut, RTOutW, RTOutD
These functions write a byte, word, or dword value to an I/O port:

void RTOut (unsigned int addr, BYTE val);
void RTOutW(unsigned int addr, WORD val);
void RTOutD(unsigned int addr, DWORD val);

Parameter val is written to port addr.

70 On Time RTOS-32

RTTarget-32’s Native API

Function RTReboot
RTReboot restarts the target computer:

void RTReboot(void);

RTReboot merely puts the CPU in shutdown mode through a triple fault. This mode is signalled by a
special bus cycle. Most motherboards detect this cycle and generate a hardware reset. Thus, the
specific reaction to shutdown mode can depend on your motherboard’s design.

Function RTHalt
RTHalt waits for a hardware interrupt:

void RTHalt(void);

If the program runs at privilege level 3, RTHalt returns immediately and does nothing. However, if
running at CPL 0, instruction HLT is executed. HLT stops the CPU until a hardware interrupt or a
hardware reset occurs. During the wait, the CPU is in Halt Mode. The bus is free to be accessed by
other hardware such as DMA. Also, only a fraction of the CPU’s normal power consumption is used,
significantly reducing heat generation.

All loops waiting for an external event (e.g., keyboard input, a specific time, data to be received, etc.)
can call RTHalt to reduce power consumption and heat emission. Alternatively, you can assign function
RTHalt to RTTarget-32’s idle handler (see section Function RTWait).

Function RTHaltCPL3

RTHaltCPL3 also waits for a hardware interrupt. However, unlike function RTHalt(), it can switch to
CPL 0 temporarily to execute the CPU HLT instruction:

void RTHaltCPL3(void);

If the program runs at privilege level 0, HLT is executed. Otherwise, RTHaltCPL3 sets up a custom IDT,
switches to ring 0 and executes HLT. When a hardware interrupt occurs, the function switches back to
ring 3 and re-raises the interrupt to allow the application’s handler to process the interrupt.

RTHaltCPL3 makes the advantages of the HLT instruction available without sacrificing protection.
However, RTHaltCPL3 requires a privilege level transition before an interrupt is actually serviced. For
example, on a Pentium 100MHz, using function RTHaltCPL3 would increase the interrupt latency by
about 1 - 2 microsecond.

RTHaltCPL3 can also be used as an RTTarget-32 idle handler (see the following section).

Function RTWait

RTWait is called by various modules contained in RTT32.LIB whenever the software must wait for some
external event to occur. It is intended to allow the installation of idle processing.

void RTWait(void);

RTWait() calls the current IdleHandler, or, if that is NULL, returns immediately. The IdleHandler is
declared as follows:

extern void (RTTAPI * RTIdleHandler)(void);

Its default value is NULL. You may assign your own idle handler or function RTHalt to RTIdleHandler to
install your own idle handler.

All loops that wait for an external event can call RTWait to signal that they are currently idle.

Function RTLocateSection
RTLocateSection can search for a program section created by RTLoc:

RTAppSection * RTLocateSection(int Index, int Type, const char * Name);

Parameter Index specifies the section to select if several sections match the following search criteria.
Index is 1-based. Type must be one of the following constants:

RT_ST_ANYSECTION Matches any section type

Part I RTTarget-32 71

Chapter 7 RTTarget-32 Library

RT_ST_BOOTCODE section containing boot code

RT_ST_BOOTDATA section containing boot data

RT_ST_APPCODE section containing application code

RT_ST_APPDATA section containing application data

RT_ST_APPHEAP section containing the application heap

RT_ST_APPSTACK section containing the application stack

RT_ST_NOTHING section created by Locate Nothing

RT_ST_COPY section containing a copy of another section

RT_ST_APPHEADER section containing the application header

RT_ST_FILEDATA section containing file data

RT_ST_PAGETABLE section containing the page table

RT_ST_BOOTVECTOR section containing the boot vector

RT_ST_PHYSICAL shadow section in the physical address space for a section in a virtual
region

RT_ST_DECOMPCODE section containing decompression code

RT_ST_DECOMPDATA section containing decompression data buffer

RT_ST_COPYCOMPRESSED section containing a compressed section

RT_ST_DISKBUFFER section containing a disk buffer

RT_ST_REGION pseudo section describing a region

RT_ST_RESERVED pseudo section describing memory used by a reserved application

All sections available at run-time are listed in the Relocation Report and Application Image Report of the
LOC file created by RTLoc.

Parameter Name may either be NULL to match any section, or it must point to the name of the desired
section as given in the program configuration file. Name matching is not case-sensitive.

The return value is a pointer to a structure defined in RTTARGET.H with the following layout:
typedef struct {
 DWORD Flags;
 DWORD SectionImageLen;
 DWORD SectionAllocLen;
 DWORD SectionAddr;
} RTAppSection;

SectionAddr is the location of the section in the virtual address space. SectionAllocLen is its size. If
initialized data is associated with the section, its size is given in SectionImageLen. For regions, SectionI-
mageLen is the physical size of the region. Thus, this value is always zero for virtual regions and
smaller than SectionAllocLen for regions which have been extended with command FillRAM.

If the desired section is not found, RTLocateSection returns NULL.

Example: The following function retrieves a pointer to the page table:
RTPageTableEntry * PageTablePtr(void)
{
 RTAppSection * Section;
 Section = RTLocateSection(1, RT_ST_PAGETABLE, NULL);
 if (Section == NULL) // no paging
 return NULL;
 else
 return (RTPageTableEntry*) Section->SectionAddr;
}

The following code lists all available RAM files on the screen:

72 On Time RTOS-32

RTTarget-32’s Native API

for (i=1;;i++)
{
 RTAppSection * Section = RTLocateSection(i, RT_ST_FILEDATA, NULL);
 if (Section == NULL)
 break;
 printf("File name: %s\n", RTSectionName(Section));
}

Function RTSectionName
Function RTSectionName can determine the name of a section located using RTLocateSection:

char * RTSectionName(const RTAppSection * Section);

If the section exists, the function returns a pointer to its name; otherwise, NULL is returned.

Function RTGetExtMem
This function can retrieve the amount of extended memory reported by the BIOS at boot time:

DWORD RTGetExtMem(void);

The return value is the amount of installed RAM above address 1M or zero if the BIOS does not support
BIOS function int 15h, ah=E820h or ah=E801h.

Extending the heap at run-time is best done with function RTCMOSExtendHeap described later in this
chapter. Function RTCMOSExtendHeap calls RTGetExtMem internally.

Function RTGetGMode
This function can retrieve the current BIOS graphics mode:

int RTGetGMode(void);

If the GMode directive was used, this function returns the graphics mode set during the boot process.
Please note that the returned mode may actually be a text mode (e.g., value 3 or 7), if none of the
graphics modes were accepted by the BIOS.

On targets which do not have a BIOS, value 0 or -1 is returned.

For more information about the GMode command, see Chapter 3, GMode Command.

Function RTGetVideoRAMAddr

Function RTGetVideoRAMAddr returns the video RAM address specified in the VideoRAM command:
void * RTGetVideoRAMAddr(void);

If no video RAM is present or used, NULL is returned.

Function RTLoadRTBFile
Function RTLoadRTBFile reads an RTB file produced by RTLoc and copies all entities it contains to
their respective target addresses:

typedef void * (RTTAPI * RTDataCallback)(void * dest,
 const void * src,
 unsigned int n);
RTAppHeader * RTLoadRTBFile(const char * Name,
 RTDataCallback DataCallback);

Parameter Name is the file name of the RTB file to process (note that RTFiles-32 is required to read disk
files instead of RAM/ROM files). Optional parameter DataCallback can point to a function which
RTLoadRTBFile() will call to transfer data to the target. Supply a function if special processing is
required (e.g., programming the data into flash memory, etc.). If not specified, RTLoadRTBFile will
simply memcpy() the data directly to the addresses given in the RTB file. The return value is a pointer to
the application’s header or NULL if the function fails.

Note that this function is not guaranteed to correctly read RTB files produced by different versions of
RTTarget-32. If cross version compatibility is required, use BIN files instead of RTB files to transfer On
Time RTOS-32 program images.

Part I RTTarget-32 73

Chapter 7 RTTarget-32 Library

Demo program Loader demonstrates the use of this function.

Function RTRunProgram
RTRunProgram can execute a child application contained in a separate program image produced by
RTLoc:

int RTRunProgram(const RTAppHeader * Header);

Parameter Header must point to the header of the child application. The return value is the exit code of
the child.

The child application referenced by parameter Header must have been completely loaded into the
physical address space. This can be done with function RTLoadRTBFile as in demo program Loader or
by loading a BIN file as demonstrated by program BootProg.

RTRunProgram will save and restore the following interrupt vectors before/after the child runs: 7h, 61h,
and 40h - 4Fh.

A program which intends to execute function RTRunProgram (called the loader or parent) must adhere
to the following restrictions:

• It must reside completely in the physical address space. This means that it cannot use virtual
regions or the FillRAM command in its configuration file.

• It must not use RTTarget-32’s virtual memory manager with uncommitted memory support.
Preferably, it should not use the run-time system and a heap at all to preserve memory for the
program to be loaded. Please refer to Function RTSetFlags earlier in this chapter on how to force
use of the fixed memory manager.

• While the child program is running, the parent’s heap is not accessible unless it has been assigned
ReadWrite access in the configuration file.

• The child program must not overlap any memory used by the parent. This is best achieved by
using the Reserve command in the child’s configuration file.

• RTRunProgram is not reentrant and cannot be called simultaneously by several tasks in a multi-
tasking environment. However, it may be used again by a child program.

• For applications running at CPL 3, RTRunProgram may disable interrupts for several seconds to
expand compressed entities.

Example program Loader demonstrates how to use RTRunProgram.

Function RTBootRM and RTBootPM
These functions allow one program to boot into another previously loaded program. They are similar to
RTRunProgram, but the newly loaded program overlays the loading program and it cannot return to its
loader:

 void RTBootRM(WORD BootVectorSegment, WORD BootVectorOffset);

 void RTBootPM(void * BootVectorAddress);

RTBootRM reboots the target into a new program and switches to real mode before transferring control
to the 16:16 real mode address BootVectorSegment:BootVectorOffset. RTBootPM reboots the target
into a new program in 32-bit protected mode. The function’s parameters are the physical addresses of
the boot vectors of the child application. Both functions completely reset the target and begin execution
at the given addresses just like after power-on or reset.

RTBootRM expects a real mode address as its parameter. For children built with RTTarget-32,
parameter BootVectorSegment must be bits 19..16 of the physical address of the boot vector shifted
right by 4 bits. Parameter BootVectorOffset must be the low 16 bits of the physical address of the boot
vector. Example (assuming the boot vector has been located to the very start of section ChildImage):

 DWORD BootVectorAddress = LoadBinFile("child.bin", "ChildImage");

 RTBootRM((BootVectorAddress & 0x0F0000) >> 4,
 BootVectorAddress & 0x0FFFF);

74 On Time RTOS-32

RTTarget-32’s Native API

All of the child’s data must have been loaded at the correct addresses on the target before these
functions can be called. These functions never return. The child is booted and will overwrite the parent in
memory.

The child must include a boot vector, boot code, and boot data just like a self-booting application. A disk
buffer is not required but does no harm. RTBootRM supports boot codes BOOT.EXE and BIOS-
BOOT.EXE, while RTBootPM supports PMBOOT.EXE. RTBootRM requires the boot vector and boot
code to reside below 1M.

To use RTBootRM or RTBootPM:

• The parent must be located such that it reserves some target address space to hold the child’s
image.

• If the child includes BIOSBOOT.EXE as its boot code, the parent must not clobber the BIOS data
area in the first 4k of address space. This is best achieved by allocating a Nothing section in region
NullPage with NoAccess access rights. Some BIOS extensions may require additional memory at
the end of the DOS memory area below address A0000h. Thus, it is recommended to also allocate
the last 64k or 128k of DOS memory using a Nothing section.

• The child should be located such that all of its images will reside in the address space reserved for
its image.

• The parent must load the child’s image before calling RTBootRM/RTBootPM. It can use function
RTLoadRTBFile to do this or simply load a BIN file to the correct address.

• Call RTBootRM for children containing real mode boot code (BOOT.EXE or BIOSBOOT.EXE) or
RTBootPM for children containing protected mode boot code (PMBOOT.EXE).

It is not possible to debug a child started with RTBootRM/RTBootPM using the cross debugger.

Demo program BootProg demonstrates function RTBootRM.

Function RTDLLThreadEvent
Function RTDLLThreadEvent calls a specific or all entrypoints (function DllEntryPoint) of DLLs currently
in use:

void RTDLLThreadEvent(HMODULE Handle, DWORD Win32Event);

Parameter Handle is the handle of the DLL’s entrypoint to be called. Handle may be NULL. In this case,
the entrypoints of all currently loaded DLLs (DLLs with a current reference count greater 0) are called.

Parameter Win32Event is passed on to the DllEntryPoint functions as parameter fdwReason. It may
have one of the values DLL_THREAD_ATTACH, DLL_THREAD_DETACH, or DLL_PROCESS_DE-
TACH.

The reference count of the DLL(s) is not modified by this function. Thus, passing DLL_PROCESS_DE-
TACH is not recommended (use FreeLibrary instead), except at program termination.

RTDLLThreadEvent is typically used in multithread applications to inform DLLs of thread creation/termi-
nation.

More information about using DLLs in available in Chapter 9, Using DLLs through RTLoc and Chapter 7,
Win32 DLLs.

Function RTLockHeap
RTLockHeap can be used to protect RTTarget-32 memory management functions from being reentered
in multi-thread applications:

void RTLockHeap(void);

All of RTTarget-32’s Win32 memory management functions (VirtualAlloc, VirtualFree, HeapAlloc,
HeapFree, HeapRealloc, LocalAlloc, LocalFree, etc.) use an internal critical section to protect RTTarget-
32’s internal memory management state. All of the run-time system’s memory management functions
map onto these functions. However, RTTarget-32’s memory management and mapping functions
(RTFindPhysMem, RTReserveVirtualAddress, RTReleaseVirtualAddress, RTMapMem, RTExtendHeap,

Part I RTTarget-32 75

Chapter 7 RTTarget-32 Library

and RTCMOSExtendHeap) do not use this critical section automatically. If any of these functions are
called while any other memory management function could be called by another thread, the
RTTarget-32 heap must be locked explicitly with this call and unlocked with function RTUnlockHeap.

Use of this function is only required in multi-thread applications. In single-thread programs, it does
nothing.

Function RTUnlockHeap
RTUnlockHeap unlocks RTTarget-32’s memory management functions previously locked with RTLock-
Heap:

void RTUnlockHeap(void);

Please refer to the previous section for information about locking RTTarget-32’s memory management.

Function RTCallRing0
This function allows executing a function at CPL 0 within a program running at CPL 3 or 0:

typedef DWORD (__fastcall * RTRing0Function)(void * P);

DWORD RTCallRing0(RTRing0Function Ring0Func, void * P);

The function to be called has a single 32-bit parameter, a 32-bit function result, and must use register
calling conventions. RTCallRing0 will pass its parameter P to Ring0Func in EAX and will return the value
returned by Ring0Func in EAX.

If the calling program runs at CPL 0, RTCallRing0 will simply call Ring0Func. If the program executes at
CPL 3, RTCallRing0 will use a call gate to transfer control to Ring0Func. In addition, interrupts are
disabled and the interrupt state is restored when the function returns.

A few things should be noted if this function is used in programs running at CPL 3:

• Ring0Func may call other functions. Such called functions will also execute at CPL 0.

• Interrupts are disabled and must not be reenabled. Thus, the function should be short.

• You cannot set debugger breakpoints within the Ring0Func or any function it calls.

• The function will execute on the boot code’s ring 0 stack, which has a size of only 256 bytes.
Please be sure not to use more stack space.

• All privileged instructions except HLT can be executed. Write protection for read-only and system
pages is not enforced.

• Code executing at CPL 0 may never raise an exception, be it a Win32 structured or C++ exception.
Exceptions cannot be propagated across privilege levels.

• You cannot execute floating point instructions if the emulator is being used.

• Selector 3Bh (index 7) is used for the call gate and must not be used by the application.

Function RTFindPhysMem
Function RTFindPhysMem scans the page table for a physical address range:

void * RTFindPhysMem(void * Physical, unsigned Bytes, int MinAccess);

Parameter Physical is the address of the physical memory to find. Parameter Bytes defines its size.
MinAccess specifies the minimum access level required. Values RT_PG_NOACCESS, RT_PG_SYS-
READ, RT_PG_SYSREADWRITE, RT_PG_USERREAD, and RT_PG_USERREADWRITE are
supported.

The return value is a pointer of the virtual address space to the requested physical address. If the
function fails, NULL is returned.

Demo program MapDemo demonstrates how to use RTFindPhysMem.

76 On Time RTOS-32

RTTarget-32’s Native API

Function RTReserveVirtualAddress
Function RTReserveVirtualAddress allocates a virtual address range:

int RTReserveVirtualAddress(void ** Virtual, unsigned Bytes, unsigned Flags);

Parameter Virtual is a pointer to a pointer containing the address of the virtual address space.
Parameter Bytes specifies the size of the required address range. Parameter Flags specifies options.
The only flag currently defined is RT_MAP_NO_RELOCATE. It prevents ReserveVirtualAddress from
allocating a different address to *Virtual.

*Virtual should be initialized by the application before ReserveVirtualAddress is called to supply a
preferred virtual address. If this address is available, it will be used. Otherwise, if RT_MAP_NO_RELO-
CATE is not set, ReserveVirtualAddress scans the virtual address space starting at zero for a free area
large enough to satisfy the request. If the original value of *Virtual is not page-aligned, the page offset of
*Virtual is always preserved.

When this function succeeds, *Virtual contains the address of the reserved address range.

The function return value can be one of the following:

RT_MAP_SUCCESS The function succeeded.

RT_MAP_NO_PAGING Paging is not enabled. This function requires paging.

RT_MAP_VADDR_NOT_AVAIL The requested virtual address is not free and RT_MAP_NO_RELO-
CATE was specified, preventing RTReserveVirtualAddress from
searching for a different address.

RT_MAP_OUT_OF_MEM The function was unable to allocate memory for a larger page table.

Demo program MapDemo demonstrates how to use RTReserveVirtualAddress.

Function RTReleaseVirtualAddress
Function RTReleaseVirtualAddress marks an address range to be available for future reservation:

int RTReleaseVirtualAddress(void * Virtual, unsigned Bytes);

Parameters Virtual and Bytes define location and size of the address range to release. The address
range is unmapped from memory, causing any subsequent accesses to trigger page faults.

The function return values can be RT_MAP_SUCCESS or RT_MAP_OUT_OF_MEM (see section
Function RTReserveVirtualAddress).

Function RTMapMem
Function RTMapMem maps physical to virtual addresses:

int RTMapMem(void * Physical, void * Virtual, unsigned Bytes, int Access);

Parameters Physical and Virtual define the addresses in the respective address spaces. If parameters
Physical and Virtual are not page-aligned, their respective offsets from a page must be identical.
Parameter Bytes specifies the size of the address range. Parameter Access specifies the desired
access rights to the virtual address range.

If paging is disabled, the function succeeds only if Physical == Virtual addresses. Otherwise, the page
table is updated to map the given physical address to the requested virtual address.

This function performs no additional parameter validation. If the given virtual address is used by some
other program entity or the physical address does not exist, the results will be unpredictable.

In addition to the return codes documented for function RTReserveVirtualAddress, this function can
return the following value:

RT_MAP_PARAM_ERROR The page offset of parameters Physical and Virtual are not identical.

Demo program MapDemo demonstrates how to use RTMapMem.

Part I RTTarget-32 77

Chapter 7 RTTarget-32 Library

Function RTExtendHeap
Function RTExtendHeap can add memory to the heap at run-time. RTExtendHeap allows a program
built with the same hardware configuration to use more heap memory if it finds more installed:

int RTExtendHeap(void * Physical, unsigned Bytes);

Parameters Physical and Bytes define location and size of the physical memory to be added to the
heap. If paging is not enabled, parameter Physical must match the end of the heap section. In this case,
the heap is simply extended by Bytes bytes. If paging is used, the given physical memory is mapped to
the virtual address immediately following the heap. The function checks that no memory after the current
heap is overlapped. Thus, less memory than requested could be appended (possibly zero if some other
section is right after the heap).

Please note that this function cannot perform any checks on the passed parameters. If the specified
memory does not exist or it has already been used by RTLoc, memory will be corrupted.

If the function succeeds, the number of pages (not bytes) is returned. For error return codes, see the
RT_MAP... function codes given for function RTReserveVirtualAddress. In addition, the following return
codes are possible:

RT_MAP_HEAP_TOP_USED The application has allocated memory from the end of the heap. The
heap cannot be grown in this case.

RT_MAP_HEAP_UNALIGNED The end of the heap is not page-aligned. Therefore, it is impossible to
add pages to the heap without leaving a gap.

In general, RTExtendHeap can only be called within an Init function before any heap allocation functions
have been called to avoid problem RT_MAP_HEAP_TOP_USED.

Please note that RTTarget-32 will never set up virtual memory at addresses which have physical
memory. Thus, if you intend to use RTExtendHeap or RTCMOSExtendHeap, the address range to add
to the heap should not be used by RTLoc. For example, if your configuration file specifies extended
memory to end at 2M, and you want to add additional extended memory to the heap at run time, no
program entities should be mapped in the address range 2M - 64M through virtual regions.

For systems equipped with a BIOS and CMOS RAM, function RTCMOSExtendHeap is recommended
instead.

Demo program MapDemo demonstrates how to use RTExtendHeap.

Function RTRaiseCPUException
This function can install exception handlers which will raise a Win32 structured exception when the CPU
signals an exception:

void RTRaiseCPUException(BYTE Vector);

Parameter Vector can be any value in the range 0 to 16. Win32 Function RaiseException will be called
when the specified exception occurs. RTRaiseException may be called for any number of vectors in the
range 0 .. 16.

CPU exceptions handled in this manner will not be seen by the debugger RTD32, which will usually trap
them and halt the program. To conditionally install exception handlers only when the program is not
running under the control of the debug monitor, use the following code:

if (RTCallDebugger(RT_DBG_MONITOR, 0, 0) != -1)
{
 // the debug monitor is not running; install handlers
 RTRaiseCPUException(0); // divide error
 RTRaiseCPUException(4); // INTO Overflow
 RTRaiseCPUException(5); // range check
 RTRaiseCPUException(6); // invalid opcode
 RTRaiseCPUException(13); // GPF
 RTRaiseCPUException(14); // page fault
 RTRaiseCPUException(16); // floating point error
}

78 On Time RTOS-32

RTTarget-32’s Native API

Unit RTTarget used in Pascal programs automatically executes the above code at program startup. The
Pascal run-time system will map all structured exceptions generated through this mechanism to run-time
error exceptions which can be handled by Pascal’s exception handling.

Please note that RTRaiseCPUException will happily install handlers for any exception in the range
0 .. 16, but normal applications cannot successfully handle all of them. For example, a stack fault
(exception 12) can only be handled if the handler is executed on a different stack, which in turn requires
handling it at a higher privilege level. However, the handlers of the application must run at the same
privilege level as the application. The same is true for a doubles fault, which could, for example, be
triggered by a page fault caused by the stack pointer. Again, the error can only be handled at a higher
privilege level.

For such exceptions, it is recommended to leave the default handlers of RTTarget-32’s boot code in
place. These handlers run at CPL 0 and will display a register dump on the screen, allowing offline
analysis.

For additional information about handling structured exceptions, please refer to your compiler’s or the
Win32 API documentation.

Function RTCMOSRead
This function can read one byte of battery-backed CMOS RAM:

BYTE RTCMOSRead(BYTE Addr);

Parameter Addr is the byte offset of the value to retrieve. Example:
printf("The equipment byte of this PC is: %u\n", RTCMOSRead(0x14));

RTCMOSRead only works on systems equipped with an MC146818A Real-Time Clock or compatible
device. The contents of the CMOS RAM area are valid only if it has been initialized by a BIOS or by the
program itself.

Function RTCMOSWrite
This function can write one byte of battery-backed CMOS RAM:

void RTCMOSWrite(BYTE Addr, BYTE Value);

Parameter Addr is the byte offset of the value to write.

RTCMOSWrite only works on systems equipped with an MC146818A Real-Time Clock or compatible
device. The contents of the CMOS RAM area are valid only if it has been initialized by a BIOS or by the
program itself.

Function RTCMOSReadTime
RTCMOSReadTime reads the current date and time of day from the Real-Time Clock:

void RTCMOSReadTime(SYSTEMTIME * T);

Parameter T points to the SYSTEMTIME structure defined in window.h and rttarget.h (respective
windows.pas for Delphi).

This function requires an MC146818A Real-Time Clock on the target.

Function RTCMOSWriteTime

RTCMOSWriteTime writes the given date and time of day to the Real-Time Clock:
void RTCMOSWriteTime(const SYSTEMTIME * T);

Parameter t points to the SYSTEMTIME structure defined in windows.h and rttarget.h (respective
windows.pas for Delphi).

This function requires an MC146818A Real-Time Clock on the target.

Part I RTTarget-32 79

Chapter 7 RTTarget-32 Library

Function RTCMOSSetSystemTime
RTCMOSSetSystemTime reads the current date and time of day from the Real-Time Clock and calls the
Win32 function SetSystemTime:

void RTCMOSSetSystemTime(void);

Function SetSystemTime must be called at least once at program initialization if the application intends
to use time-of-day functions of the run-time system or Win32 emulation. RTCMOSSetSystemTime
performs this function.

This function requires an MC146818A Real-Time Clock on the target.

Function RTCMOSExtendHeap

RTCMOSExtendHeap uses information from the BIOS and CMOS RAM to determine the amount of
physical memory installed. If more memory than currently used is found, the extra RAM is added to the
heap:

int RTCMOSExtendHeap(void);

Internally, this function calls RTGetExtMem, RTCMOSRead, and RTExtendHeap. For possible return
codes and additional information, please refer to Function RTExtendHeap earlier in this chapter.
RTCMOSExtendHeap should only be called from Init functions.

This function requires a PC compatible BIOS with support for int 15h function E820h or E801h, or an
MC146818A Real-Time Clock on the target.

Function RTSetKeyboard
This function can set a few keyboard options:

void RTSetKeyboard(DWORD LockState, int RepeatDelay, int RepeatRate);

Parameter LockState can be any combination of NUMLOCK_ON, SCROLLLOCK_ON, and CAPS-
LOCK_ON defined in windows.h.

Parameter RepeatDelay must be in the range 0 .. 3. It specifies the delay after which keyboard input is
automatically repeated when a key is held down. At zero, the delay is set to 0.25 seconds; at 3, the
delay is 1 second.

Parameter RepeatRate must be in the range 0 .. 31. It specifies the rate at which keys are generated
when a key is held down. At zero, the rate is 30 characters per second; at 31, the rate is 2 characters
per second.

When this function is never called, RTSetKeyboard(NUMLOCK_ON, 0, 0) is assumed. The NUMLOCK
state can also be changed with the RTTarget-32 flags (see section RTTarget-32 Flags earlier in this
chapter).

Function RTSetKeyboardTables

RTTarget-32’s keyboard driver is preconfigured to support US, German, and French keyboard layouts
using the OEM (437) code page. Function RTSetKeyboardTables is used to install and activate custom
translation tables for the keyboard driver:

typedef const struct { // generic translator, first entry: {0, #Entries}
 WORD Key; // must be sorted on Key
 WORD Value;
} RTKeyTable;

typedef const struct { // lookup tables for keyboard driver
 int BasedOn; // based on language index BasedOn
 DWORD Flags;
 RTKeyTable * SCToVK; // scan code -> virtual key code
 RTKeyTable * VKToLower; // virtual key code -> Unicode character
 RTKeyTable * VKToUpper; // virtual key code -> character (upper)
 RTKeyTable * AltCar; // virtual key code -> character (AltCar)
} RTKeyLanguage;

RTKeyLanguage * RTSetKeyboardTables(int Index, RTKeyLanguage * Table);

80 On Time RTOS-32

RTTarget-32’s Native API

Variable size arrays of type RTKeyTable are used as generic translation tables. The first entry’s Value
member must have the number of following value pairs. The table must be sorted on member Key.

Type RTKeyLanguage contains all lookup tables the keyboard driver needs to map keyboard scan
codes supplied by the keyboard controller to character values. Member BasedOn specifies which other
keyboard table should be used if no translation for a particular value is found. BasedOn implements a
linked list of RTKeyLanguage structures of up to 16 entries. Value -1 specifies that no other tables
should be scanned. Member Flags currently supports 2 bits: when bit 0x00000001 is set, the CapsLock
key behaves like a shift lock and applies not only to letters. If bit 0x00000002 is set, pressing a shift key
unlocks the CapsLock key. Table ScToVK is used to map device scan codes to Win32 virtual key codes.
Standard virtual key codes are declared in winuser.h. If you need to define custom virtual key codes,
use values in the range 0x0100..0xFFFE. Table VKToLower maps virtual key codes to Unicode
character values. Table VKToUpper maps virtual key codes to Unicode character values when shift is
pressed. Table AltCar is used to translate virtual key codes when the right Alt key is being held down. To
explicitly disable a key in a particular table, translate it to value 0xFFFF.

Function RTSetKeyboardTables is used to install and activate the translation tables for the keyboard
driver. Parameter Index may be in the range 0..15. Indices 0..7 are reserved for US, German, and
French, respectively, and for future extensions. They should not be used (but may be used to remove
and override a predefined language). It is recommended to install custom keyboard mappings on higher
indices such as 15 or 11. After installation, different languages can be activated by calling RTSet-
Flags(Index << 8, 1); or by pressing Ctrl-Alt-Fx, where the x is Index+1. The function’s return value is a
pointer to the previously installed language structure on the specified index.

Function RTSetCodepageTranslation

Function RTSetCodepageTranslation installs a translation table to map Unicode character values to
8-bit ASCII values:

 void RTSetCodepageTranslation(RTKeyTable * Table);

Unicode values not found in the table will merely be truncated to 8 bits. By default, functions ReadCon-
soleInputA and PeekConsoleInputA use code page 437 (OEM code page) mapping, just like Windows
NT/2000. However, RTPEG-32 will change the input code page to 1252 (ANSI), which is largely
identical to Unicode.

Function RTInitMouse

Function RTInitMouse installs and initializes RTTarget-32’s mouse driver. This driver supports Microsoft
compatible serial and PS/2 mice. It does not display a mouse cursor on the screen, but merely
generates mouse events in the program’s console event queue:

void RTInitMouse(int PortIOBase, int PortIRQ,
 int DoubleClickSpeed,
 int ScaleX, int ScaleY);

Parameters:

PortIOBase The port I/O address of the serial port used by the mouse. For standard ports, you
should use 3F8h (COM1), 2F8h (COM2), 3E8h (COM3), or 2E8h (COM4). For a
PS/2 mouse, this parameter must be -1.

PortIRQ The interrupt request line of the serial port. Typical values are 4, 3, 4, and 3 for the
ports COM 1, 2, 3, and 4, respectively. PS/2 mice always use IRQ 12; thus, RTInit-
TextMouse ignores this value for PS/2 mice.

DoubleClickSpeed Maximum number of milliseconds between left button clicks to form a double click.
This value may be zero. In this case, a default value of 300 is used.

ScaleX The factor by which raw horizontal mouse motion is multiplied. Large values cause
fast mouse motion.

ScaleY The factor by which raw vertical mouse motion is multiplied. Large values cause
fast mouse motion.

Part I RTTarget-32 81

Chapter 7 RTTarget-32 Library

Please see section Console Input Event Management later in this chapter for information on how mouse
and keyboard events are processed by RTTarget-32.

All RTPEG-32 and MetaWINDOW demo programs use the mouse driver.

Function RTInitTextMouse

Function RTInitTextMouse installs and initializes RTTarget-32’s mouse driver. Unlike RTInitMouse, this
driver also displays a text mode mouse cursor if the program uses console I/O functions to write to the
screen:

void RTInitTextMouse(int PortIOBase, int PortIRQ,
 int DoubleClickSpeed,
 int ScaleX, int ScaleY,
 char PointerChar,
 unsigned char PointerColor);

Parameters:

PortIOBase The port I/O address of the serial port used by the mouse. For standard ports, you
should use 3F8h (COM1), 2F8h (COM2), 3E8h (COM3), or 2E8h (COM4). For a
PS/2 mouse, this parameter must be -1.

PortIRQ The interrupt request line of the serial port. Typical values are 4, 3, 4, and 3 for the
ports COM 1, 2, 3, and 4, respectively. PS/2 mice always use IRQ 12; thus, RTInit-
TextMouse ignores this value for PS/2 mice.

DoubleClickSpeed Maximum number of milliseconds between left button clicks to form a double click.
This value may be zero. In this case, a default value of 300 is used.

ScaleX The factor by which raw horizontal mouse motion is divided. Large values cause
slow mouse motion. If set to zero, the default of 3 is used.

ScaleY The factor by which raw vertical mouse motion is divided. Large values cause slow
mouse motion. If set to zero, the default of 8 is used.

PointerChar The character value to represent the mouse pointer. Zero will produce a blank
pointer.

PointerColor The screen attribute of the mouse pointer. Zero will produce a black mouse pointer.

Please see section Console Input Event Management later in this chapter for information on how mouse
and keyboard events are processed by RTTarget-32.

The Turbo Vision example included with RTTarget-32 demonstrates how to use this text mode mouse
driver.

Function RTSetMousePos
RTSetMousePos informs the mouse driver of a new pointer position:

void RTSetMousePos(int Y, int Y);

The mouse driver will prevent the cursor from having negative coordinates, but if RTInitMouse was used
to initialize the mouse, the driver does not know the screen resolution and thus cannot prevent the
mouse cursor from leaving the screen. Use RTSetMousePos() to bring the mouse cursor back onto the
screen. The application will usually not need this function. For MetaWINDOW, RTGetMetaWEvents()
calls RTSetMousePos() whenever required. For RTPEG-32, the internal event manager also uses it.

Function RTMouseDone
Once the mouse driver initialized with RTInitMouse is no longer needed, RTMouseDone must be called
to disable interrupts on the serial port or PS/2 port used and to restore the original interrupt vector:

void RTMouseDone(void);

Function RTTextMouseDone

This function is identical to RTMouseDone().

82 On Time RTOS-32

RTTarget-32’s Native API

Function RTMakeBootDisk
RTMakeBootDisk can create a bootable diskette or hard disk:

int RTMakeBootDisk(char LogicalDrive,
 int BIOSDevice,
 const char * RTBFileName,
 char * Buffer,
 int BufferSize,
 DWORD Flags);

RTMakeBootDisk requires On Time’s embedded file system RTFiles-32 and is not included in RTTarget-
32’s preconfigured system DLL RTT32DLL.DLL.

Parameter LogicalDrive specifies the disk drive from which to boot. The new boot image file (.RTA file)
will be created in the root directory of that drive.

Parameter BIOSDevice specifies the physical device identification used by the BIOS for the device at
boot time. If this parameter is set to -1, RTMakeBootDisk will choose an appropriate default. If Logical-
Drive is ’A’ or ’B’, BIOSDevice is set to 0 (the first diskette drive). For all other drives, BIOSDevice is set
to 80h (the first hard disk).

Parameter RTBFileName points to the file name of the RTB file to install on the bootable drive.

Parameter Buffer must point to a temporary buffer to be used as a disk buffer by RTMakeBootDisk. It
should have a size of at least 8k (larger sizes may improve performance for large .RTB files).

Parameter BufferSize specifies the size in bytes of the buffer referenced by parameter Buffers.

Parameter Flags can be zero or specifies options for the function. Currently, only the following option is
defined:

RT_BDISK_DEL_RTA RTMakeBootDisk should delete all .RTA files it finds on the target drive before
the new .RTA file is created. If not specified, existing RTA files are erased at
the end of the operation.

The function return value can be one of the following:

RT_BDISK_SUCCESS The new boot image was installed successfully.

RT_BDISK_OUT_OF_MEM The supplied buffer is too small.

RT_BDISK_INVALID_RTB The RTB file is invalid or was produced with an older version
of RTTarget-32.

RT_BDISK_ERROR_OPEN_DEVICE RTFiles-32 reported an error on the attempt to open a drive
file for the target drive.

RT_BDISK_NO_BOOT_CODE The RTB file or the target drive contain no valid boot code.

RT_BDISK_ERROR_CREATING_RTA RTMakeBootDisk was unable to create the boot image file on
the target drive. This can happen when there is insufficient
disk space on the target drive. Flag RT_BDISK_DEL_RTA
may be able to fix this problem.

RT_BDISK_NOT_CONTIGUOUS The boot image file is not contiguous. This error should never
occur.

RT_BDISK_INVALID_SECTOR_SIZE The target drive has a sector size other than 512.

RT_BDISK_ERROR_WRITE- RTMakeBootDisk was unable to write the new boot sector to
_BOOT_SECTOR disk.

RT_BDISK_OLD_RTB The RTB file is invalid or was produced with an older version
of RTTarget-32.

RT_BDISK_INVALID_BOOT_CODE The boot code found in the .RTB file is corrupted.

RT_BDISK_RTB_NOT_FOUND RTMakeBootDisk was unable to open the given .RTB file.

Part I RTTarget-32 83

Chapter 7 RTTarget-32 Library

RT_BDISK_UNSUPPORTED RTMakeBootDisk is not supported because it was built without
RTFiles-32.

When flag RT_BDISK_DEL_RTA is not specified, RTMakeBootDisk guarantees that the new program is
properly installed or, in case of an error, any previously existing boot image is still bootable. With flag
RT_BDISK_DEL_RTA set, the disk may be left in an unbootable state when the function fails. In
particular, the following steps are performed:

• If no backup boot sector is present and the currently installed boot sector is not an RTTarget-32
boot sector, the boot sector is saved as file BOOTSECT.RTT on the target drive.

• If flag RT_BDISK_DEL_RTA is set, the backup copy of the boot sector is installed (if present) and
all .RTA files in the target drive’s root directory are deleted. If the boot sector backup is present, the
disk would now boot its original operating system, or if the backup boot sector is not present, any
attempt to boot from the disk would fail.

• A temporary file to receive the boot image is created in the root directory of the target drive and is
written.

• If not done already, all .RTA files in the target drive’s root directory are deleted.

• The temporary file with the boot image is renamed to the RTB file’s name with extension .RTA
instead of .RTB.

• If the boot image was written successfully, the new boot sector is written to the disk.

Function RTRestoreBootSector
Function RTRestoreBootSector can restore a previously saved boot sector on an RTTarget-32 boot
disk:

int RTRestoreBootSector(char LogicalDrive);

RTRestoreBootSector requires On Time’s embedded file system RTFiles-32.

Parameter LogicalDrive specifies the drive letter of the drive containing the RTTarget-32 boot disk.

This function will only succeed if file BOOTSECT.RTT is present on the target drive. This file is created
by function RTMakeBootDisk or RTTarget-32 command line utility BOOTDISK.EXE if a
non-RTTarget-32 boot sector is found.

Function RTRestoreBootSector can return any of the following error codes as described in the previous
section:

RT_BDISK_SUCCESS
RT_BDISK_NO_BOOT_CODE
RT_BDISK_ERROR_OPEN_DEVICE
RT_BDISK_ERROR_WRITE_BOOT_SECTOR

Function RTPrinterSetIOBase
Function RTPrinterSetIOBase defines the I/O port address of a parallel (Centronics) port:

BYTE RTPrinterSetIOBase(int Port, WORD IOBase);

Parameter Port must be one of the values RT_LPT1, RT_LPT2, RT_LPT3, or RT_LPT4. When this
function is never called for a parallel port, RTTarget-32 defaults to I/O port address 378h, 278h, and
3BCh, respectively. There is no default address for RT_LPT4.

The function return value is the printer’s status. See function RTPrinterStatus for details.

Function RTPrinterInit
RTPrinterInit resets and initializes a printer:

BYTE RTPrinterInit(int Port);

Parameter Port must be one of the values RT_LPT1, RT_LPT2, RT_LPT3, or RT_LPT4. The function
return value is the printer’s status. See function RTPrinterStatus for details.

84 On Time RTOS-32

Serial I/O Functions

Function RTPrinterStatus
Function RTPrinterStatus returns the current status of a printer:

BYTE RTPrinterStatus(int Port);

Parameter Port must be one of the values RT_LPT1, RT_LPT2, RT_LPT3, or RT_LPT4.

The return value is a standard BIOS parallel port status byte. The following bits can be set:

RT_LPT_READY The printer is ready.

RT_LPT_ACK The printer has acknowleged data.

RT_LPT_OUT_OF_PAPER The printer is out of paper.

RT_LPT_SELECTED The printer is selected.

RT_LPT_IO_ERROR An error occurred sending to the printer. This error is also returned if the
parallel port is not installed.

RT_LPT_TIMEOUT A timeout error occured while sending data to the printer.

Function RTPrintByte
Function RTPrintByte sends a byte of data to a parallel (Centronics) port:

BYTE RTPrintByte(int Port, BYTE Data, DWORD Timeout);

Parameter Port must be one of the values RT_LPT1, RT_LPT2, RT_LPT3, or RT_LPT4, which
RTTarget-32 maps to I/O port address 378h, 278h, and 3BCh, respectively. There is no default address
for RT_LPT4. If you need a fourth parallel port, you can use RT_LPT4 only after having called RTPrin-
terSetIOBase(RT_LPT4, ...);

Parameter Data is the byte to output to the printer. Parameter Timeout specifies in milliseconds how
long the function should wait for the printer not to signal busy before returning a timeout error.

The function return value is the printer’s status, see function RTPrinterStatus for details.

Serial I/O Functions
Since many embedded systems applications require serial I/O, RTTarget-32 supplies functions for this
purpose. Module RTTCOM has the following features:

• Asynchronous, interrupt-driven send and receive.

• Arbitrary send and receive buffer sizes.

• Up to four ports can be handled simultaneously.

• Supports XOn/XOff, RTS/CTS, and DTR/DSR handshake.

• Automatically detects 16550 UARTs and supports their internal FIFO buffer.

• Full control over all modem control lines.

RTTCOM can work with 8250, 16450, 16550 and compatible UART chips. It expects an 8259A compat-
ible interrupt controller at port address 20h. If IRQs greater 7 are used, a slave interrupt controller is
assumed at port address A0h.

RTTCOM’s functions are described in the following sections. Prototypes for all of them are given in
header file RTTCOM.H.

If you use RTKernel-32 with RTTarget-32, RTTarget-32’s RTTCOM should not be used. RTKernel-32’s
module RTCOM is optimized for serial communication in a real-time multitasking environment.

Demo program SERDEMO.C demonstrates how to use RTTCOM.

Part I RTTarget-32 85

Chapter 7 RTTarget-32 Library

Function RTInitCOMPort
RTInitCOMPort initializes a port and prepares it for communication:

void RTInitCOMPort(int Port,
 int IOBase,
 int IRQ,
 int Baudrate,
 int Parity,
 int StopBits,
 int WordLength,
 int ReceiveBufferSize,
 int SendBufferSize,
 int Protocol);

Parameters:

Port RT_COM1 .. RT_COM4 (0 .. 3).

IOBase Any 16-bit integer. The array RTDefaultCOMIOBase can be used for ’standard’
ports.

IRQ 0 .. 15. The array RTDefaultCOMIRQ can be used for ’standard’ ports. Interrupt
sharing is only supported for port pairs COM1/COM3 and COM2/COM4. For best
performance, individual IRQs are recommended.

Baudrate 50 .. 115200. A baud rate input clock frequency of 1.8432 Mhz (the PCs default) is
assumed. If a different value is used by the target, you must scale the baud rate
accordingly. See Chapter 3, section COMPort Command for details.

Parity Values PARITY_NONE, PARITY_ODD, PARITY_EVEN, PARITY_MARK, and
PARITY_SPACE (all defined in Rttcom.h and windows.h) are supported.

StopBits Values 1 and 2 are supported.

WordLength Values 5, 6, 7 and 8 are supported.

ReceiveBufferSize Any size between 1 and 2G is supported. The buffer is allocated from the default
Win32 process heap.

SendBufferSize Any size between 1 and 2G is supported. The buffer is allocated from the default
Win32 process heap.

Protocol RT_NO_PROT, RT_XON_XOFF, RT_RTS_CTS, or RT_DTR_DSR.

Parameters IOBase, IRQ, ReceiveBufferSize, and SendBufferSize are evaluated only the first time Init-
COMPort is called for a particular port. Subsequent calls can only be used to change the UART initializ-
ation. If InitCOMPort detects a 16550 UART, its FIFO is automatically enabled at trigger level 8.

Function RTCloseCOMPort
Once a COM port is no longer used, RTCloseCOMPort should be called to disable interrupts for the port
and to restore the interrupt vector in the interrupt descriptor table.

void RTCloseCOMPort(int Port);

Parameter Port must have value RT_COM1 .. RT_COM4. The port must have been initialized previ-
ously.

If several COM ports sharing the IRQ have been initialized, it is important that RTCloseCOMPort is
called in the reverse order as RTInitCOMPort. Otherwise, interrupt vectors are not restored correctly.

Example:
RTInitCOMPort(RT_COM1, ...);
RTInitCOMPort(RT_COM3, ...);
...
RTCloseCOMPort(RT_COM3);
RTCloseCOMPort(RT_COM1);

86 On Time RTOS-32

Serial I/O Functions

Function RTSendChar
RTSendChar places a character in the send buffer and returns immediately:

void RTSendChar(int Port, Byte Data);

The function does not wait for the data to be sent. Rather, the data is sent from the send buffer by a
send interrupt as soon as the transmit register of the UART becomes empty. However, the function does
wait until space becomes available if the send buffer is full.

Function RTSendCharTimed
RTSendCharTimed is similar to RTSendChar, but a timeout for the operation can be specified:

BOOL SendCharTimed(int Port, Byte Data, int Timeout);

The function returns FALSE if the data could not be placed in the send buffer within the time given in
parameter Timeout in milliseconds. Please note that the data is merely placed in the send buffer; it is not
guaranteed to have been sent even when this function returns TRUE.

Function RTSendBlock

RTSendBlock transfers a block of data to the send buffer:
void RTSendBlock(int Port, void * Data, int Length);

Parameter Data points to the data to be transmitted. Length specifies the size of the block in bytes. This
is equivalent to

for(i=0; i<Length; i++)
 RTSendChar(P, Data[i]);

but is faster.

Function RTSendBlockTimed
RTSendBlockTimed allows specifying a timeout for a block of data to be sent:

int RTSendBlockTimed(int Port, void * Data, int Length, int Timeout);

This function returns the number of bytes placed in the send buffer without getting a timeout. If all data
was transferred to the send buffer, Length is returned. The timeout in milliseconds applies to the
complete data block.

Function RTSendBufferCount
The status of the send buffer can be enquired with this function:

int RTSendBufferCount(int Port);

RTSendBufferCount returns the number of bytes currently in the send buffer for the corresponding port.
Please note that the last byte may still be in the send shift register even if this function returns 0. To be
sure all data has been transmitted, check bit RT_TX_SHIFT_EMPTY in the Line Status register.
Example:

while (RTSendBufferCount(P) > 0)
{
 printf("waiting for the send buffer... ");
 RTWait();
}

while (!(RTLineStatus(P) & RT_TX_SHIFT_EMPTY))
 printf("waiting for the UART... ");

Function RTReceiveBufferCount
The status of the receive buffer can be enquired with this function:

int RTReceiveBufferCount(int Port);

RTReceiveBufferCount returns the number of bytes currently in the receive buffer for the corresponding
port.

Part I RTTarget-32 87

Chapter 7 RTTarget-32 Library

Function RTReceiveChar
RTReceiveChar retrieves a byte from the receive buffer:

RTCOMData ReceiveChar(int Port);

If the receive buffer is empty, this function waits until data comes in. The return value contains the actual
received data in the low byte and any error information in the high byte (see RTTCOM.H for all possible
values). If the high byte is 0, no errors have occurred. For complete error checking, use code such as
this to receive:

C = RTReceiveChar(PORT);
if ((C & 0xFF00) == 0) // No errors?
 printf("received: %c\n", C); // display received char
else // handle receive errors
 printf(RTCOMError(C)); // display receive error message

Function RTReceiveCharTimed
RTReceiveCharTimed receives data with a timeout:

RTCOMData RTReceiveCharTimed(int Port, int Timeout);

If no data is received within the given timeout, the function returns with the RT_TIMEOUT bit set in the
high byte of the return value.

Function RTCOMError
RTCOMError can be used to display error information for received data:

char * RTCOMError(RTCOMData Data);

The return value is a pointer to a string corresponding to the most severe error set in Data.

Function RTLineStatus

Function RTLineStatus queries the Line Status Register of a port:
BYTE RTLineStatus(int Port);

See the status mask constants in RTTCOM.H for all possible return values. Several bits may be set
simultaneously.

Function RTModemStatus
Function RTModemStatus queries the Modem Status Register of a port:

BYTE RTModemStatus(int Port);

See the status mask constants in RTTCOM.H for all possible return values. Several bits may be set
simultaneously.

Function RTModemControl

Function RTModemControl can change control lines of the UART:
void RTModemControl(int Port, int SetToOneZero, int NewValue);

See the status mask constants in RTTCOM.H for all possible values. If Parameter SetToOneZero == 1,
the value is "ored" with the register; otherwise, it is "not-anded".

PCI BIOS Functions
PCI I/O cards may require configuration at run-time, or software may need to query configuration infor-
mation about such cards. Protected mode PCI BIOS version 2.1 services can be used to access the PCI
configuration address space on a PCI bus.

All PCI BIOS functions made available by RTTarget-32 are declared in header file RTTBIOS.H. For
Pascal, the driver’s API is defined in unit RTTBIOS.PAS.

The PCI BIOS returns standard status codes. The following codes can be returned:

88 On Time RTOS-32

PCI BIOS Functions

RTT_BIOS_SUCCESSFUL The function succeeded.

RTT_BIOS_FNC_NOT_SUPPORTED The BIOS does not support the requested function.

RTT_BIOS_BAD_VENDOR_ID An invalid vendor ID was specified.

RTT_BIOS_DEVICE_NOT_FOUND The requested device was not found.

RTT_BIOS_BAD_REG_NUM The specified register does not exist.

RTT_BIOS_SET_FAILED The BIOS was unable to write a configuration register value.

RTT_BIOS_BUFFER_TOO_SMALL The supplied return buffer space was too small.

Additional information about the PCI BIOS is available in the PCI BIOS Specification. It can be ordered
from the PCI Special Interest Group (see http://www.pcisig.com).

Demo Program BIOSDemo demonstrates how to use PCI BIOS services.

Function RTT_BIOS_Installed
This function checks whether a PCI BIOS is installed:

DWORD RTT_BIOS_Installed(void);

If a PCI BIOS is present, a non-zero value is returned.

Function RTT_BIOS_FindDevice
This function returns the location of PCI devices that have a specific device ID and vendor ID. Given a
vendor ID, device ID and an index (N), the function returns the bus number, device number and function
number of the Nth device function whose vendor ID and device ID match the input parameters.

int RTT_BIOS_FindDevice(WORD Vendor,
 WORD DeviceID,
 int Index,
 BYTE * Bus,
 BYTE * DeviceFunc);

All devices having the same vender ID and device ID can be found by making successive calls to this
function starting with Index set to zero and incrementing it until the return code is RTT_BIOS_DEVI-
CE_NOT_FOUND. If the function succeeds, the function returns the device’s bus in *Bus, its device
number in bits 7 .. 3 of *DeviceFunc, and its function number in bits 2 .. 0 of *DeviceFunc.

Function RTT_BIOS_FindClassCode
This function returns the location of PCI devices that have a specific class code. Given a class code and
an Index (N), the function returns the bus number, device number, and function number of the Nth devi-
ce/function whose class code matches the input parameters.

int RTT_BIOS_FindClassCode(WORD ClassCode,
 int Index,
 BYTE * Bus,
 BYTE * DeviceFunc);

All devices having the same class code can be found by making successive calls to this function starting
with Index set to zero and incrementing it until the return code is DEVICE_NOT_FOUND. For return
values, see function RTT_BIOS_FindDevice.

Function RTT_BIOS_GetInterruptRouting

This function returns the PCI interrupt routing options available on the system board and information
about interrupts exclusively assigned to PCI devices:

int RTT_BIOS_GetInterruptRouting(RTT_BIOS_IRQ_ROUTING * RoutingInfo,
 WORD * Entries);

Part I RTTarget-32 89

Chapter 7 RTTarget-32 Library

Parameter RoutingInfo must point to an array of RTT_BIOS_IRQ_ROUTING structures to receive the
returned information. Parameter Entries must be initialized with the number of elements in this array.
When the function returns sucessfully, *Entries is changed to the actual number of entries returned. If
the function fails with RTT_BIOS_BUFFER_TOO_SMALL, *Entries is set to the number of entries
required to satisfy the call.

More information about this function is available in the PCI BIOS Specification.

Function RTT_BIOS_SetPCIInt
This function causes the specified hardware interrupt IRQ to be connected to the specified interrupt pin
of a PCI device:

int RTT_BIOS_SetPCIInt(BYTE PCIInt, BYTE IRQ, BYTE Bus, BYTE DeviceFunc);

Parameter PCIInt must be in the range 0 .. 3 for INTA# .. INTD#. Parameter IRQ is an IRQ number in
the range 0 .. 15.

More information about this function is available in the PCI BIOS Specification.

Function RTT_BIOS_GenSpecialCycle
This function will broadcast a PCI special cycle to all devices on the specified PCI bus:

int RTT_BIOS_GenSpecialCycle(BYTE Bus, DWORD Data);

More information about this function is available in the PCI BIOS Specification.

Function RTT_BIOS_ReadConfigData
This function allows reading individual bytes, words, or dwords from the configuration space of a specific
device:

int RTT_BIOS_ReadConfigData(BYTE Bus,
 BYTE DeviceFunc,
 int Register,
 int Width,
 void * Value);

Parameter Width may be 1, 2, or 4 for byte, word or dword access. Parameter Register must be divisible
by Width and cannot be larger than 255. If the function succeeds, the read data is returned at *Value.

Function RTT_BIOS_WriteConfigData
This function allows writing individual bytes, words, or dwords into the configuration space of a specific
device:

int RTT_BIOS_WriteConfigData(BYTE Bus,
 BYTE DeviceFunc,
 int Register,
 int Width,
 DWORD Value);

Parameter Width may be 1, 2, or 4 for byte, word or dword access. Parameter Register must be divisible
by Width and cannot be larger than 255.

Plug-and-Play BIOS Functions
Plug-and-play I/O cards may require configuration at run-time, or software may need to query configur-
ation information about such cards. 16-bit protected mode PnP BIOS services can be used for this
purpose.

All PnP BIOS functions made available by RTTarget-32 are declared in header file RTTPNP.H. For
Pascal, the driver’s API is defined in unit RTTPNP.PAS.

Important (multithreaded programs only): if an RTKernel-32 program uses any PnP BIOS functions, the
CPU driver CPU386 must be used instead of the default driver CPU386F. This is required because the
PnP BIOS reloads segment registers with selectors referring to 16-bit segments. This is not supported
by the default CPU386F driver.

90 On Time RTOS-32

PC Cards (PCMCIA)

Details about the Plug-and-Play BIOS are available in the Plug-and-Play BIOS Specification freely
available from Compaq Computer Corporation, Phoenix Technologies Ltd., or Intel Corporation, as well
as Microsoft’s MSDN Library.

Function RTT_PNP_Installed
This function checks whether a PnP BIOS is installed:

int RTT_PNP_Installed(void);

This function will return a non-zero value if the BIOS has protected mode PnP BIOS support, and zero
otherwise.

Function RTT_PNP_CallPnPBIOS
This function performs a PnP BIOS call:

int RTT_PNP_CallPnPBIOS(void * Data, WORD DataSize, WORD Parameters[]);

Parameter Data can point to a data buffer through which the BIOS and the application can exchange
information. All data to which pointers are passed to the BIOS must be located in this data area.
Parameter DataSize specifies the size of this buffer. RTTarget-32 will create an appropriate 16-bit
segment spanning the data to be passed to the 16-bit BIOS.

The array Parameters must contain the WORD parameters to be passed to the BIOS in the order they
appear in the BIOS function declaration. 16-bit FAR pointers must be expanded to offset:segment
values according to the following rules: The segment to parameters in *Data is RTT_PNP_STUB16DS.
Their offset is the offset relative to *Data. Parameter BiosSelector is RTT_PNP_BIOS16DS.

An example to call PnP BIOS function 0 (GetSystemNodes) follows. The PnP BIOS Specification
declares function 0 as:

int FAR (*entryPoint)(Function, NumNodes, NodeSize, BiosSelector);

int Function; // PnP BIOS Function 0
unsigned char FAR *NumNodes; // Number of nodes the BIOS will return
unsigned int FAR *NodeSize; // Size of the largest device node
unsigned int BiosSelector; // PnP BIOS readable/writable selector

Thus, a total of 6 WORD parameters are required (each 16-bit far pointer
needs two 16-bit values. The parameters need to be filled as follows:

P[0] = 0; // function number is zero
P[1] = RTT_STRUCT_OFS(WorkSpace, Nodes); // offset Nodes
P[2] = RTT_PNP_STUB16DS; // seg Nodes
P[3] = RTT_STRUCT_OFS(WorkSpace, Size); // offset Size
P[4] = RTT_PNP_STUB16DS; // seg Size
P[5] = RTT_PNP_BIOS16DS; // BIOS data selector

where WorkSpace is defined as:
struct {
 WORD Nodes;
 WORD Size;
} WorkSpace;

The BIOS can then be called with:

Result = RTT_PNP_CallPnPBIOS(&WorkSpace, sizeof(WorkSpace), P)

Demo program BIOSDemo demonstrates how to call the PnP BIOS and contains additional examples of
using function RTT_PNP_CallPnPBIOS.

PC Cards (PCMCIA)
RTTarget-32 supports one or two Intel 82365SL compatible PC card controllers with one to four
PCMCIA card slots. RTTarget-32 has functions to detect card status changes (e.g., card removal or
insertion), identify a card type, and to map its resources into the computer’s address space. Currently,
only 16-bit PC Cards are supported (no 32-bit Cardbus Cards).

Part I RTTarget-32 91

Chapter 7 RTTarget-32 Library

Nevertheless, RTTarget-32 is not a plug-and-play operating system. RTTarget-32 has no built-in support
for resource allocation and management. Applications must ensure that PC Cards are mapped in such a
way that no resource conflicts occur.

Applications to support PCMCIA PC Cards must perform the following actions:

• React to card insertion/removal events passed to the application through a callback of the PCMCIA
driver.

• Initialize and power-up a card.

• Read information from the card’s configuration space memory to identify the card type.

• Allocate I/O port addresses or memory addresses as well as an IRQ to the card.

• Configure the device driver to handle the card.

RTTarget-32 demo programs PCCard and PCCardMT (for multithreaded applications) show how to do
this. In multithreaded programs, it is strongly recommended to set up a separate thread to perform these
steps. Single threaded programs must poll for and react to insertion/removal events periodically.

The PCMCIA driver is not reentrant. Thus, the steps outlined above may be performed only by a single
thread and they must not be performed by interrupt handlers. In particular, the PCMCIA driver’s callback
to signal insertion/removal events is called by an interrupt handler and thus cannot perform card
configuration. Rather, the callback handler must record the event and inform a separate thread or the
main program’s event loop to process the event at a later time.

The PCMCIA driver needs some address space to map a card’s Configuration Information Space (CIS)
into the computer’s address space. If paging is enabled, such a region with a size of 4k can be allocated
automatically by the driver. However, it is frequently desirable to assign a fixed address. This can be
achieved by allocating a suitable region named PCMCIA in the RTLoc configuration file. Example:

Region PCMCIA C8000h 4k Device ReadWrite

Such a PCMCIA region must be located below 16M and must have at least 4k size. You can choose any
address not used for any other purpose (in particular, it should be an address with no associated RAM,
ROM, or other device).

If the PCMCIA controller is a PCI cardbus controller, the RTTarget-32 PCMCIA driver also requires
memory to map the controller’s registers into the computer’s address space. If paging is used, such a
region with 4k size per PCMCIA slot can be allocated automatically. However, it is frequently desirable
to assign a fixed address. This can be achieved by allocating a suitable region named CARDBUS in the
RTLoc configuration file. Example:

Region CARDBUS 3G 8k Device ReadWrite

Such a CARDBUS region must have a size of at least 4k (8k for supporting two sockets). You can
choose any address not used for any other purpose (in particular, it should be an address with no asso-
ciated RAM, ROM, or other device).

All data structures, constants, and functions made available by the PCMCIA driver are declared in
header file RTPCMCIA.H. For Pascal, the driver’s API is defined in unit RTPCMCIA.PAS.

More information about PC Cards and PCMCIA are available in the PC Card Standard available from
the Personal Computer Memory Card International Association, 2635 North First Street, Suite 209, San
Jose, CA 95134, USA, http://www.pc-card.com.

Function RTPCInit

Function RTPCInit initializes the PCMCIA driver and determines the type of controller installed. It must
be called exactly once before the driver can be used:

int RTPCInit(int IRQ, int IOBase, int Sockets, RTPCCardEventHandler Handler);

Parameter IRQ specifies the IRQ the driver should use to signal insertion/removal events. Any value
except 0 can be specified. A value typically used on many PCs is 5.

Parameter IOBase defines the first of two I/O port addresses used by the PCMCIA controller. If 0 is
specified, the default value 3E0h is assumed.

92 On Time RTOS-32

PC Cards (PCMCIA)

Parameter Sockets specifies the number of sockets supported by the controller. This parameter may be
1, 2, or 4.

Parameter Handler is the address of a callback handler function which the PCMCIA driver will call
whenever a card status change event is detected. The handler must be defined as:

void RTTAPI RTPCCardEventHandler(int Socket, BYTE Event);

When an event is detected, the handler will be called with parameter Socket containing the zero-based
number of the socket that has caused the event. Parameter Event can have any of the following bits set,
possibly several simultaneously:

RTPC_BATTERY_DEAD The battery dead signal of the card has changed state.

RTPC_BATTERY_WARN The battery low warning state of the card has changed.

RTPC_READY The card’s ready signal has changed state.

RTPC_CARD_DETECT A card has been inserted or removed.

The handler is called from an interrupt handler with interrupts enabled. The handler may not call any
PCMCIA driver functions. Instead, it should record the event or signal a thread to enable the event to be
processed later.

Applications that do not need to process events may set the Handler parameter to NULL.

If this function succeeds, a value identifying the PCMCIA controller found is returned. If the return value
is 0, no controller was detected.

Function RTPCShutDown
This function may be used to unmap any currently active cards and to uninstall the PCMCIA driver’s
interrupt handler:

void RTPCShutDown(void);

Function RTPCCardPresent
RTPCCardPresent may be called to check if a card is fully inserted in a card slot:

int RTPCCardPresent(int Socket);

The function returns a non-zero value if the specified socket (zero-based) holds a card.

Function RTPCPowerUp
Function RTPCPowerUp resets a card and applies power:

int RTPCPowerUp(int Socket);

If the card has already been powered up, this function returns TRUE immediately without accessing the
card. Otherwise, power is applied and the function waits until the card signals that it is ready. The
complete power-up sequence can take up to about one second, depending on the type of card.

If the card signals ready within one second, the return value is TRUE; otherwise, it is FALSE.

Function RTPCGetFunctionID
Function RTPCGetFunctionID reads the function identifier from the card’s CIS:

int RTPCGetFunctionID(int Socket);

The card must have been powered up successfully before this function can be called. The following
function IDs can be returned:

RTPC_FUNCID_MEMORY The card is a memory card.

RTPC_FUNCID_SERPORT The card is a serial port or modem.

RTPC_FUNCID_PARPORT The card is a parallel port.

RTPC_FUNCID_FDISK The card is a hard disk (but not necessarily ATA).

RTPC_FUNCID_VIDEO The card is a video card.

Part I RTTarget-32 93

Chapter 7 RTTarget-32 Library

RTPC_FUNCID_NETWORK The card is a network adapter.

In case of an error, the following values can be returned:

RTPC_BAD_SOCKET The given socket number is invalid. Parameter Socket is a zero-based
index of the socket to be addressed.

RTPC_NO_CARD The card has been removed.

RTPC_NO_MORE_ITEMS The card’s information space does not contain a function ID tuple. The card
is probably defect.

Function RTPCGetFirstTuple

RTPCGetFirstTuple searches a data tuple in a card’s Configuration Information Space (CIS):
int RTPCGetFirstTuple(int Socket,
 BYTE DesiredTuple,
 RTPCTupleInfo * Handle,
 BYTE * Tuple);

Parameter DesiredTuple is the tuple identifier to look for. If this parameter is set to RTPC_CISTPL_A-
NYTUPLE (FFh), the first tuple of the CIS will be returned.

Parameter Handle must point to a variable of type RTPCTupleInfo. The function stores housekeeping
information here. Do not access any data stored here.

If the function succeeds, the tuple found is stored at *Tuple and the function return value is RTPC_SUC-
CESS. If it fails, the return value is one of the error codes RTPC_BAD_SOCKET, RTPC_NO_CARD,
RTPC_NO_MORE_ITEMS (see previous section for details).

Function RTPCGetNextTuple

RTPCGetNextTuple searches subsequent data tuples in a card’s CIS. You must call RTPCGet-
FirstTuple before this function can be used:

int RTPCGetNextTuple(int Socket,
 BYTE DesiredTuple,
 RTPCTupleInfo * Handle,
 BYTE * Tuple);

Parameter DesiredTuple is the tuple identifier to look for. If this parameter is set to RTPC_CISTPL_A-
NYTUPLE (0xFF), the next tuple in the CIS will be returned.

Parameter Handle must point to a variable or type RTPCTupleInfo which must have been initialized by a
previous call to RTPCGetFirstTuple or RTPCGetNextTuple.

If the function succeeds, the tuple found is stored at *Tuple and the function return value is RTPC_SUC-
CESS. If it fails, the return value is one of the error codes RTPC_BAD_SOCKET, RTPC_NO_CARD,
RTPC_NO_MORE_ITEMS (see previous sections for details).

Function RTPCGetTupleData

RTPCGetTupleData retrieves the data of a tuple previously located with RTPCGetFirstTuple or
RTPCGetNextTuple:

int RTPCGetTupleData (int Socket,
 RTPCTupleInfo * Handle,
 void * Data,
 int MaxDataLen,
 int * Len);

Parameter Handle must point to an RTPCTupleInfo structure previously initialized by a successfull call
to RTPCGetFirstTuple or RTPCGetNextTuple. Parameter Data points to a data buffer to receive the
tuple. MaxDataLen specifies the length of the supplied buffer. If the function succeeds, the length of the
tuple is returned in *Len and the function return value is RTPC_SUCCESS. If it fails, the return value is
one of the error codes RTPC_BAD_SOCKET, RTPC_NO_CARD, RTPC_NO_MORE_ITEMS (see
previous sections for details).

94 On Time RTOS-32

PC Cards (PCMCIA)

More information about the structure of CIS tuples is available in the PCMCIA Standard.

Function RTPCSetConfigRegister
Function RTPCSetConfigRegister sets a register in a card’s CIS to a specific value:

int RTPCSetConfigRegister(int Socket, int Register, BYTE Value);

At least the Option Config Register (register 0) must be set before a card can be used. Standard CIS
configuration registers (defined in RTPCMCIA.H) are:

#define RTPC_CFGREG_OPTION 0
#define RTPC_CFGREG_STATUS 1
#define RTPC_CFGREG_PIN_REPLACE 2
#define RTPC_CFGREG_SOCKET_COPY 3

Complex cards may define additional registers.

This function must parse the CIS to find the register. If parsing the CIS fails, the function returns one of
the error codes RTPC_BAD_SOCKET, RTPC_NO_CARD, RTPC_NO_MORE_ITEMS. If the function
succeeds, RTPC_SUCCESS is returned.

Function RTPCUnmapCIS
When an aplication has finished analyzing the CIS, the CIS memory window should be unmapped:

void RTPCUnmapCIS(int Socket);

Functions RTPCGetFirstTuple, RTPCGetNextTuple, RTPCGetTupleData, and RTPCSetConfigRegister
will map the CIS into the computer’s address space as needed, so there is no call to explicitly map the
CIS.

When the CIS of the specified socket is not currently mapped, this function has no effect.

Function RTPCMapMemoryWindow
Function RTPCMapMemoryWindow maps a memory region of the PC card into the computer’s address
space:

void * RTPCMapMemoryWindow(int Socket,
 int Window,
 void * HostAddress,
 DWORD CardAddress,
 DWORD Size);

Parameter Window must be in the range 0 to 3. Although PCMCIA controllers support five memory
windows, the last window is reserved by the driver to map the card’s CIS. Parameter HostAddress
points to the address of the window in the computer’s address space. The application must initialize this
value to a suitable location (i.e., an address not currently in use by any installed memory or device). If
this value is initialized to NULL and paging is enabled, function RTPCMapMemoryWindow will allocate a
suitable region of uncommitted memory. Parameter CardAddress is the address of the memory to map
in the PC card’s address space. Parameter Size specifies the window’s size in bytes. HostAddress,
CardAddress, and Size must be multiples of 4096. HostAddress + Size and CardAddress + Size must
be below 64M as the PCMCIA controller only supports 26-bit addresses.

The function returns the address of the mapped window, or NULL if the function has failed.

Function RTPCMapIOWindow
Function RTPCMapIOWindow maps I/O address space of the PC card into the computer’s I/O address
space:

void RTPCMapIOWindow(int Socket,
 int Window,
 WORD HostAddress,
 WORD CardAddress,
 WORD Size,
 BYTE Flags);

Part I RTTarget-32 95

Chapter 7 RTTarget-32 Library

Parameter Window must be 0 or 1. Parameter HostAddress is the address of the I/O window in the
computer’s I/O address space. Parameter CardAddress specifies the address in the PC Card’s I/O
address space. Parameter Size specifies the window’s size. Parameter Flags specifies additional
options for the I/O window and can be a combination of:

RTPC_IO_WINDOW_8BIT 8-bit port accesses are performed in this I/O range (default).

RTPC_IO_WINDOW_16BIT 16-bit port accesses are performed in this I/O range.

RTPC_IO_WINDOW_AUTO Automatically detect 8- or 16-bit I/O access.

RTPC_IO_WINDOW_TIMER0 Use timing register 0 (default).

RTPC_IO_WINDOW_TIMER1 Use timing register 1.

Flags value 0 is equivalent to (RTPC_IO_WINDOW_8BIT | RTPC_IO_WINDOW_TIMER0).

Function RTPCEnableIRQ

Function RTPCEnableIRQ programs the PCMCIA controller to route interrupts of an inserted card to a
specific ISA interrupt:

void RTPCEnableIRQ(int Socket, int IRQ);

Parameter IRQ specifies the interrupt to use. Only the following values are supported: 3, 4, 5, 7, 9, 10,
11, 12, 14, and 15.

Function RTPCUnmapSocket
Function RTPCUnmapSocket unmaps any memory windows, I/O windows, the CIS, and interrupts
assigned to a socket and disables the card’s power supply:

void RTPCUnmapSocket(int Socket);

This function should be called when the card is removed from a socket or when an application decides
not to support an inserted card.

Function RTPCIsATA
This function analyzes the CIS of an inserted card and returns 1 if it is an ATA or CompactFlash disk
card:

int RTPCIsATA(int Socket);

If this function returns 1, RTPCMapATA can be called to initialize the card and RTFiles-32’s IDE device
driver can work with the card.

If the card is not an ATA or CompactFlash disk, this function returns 0.

Function RTPCIsUART
This function analyzes the CIS of an inserted card and returns 1 if it is a serial port or modem:

int RTPCIsUART(int Socket);

If this function returns 1, RTPCMapUART can be called to initialize the card.

If the card is not a serial port or modem, this function returns 0.

Function RTPCMapUART

This function maps and enables all required resources to use a serial port PCMCIA card:
void RTPCMapUART(int Socket, WORD IOBase, int IRQ);

This function should be called after an application has verified that a serial port card type has been
inserted.

Parameter IOBase specifies the I/O address at which the serial port should appear. Parameter IRQ is
the interrupt to be used by the port to signal interrupts. For example, if you want to use the port as
COM2, use:

RTPCMapUART(0x2F8, 3);

96 On Time RTOS-32

PC Cards (PCMCIA)

Function RTPCMapUART’s source code is:
void RTPCMapUART(int Socket, WORD IOBase, int IRQ)
{
 RTPCSetConfigRegister(Socket, RTPC_CFGREG_OPTION, 0x41);
 RTPCUnmapCIS(Socket);
 RTPCMapIOWindow(Socket, 0, IOBase, 0x3F8, 8, RTPC_IO_WINDOW_8BIT |
 RTPC_IO_WINDOW_TIMER1);
 RTPCEnableIRQ(Socket, IRQ);
}

Function RTPCMapATA
This function maps and enables all required resources to use an ATA disk card:

void RTPCMapATA(int Socket, int DriveNumber, int IRQ);

This function should be called after an application has verified that an ATA disk card has been inserted.

Parameter DriveNumber specifies the RTFiles-32 drive number for the drive. Values 0 .. 7 are
supported. (DriveNumber / 2) specifies the IDE channel/controller and (DriveNumber % 2) specifies
whether the drive should be a master (0) or slave (1). For example, DriveNumber 3 would configure an
ATA card to be a slave drive of the second IDE channel.

The application must ensure that the requested resources are free. For example, a PCMCIA disk can
only be configured to be on the primary IDE channel if no IDE host adapter is in the system (e.g., on the
motherboard). In addition, it must be observed that not all PCMCIA ATA disks support being configured
as a slave drive. Thus, it is recommended to use DriveNumbers 0 and 2 for embedded targets without
IDE controller or DriveNumbers 2 and 4 for targets with a single IDE controller.

Parameter IRQ is the interrupt on which the disk should signal events. The default values are 14, 15, 11,
and 10 for up to four IDE controllers. If the default IRQ is not available (either in use by some other
peripheral or not supported by the PCMCIA controller), a custom value must be selected.

Important: If a custom IRQ value is used, you must also inform RTFiles-32’s IDE driver of the IRQ
used!

The following example shows how to configure a PCMCIA ATA disk as the master on the secondary IDE
channel with a custom IRQ value. The PCMCIA ATA disk has drive number 2 and can coexist with up to
two IDE disks on the primary IDE channel installed on the target’s motherboard.

#include <rttarget.h>
#include <rtpcmcia.h>
#include <rtfiles.h>

#define PCMCIA_ATA_IDX 2 // entry #2 in device list
#define PCMCIA_ATA_IRQ 10

static RTFDrvIDEData IDEDrive0Data = {0}; // master disk on moboard
static RTFDrvIDEData IDEDrive1Data = {0}; // slave disk on moboard
static RTFDrvIDEData IDEDrive2Data = {0, 0, 0, 0, 0, 0, PCMCIA_ATA_IRQ};

RTFDevice RTFDeviceList[] = {
 { RTF_DEVICE_FDISK, 0, 0, &RTFDrvIDE, &IDEDrive0Data },
 { RTF_DEVICE_FDISK, 1, 0, &RTFDrvIDE, &IDEDrive1Data },
 { RTF_DEVICE_FDISK, 2, RTF_DEVICE_REMOVABLE |
 RTF_DEVICE_NO_MEDIA |
 RTF_DEVICE_NEW_LOCK, &RTFDrvIDE, &IDEDrive2Data },
 { 0 }
};

void ConfigureDisk(int Socket)
{
 if (RTPCIsATA(Socket))
 {
 RTPCMapATA(Socket,
 RTFDeviceList[PCMCIA_ATA_IDX].DeviceNumber,
 PCMCIA_ATA_IRQ);

Part I RTTarget-32 97

Chapter 7 RTTarget-32 Library

 // tell RTFiles-32 that this disk is now available
 RTFRawSetMedia(PCMCIA_ATA_IDX, 1);
 }
}

Function RTPCMapATA’s source code is:
void RTPCMapATA(int Socket, int DriveNumber, int IRQ)
{
 static WORD DefaultPortBases[] = { 0x1F0, 0x170, 0x0F0, 0x070 };
 static BYTE DefaultIRQs[] = { 14, 15, 11, 10 };

 int Controller = DriveNumber / 2;
 int MasterSlave = DriveNumber % 2;

 // Set Socket_Copy Register (3)
 // Set to Socket_Copy register to Copy << 4 | Socket
 RTPCSetConfigRegister(Socket,
 RTPC_CFGREG_SOCKET_COPY,
 (MasterSlave << 4) | Socket);

 // Set Option Config Register (0)
 RTPCSetConfigRegister(Socket, RTPC_CFGREG_OPTION, 0x40 | 2); // config 2

 RTPCUnmapCIS(Socket);

 RTPCMapIOWindow(Socket, 0,
 DefaultPortBases[Controller],
 DefaultPortBases[0],
 8, RTPC_IO_WINDOW_AUTO);
 RTPCMapIOWindow(Socket, 1,
 DefaultPortBases[Controller] + 0x206,
 DefaultPortBases[0] + 0x206,
 2, RTPC_IO_WINDOW_8BIT);

 if ((IRQ == -1) || (IRQ == 0))
 RTPCEnableIRQ(Socket, DefaultIRQs[Controller]);
 else
 RTPCEnableIRQ(Socket, IRQ);
}

DOS Emulation
RTTarget-32 emulates only two DOS functions: Interrupt 21h, functions 25h and 35h (Set and Get
Interrupt Vector). They are provided to be able to support third-party libraries that may install interrupt
handlers using these functions.

Hardware interrupt vectors are remapped to reflect the mapping of IRQ <-> vector under RTTarget-32,
which is different than under DOS. If the application attempts to install or query a handler on vectors
08h .. 0Fh, vectors 40h .. 47h are used. Likewise, vectors 70h .. 77h are mapped to 48h .. 4Fh.

DPMI Emulation
RTTarget-32 emulates six DPMI functions: Interrupt 31h, functions 0202h, 0203h, 0204h, 0205h, 0210h,
and 0212h. They are provided in order to support third-party libraries that may install interrupt or
exception handlers using these functions. Vector remapping is done for hardware interrupt handlers just
as for DOS emulation (see above).

Win32 Emulation
To allow the compiler supplied run-time systems to be used under RTTarget-32, all Win32 functions
referenced must be supplied by RTTarget-32. Usually, these functions reside in KERNEL32.DLL,
USER32.DLL, GDI32.DLL, and some other system DLLs. RTTarget-32 supplies these functions in its
library RTT32.LIB or in the RTTarget-32 System DLL RTT32DLL.DLL.

98 On Time RTOS-32

Win32 Emulation

For all Win32 functions expecting a character string, only the ASCII versions are supplied. RTTarget-32
does not support Win32 emulation for Unicode programs. Any security attribute parameters are ignored
by RTTarget-32. Application programs may specify NULL (this is also supported by Win32).

The different areas of the Win32 API covered by RTTarget-32 are described in the following sections,
followed by a list of all supported Win32 functions.

Win32 Handles
RTTarget-32’s Win32 emulation includes functions to manage Win32 handles. Various Win32 functions
can allocate handles (e.g., CreateFile or CreateHeap). CloseHandle is normally used to close handles
and objects associated with a handle.

Handles are indirect references to an object. Several different handles can refer to a single object (for
example, when a handle was duplicated with function DuplicateHandle). RTTarget-32’s handle manager
maintains tables to keep track of the different handles in use. However, these tables have a fixed size
and thus limit the number of handles that can be open at any one time. You can adjust the number of
available handles by including the following lines in the module which links library RTT32.LIB:

#include <rttarget.h>

#define MAXHANDLES 64
#define MAXOBJECTS 64
#define MAXTYPES 32

RTW32Handle RTHandleTable[MAXHANDLES] = {{0}};
int RTHandleCount = MAXHANDLES;

RTW32Object RTObjectTable[MAXOBJECTS] = {{0}};
int RTObjectCount = MAXOBJECTS;

RTW32Types RTTypeTable[MAXTYPES] = {{0}};
int RTTypeCount = MAXTYPES;

Constants MAXHANDLES, MAXOBJECTS, and MAXTYPES define the sizes of RTTarget-32’s handle
manager. The default values are given above. MAXHANDLE defines the maximum number of handles
that can be open at any one time. Please consider that several predefined handles are opened auto-
matically (e.g., for stdin and stdout). MAXOBJECTS defines how many objects can be referenced by
handles. MAXTYPES specifies how many different object types (e.g., console file, RAM files, threads,
events, etc.) will be supported.

Function RTHandleInfo

Function RTHandleInfo can calculate the degree to which the handle tables are being used:
void RTHandleInfo(int * FreeHandles, int * FreeObjects, int * FreeTypes);

All three parameters must point to integers which will receive the number of available handles, objects,
and types, respectively.

Use this function to analyze the handle requirements of an application at run time and to adjust the
tables’ sizes appropriately.

Win32 Memory Management
RTTarget-32 defines functions for Win32’s virtual memory (VirtualAlloc, VirtualFree), Win32 heaps
(HeapCreate, HeapAlloc, etc.), and the local heap (LocalAlloc, etc.).

The Win32 memory management is implemented using one of two available RTTarget-32 memory
managers: the fixed memory manager and the virtual memory manager with uncommitted memory
support (both are described in section RTTarget-32’s Memory Managers later in this chapter). Win32
memory management normally requires uncommitted memory support, and many compilers’ run-time
systems rely on it. Thus, if the fixed memory manager is used, problems can occur if:

• The application uses several different Win32 allocation function groups (for example, Heaps and
VirtualAlloc).

• Several run-time systems are used (for example, because the main .EXE and additional DLLs with
run-time systems have been linked).

Part I RTTarget-32 99

Chapter 7 RTTarget-32 Library

In such situations, memory may be exhausted quickly with the fixed memory manager due to excessive
allocation of uncommitted memory. RTTarget-32’s virtual memory should be used in this case.

Win32 File I/O
RTTarget-32 supports RAM files (see Chapter 3, section File), LPT files, screen output via stdout and
stderr, and keyboard input via stdin through functions such as CreateFile, ReadFile, WriteFile, etc.
Screen output can be redirected to the host during software development for targets without a display
(see Chapter 7, Function RTDisplayChar).

The file searching functions FindFirstFile and FindNextFile are also available and support any RAM file.
These functions will also find any DLLs which are included in the application to support programs which
first search for DLLs before they load them. However, a DLL which is reported to exist cannot be opened
with CreateFile; it can only be loaded with LoadLibrary.

Win32 Console I/O

RTTarget-32 installs its own keyboard interrupt handler on IRQ 1 when any file I/O or console I/O
function is first called (usually through the run-time system’s startup code). Reading keyboard input will
only work if the target hardware has an IBM-PC compatible keyboard controller at the default I/O port
addresses. RTTarget-32’s keyboard interrupt handler is optimized for low interrupt latency. US, German,
and French keyboard layouts are supported. Switching keyboard layout is done using function
SetThreadLocale. The default keyboard layout is US. Example:

SetThreadLocale(MAKELCID(
 MAKELANGID(LANG_GERMAN, SUBLANG_GERMAN),
 SORT_DEFAULT));
SetThreadLocale(MAKELCID(
 MAKELANGID(LANG_FRENCH, SUBLANG_FRENCH),
 SORT_DEFAULT)),

Alternatively, the keyboard layout can be defined with the RTTarget-32 system flags (see Chapter 7,
section RTTarget-32 Flags). The keyboard driver also supports switching languages using hotkeys left
Ctrl-Alt-F1 (US), left Ctrl-Alt-F2 (German), or left Ctrl-Alt-F3 (French). Installing alternate keyboard trans-
lation tables is supported through function RTSetKeyboardTables (see Chapter 7, Function RTSetKey-
boardTables).

The default input code page used is 437 (OEM). Function RTSetCodepageTranslation (see Chapter 7,
Function RTSetCodepageTranslation) can be used to change the code page.

RTTarget-32’s keyboard driver is linked to the application by default, but it does occupy quite a lot of
memory. For targets which do not need a keyboard, it can be eliminated by including the following
function into the EXE/DLL which links RTT32.LIB:

void RTTAPI RTGetKeyEvents(void) {}

Mouse events are only available if the program has explicitly called function RTInitTextMouse() (see
section Function RTInitTextMouse).

When the program is waiting for keyboard input, RTTarget-32 will display a cursor. However, this feature
only works with a standard CRT monochrome or color display adapter. By default, this feature is auto-
matically enabled if a video RAM at address B0000h or B80000h is used. If a video controller incompat-
ible with the IBM-PC is used, but you still want to use a video RAM at those addresses, RTTarget-32
flag RT_CRT_NO_ACCESS must be set either through RTSetFlags or through a global instance of
RTTarget32Flags.

Console Input Event Management

RTTarget-32 contains a flexible user event (keyboard and mouse) management. Both the keyboard and
mouse drivers are interrupt driven. By default, the interrupt handlers will only retrieve the raw event data
from the hardware and place it in a buffer. Each time the application program checks for user input,
these buffers are processed and interpreted to build Win32 event structures (structure INPUT_RE-
CORD). Drivers under DOS or Windows work differently: they will perform this processing inside the
interrupt handler, which is one of the reasons for their poor interrupt latency.

100 On Time RTOS-32

Win32 Emulation

The advantage of RTTarget-32’s delayed event processing is a very low interrupt latency; however,
events are not always processed immediately. For example, if the application does not check for user
events for a long time, mouse movements on the screen will be erratic. If you prefer smooth mouse
movements and can tolerate higher interrupt latencies, you can instruct the drivers to process events
within the interrupt handlers (that is, immediately). This is achieved by setting the RTTarget-32 system
flags RT_KEY_BY_INTERRUPT and/or RT_MOUSE_BY_INTERRUPT using function RTSetFlags.

The Win32 event reading functions such as ReadConsoleInput will call the following RTTarget-32
function to update the event queue:

void RTProcessEvents(void);

RTProcessEvents is actually not required if both drivers run with their respective RT_KEY_BY_INTER-
RUPT and RT_MOUSE_BY_INTERRUPT flags set. However, if they are not set, the application can
also call RTProcessEvents to update the event queue and process all pending keyboard and mouse
events.

RTTarget-32 defines a few event hooks which are called on various events:
extern void (RTTAPI * RTGetMouseEvents)(void);
extern void (RTTAPI * RTSignalEvent)(void);
extern void (RTTAPI * RTWaitEvent)(void);
extern void (RTTAPI * RTNewEvents)(void);

*RTGetMouseEvents is called by RTProcessEvents to get mouse events. *RTSignalEvent is called by
interrupt handlers of the drivers to signal that RTProcessEvent should be called because new unpro-
cessed event are now available. *RTWaitEvent is called by ReadConsoleInput when no events are
available. *RTNewEvents is called by WriteConsoleInput when new INPUT_RECORD events are placed
in the event queue.

All hooks given above are initialized to point to dummy (do nothing) routines. The mouse driver will
install a routine on RTGetMouseEvents which will process any pending mouse events and write them to
the user event queue using WriteConsoleInput.

Win32 Time Management
Function GetTickCount is fully supported and returns the number of milliseconds elapsed since GetTick-
Count was first called. RTTarget-32 expects an interrupt to occur at 18.2 Hertz on IRQ 0 for this feature
to work. The RTTarget-32 boot code usually initializes the timer hardware to generate such a timer
interrupt. The interrupt handler is installed by function GetTickCount the first time it is called.

If a timer frequency other than 18.2 Hz is used, the calibration constant RTTickFactor must be assigned
the actual number of milliseconds per timer interrupt multiplied by 65536 before GetTickCount is called
the first time. Example (for a 10ms timer interrupt):

RTTickFactor = 10 * 65536;

RTTarget-32 also supports the date and time functions such as Get/SetSystemTime. Get/SetLocalTime
are identical to Get/SetSystemTime. However, after program reset, the Win32 system time must be
initialized at least once. This is achieved with Win32 function SetSystemTime. For targets equipped with
an MC146818A Real-Time Clock (which is the case for most PC-compatible systems), RTTarget-32’s
function RTCMOSSetSystemTime() can be used for this purpose.

Please note that RTKernel-32 overrides RTTarget-32’s function GetTickCount.

Win32 DLLs
RTTarget-32 supports LoadLibrary, FreeLibrary, GetModuleHandle, GetModuleFileName, and GetProc-
Address for any modules supplied in the locate process through the RTLoc DLL directive or for DLMs
loaded through a file system (see Chapter 9 for details).

GetModuleHandle will return a handle for the module containing RTT32.LIB for module names
KERNEL32.DLL and USER32.DLL (except if there are modules with these names present on the
target).

GetProcAddress only works if the .edata section of the module searched for a function has been
mapped.

Part I RTTarget-32 101

Chapter 7 RTTarget-32 Library

The entrypoints of all DLLs which are statically referenced are called before the entrypoint of the main
program is called. The entrypoints of other DLLs are called by the first call to LoadLibrary and again
when a matching FreeLibrary call occurs.

Care must be taken with repeated calls to LoadLibrary/FreeLibrary for DLLs linked into the program
image. Many run-time systems of DLLs will not release their resources (for example, allocated memory)
when FreeLibrary unloads the DLL. Repeated loading/unloading of such DLLs can quickly exhaust
memory. Some other DLLs cannot be initialized twice, because RTTarget-32 cannot bring their initial-
ized data into the state it had at boot time. Thus, it is recommended to load all required DLLs only once
without unloading them (or unload them only once at program termination).

More information about using DLLs is available in Chapter 9, Using DLLs through RTLoc and Loading
DLLs through a File System.

Win32 Exception Handling
Win32’s structured exception handling (and C++’s or Object Pascal’s exception handling which relies on
the operating system’s exception handling) are fully supported. However, by default, CPU exceptions do
not generate structured exceptions. If this is required, call RTRaiseCPUException.

Win32 Thread Local Storage (TLS)
RTTarget-32 will correctly set up any TLS data found in the main application .EXE file (not, however, in
any DLLs). In addition, Win32 functions which operate on TLS data are supported (e.g., TlsAlloc, TlsSet-
Value, Get/SetLastError, etc.).

Please note that RTTarget-32 does not contain a scheduler for multithreading. However, RTTarget-32’s
TLS management is fully compatible with RTKernel-32, which can be used to implement separate TLS
data and __thread variables for each thread.

When using DLLs in a multithread environment, it must be considered that the DLL_THREAD_ATTACH
and DLL_THREAD_DETACH events are not passed to the DllEntryPoint functions. However, you can
explicitly perform these calls with function RTDLLThreadEvent.

Win32 API Function Cross Reference
The following table summarizes the functions available and the level of functionality they offer. The
letters preceding each function name have the following meaning:

F Fully implemented. The function behaves the same as under Win32.
P Partial. A subset of the functionality is available.
D Dummy. The function does nothing and returns immediately.
A Abort. Calling the function aborts the program.

Please note that RTTarget-32’s Win32 emulation covers most file I/O functions. However, the actual
degree of support will depend on the file systems drivers installed. The list below will indicate the level of
support for RTTarget-32’s default file system configuration (console files, RAM files, and LPT files). If
additional file systems are available (e.g., RTFiles-32), most "dummy" file I/O functions will actually be
fully supported.

F CharNextA
F CharUpperBuffA
F CharToOemA
F CharUpperA
F CloseHandle
P CompareStringA
D CompareStringW
D1 CreateDirectoryA
D6 CreateEventA
P1 CreateFileA
D CreateFileW

D6 CreateMutexA
D CreateProcessA
F6 CreateThread
F DebugBreak
D6 DeleteCriticalSection
D1 DeleteFileA
D DestroyWindow
D1 DeviceIOControl
D DisableThreadLibraryCalls
F DosDateTimeToFileTime
F DuplicateHandle

102 On Time RTOS-32

Win32 Emulation

D6 EnterCriticalSection
D EnumCalendarInfoA
D EnumSystemLocales
D EnumThreadWindows
F ExitProcess
A6 ExitThread
F FatalAppExit
F FileTimeToDosDateTime
F FileTimeToLocalFileTime
F FileTimeToSystemTime
F FillConsoleOutputAttribute
F FillConsoleOutputCharacterA
F1 FindClose
F1 FindFirstFileA
F1 FindNextFileA
F15 FindResourceA
F15 FindResourceExA
F FlushConsoleInputBuffer
D1 FlushFileBuffers
D FormatMessagA
D FreeEnvironmentStringsA
D FreeEnvironmentStringsW
F FreeLibrary
D FreeResource
D GetACP
D GetActiveWindow
F GetCommandLineA
D GetCommandLineW
F GetConsoleCursorInfo
F GetConsoleMode
F GetConsoleScreenBufferInfo
D GetCPInfo
D1 GetCurrentDirectoryA
D GetCurrentProcess
D GetCurrentProcessId
D6 GetCurrentThread
D6 GetCurrentThreadId
P13 GetDateFormatA
D1 GetDiskFreeSpaceA
F GetDriveTypeA
F GetEnvironmentStrings
D GetEnvironmentStringsW
F GetEnvironmentVariableA
D GetExitCodeProcess
F1 GetFileAttributesA
D GetFileAttributesW
D GetShortPathNameA
F1 GetFileSize
F1 GetFileTime
D GetFileTitleA
F GetFileType
F1 GetFullPathNameA
D GetKeyboardType

F GetLargestConsoleWindowSize
F GetLastError
D GetLocaleInfoA
D GetLocaleInfoW
F GetLocalTime
F GetLogicalDrives
F GetModuleFileNameA
D GetModuleFileNameW
F GetModuleHandleA
F GetNumberOfConsoleInputEvents
D GetNumberOfConsoleMouseButtons
D GetOEMCP
F12 GetProcAddress
F GetProcessHeap
F GetStartupInfoA
F GetStdHandle
D GetStringTypeA
D GetStringTypeW
D GetStringTypeExA
D GetSystemDefaultLangID
D GetSystemDefaultLCID
D GetSystemInfo
D GetSystemMetrics
F GetSystemTime
D1 GetTempFileNameA
D GetThreadContext
D GetThreadLocale
F6 GetTickCount
P13 GetTimeFormatA
D GetTimeZoneInformation
F GetUserDefaultLCID
F GetVersion
F2 GetVersionExA
D1 GetVolumeInformationA
F GobalAlloc
F GlobalFree
F GlobalHandle
F GlobalLock
F GlobalMemoryStatus
F GlobalReAlloc
F GlobalUnlock
F HeapAlloc
F HeapCompact
P10 HeapCreate
F10 HeapDestroy
F10 HeapFree
F10 HeapReAlloc
F10 HeapSize
F10 HeapValidate
D6 InitializeCriticalSection
F InterlockedDecrement
F InterlockedExchange
F InterlockedIncrement

Part I RTTarget-32 103

Chapter 7 RTTarget-32 Library

F IsBadCodePtr
F IsBadReadPtr
F IsBadWritePtr
D IsValidCodePage
D IsValidLocale
D LCMapStringA
D LCMapStringW
D6 LeaveCriticalSection
F LoadLibraryA
F LoadLibraryExA
F15 LoadResource
F15 LoadStringA
F LocalAlloc
F LocalFileTimeToFileTime
F LocalFree
F LocalReAlloc
D LockFile
F15 LockResource
F lstrcmpA
F lstrcmpiA
F lstrcpyA
F lstrcpynA
F lstrlenA
P5 MessageBoxA
D1 MoveFileA
D MultiByteToWideChar
F OemToCharA
F14 OutputDebugStringA
P4 PeekConsoleInputA
F RaiseException
F4 ReadConsoleInputA
F4 ReadConsoleInputW
P1 ReadFile
F ReadProcessMemory
D RegCloseKey
D RegOpenKeyA
D RegOpenKeyExA
D RegQueryValueExA
D ReleaseMutex
D1 RemoveDirectoryA
D6 ResumeThread
F RtlUnwind
D SetConsoleCtrlHandler
F SetConsoleCursorInfo
F SetConsoleCursorPosition
D SetConsoleMode
D SetConsoleScreenBufferSize
D SetConsoleWindowInfo

D1 SetCurrentDirectoryA
D1 SetEndOfFile
D SetEnvironmentVariableA
D SetEnvironmentVariableW
D6 SetEvent
F1 SetFileAttributesA
F1 SetFilePointer
D1 SetFileTime
D3 SetHandleCount
F SetLastError
F SetLocalTime
F SetStdHandle
F SetSystemTime
P11 SetThreadLocale
F SetUnhandledExceptionFilter
D1 SetVolumeLabelA
D SHGetFileInfoA
F15 SizeofResource
F6 Sleep
D SysAllocStringLen
D SysFreeString
D SysStringLen
D SysReAllocStringLen
F SystemTimeToFileTime
F TerminateProcess
F7 TlsAlloc
F TlsFree
F TlsGetValue
F TlsSetValue
D UnhandledExceptionFilter
D UnhookWindowsHookEx
D UnlockFile
D VariantClear
D VariantCopy
D VariantCopyInd
F VirtualAlloc
F8 VirtualFree
F VirtualProtect
P8 VirtualQuery
D WaitForSingleObject
D WideCharToMultiByte
F WriteConsoleA
F WriteConsoleW
F WriteConsoleInputA
F WriteConsoleOutputA
P1 WriteFile
P9 wsprintfA

104 On Time RTOS-32

Win32 Emulation

1 The level of support for file I/O functions depends on the file system drivers installed. By default,
file I/O is supported for the console (CONIN$ and CONOUT$), RAM/ROM files, and LPT files. If
RTFiles-32 is used, the RAM file system is replaced by a real file system. RTFiles-32 fully
implements all Win32 file I/O function, even those marked D or P above.

2 GetVersionExA returns RTTarget-32’s version * 100 in dwBuildVersion. dwPlatformId is 0 and
szCSDVersion is set to "RTTarget-32". You can use GetVersionExA to check whether the program
is running under RTTarget-32 or Win32.

3 SetHandleCount is dummy and does not change the number of available handles. To change the
number of available Win32 handles, see section Win32 Handles in this chapter.

4 Only keyboard events are supported by default. Mouse events are supported only if RTTarget-32’s
mouse driver has been initialized.

5 The message is displayed on the screen. The program does not wait for any user intervention but
returns constant IDOK immediately.

6 These thread API functions are replaced and fully implemented by RTKernel-32.
7 Only 16 TLS slots are available.
8 VirtualFree is dummy for RTTarget-32’s fixed memory manager. VirtualQuery only supports the

stack region.
9 The format string is copied to the buffer without any formatting.
10 If multiple heaps are allocated, they are maintained in the same address space. The maxsize

parameter is ignored. HeapDestroy deallocates all of a heap’s allocated blocks, but it does not
decommit the memory. Such blocks can only be reused by other Win32 Heap functions.

11 SetThreadLocale does not affect threads, but the whole program. It can be used to change the
keyboard mapping between US (default) and German.

12 The target module’s .edata section must be present on the target.
13 Only the default (English/American) locale is supported. The dwFlags parameter is ignored. Format

picture parameter gg is not supported.
14 The exact action of OutputDebugStringA depends on RTTarget-32 flags

RT_DBG_OUT_TO_HOST and RT_DBG_OUT_NONE. See section Function RTSetFlags for
details.

15 The .rsrc section must be located on the target to be able to use resources.

Adding other Win32 Functions
If a program requires a Win32 function (a function defined in one of Windows’ system DLLs), and the
function is not provided by RTT32.LIB or RTT32DLL.DLL, the function must be supplied by your
program.

The following steps are required:

• Create a source file for the new function.

• Declare the function exactly as it is defined in the Windows header file.

• Implement the function.

• Implement a call stub (not required for Borland C/C++).

Example:

Suppose you need the function CharUpperA, which is not included in RTTarget-32’s library. The
following source code could be used to implement it:

#define _USER32_ // required by Microsoft C
#define _KERNEL32_ // to prevent importing this function
#include <windows.h>

Part I RTTarget-32 105

Chapter 7 RTTarget-32 Library

WINUSERAPI LPSTR WINAPI CharUpperA(LPSTR lpsz)
{
 LPSTR p = lpsz;
 while (*p)
 {
 if ((*p >= ’a’) && (*p <= ’z’))
 *p -= ’a’ - ’A’;
 p++;
 }
 return lpsz;
}

This file should be compiled and linked with your program.

For Watcom and Microsoft C, an assembler call stub is also required:
.386

EXTRN _CharUpperA@4:near
PUBLIC __imp__CharUpperA@4
PUBLIC _CharUpperA

_TEXT SEGMENT DWORD USE32 PUBLIC ’CODE’

ASSUME CS:_TEXT, DS:_TEXT

__imp__CharUpperA@4 DD offset _CharUpperA@4
_CharUpperA: JMP _CharUpperA@4

_TEXT ENDS

END

The numeric value following the at sign (@) represents the number of bytes the function expects as
parameters. The value is decimal and is usually four times the number of parameters. Function CharUp-
perA requires just one parameter, so 4 bytes are pushed onto the stack.

The call stub must be assembled and also linked to the program.

As an alternative to a call stub, it is also possible to use RTLoc’s Link command. In this case, the import
table’s call stub is used.

RTTarget-32’s Memory Managers
RTTarget-32 provides two different memory managers with different properties. Usually, RTTarget-32
will automatically select the memory manager to be used. Alternatively, you can use function RTSet-
Flags to force the use of a specific memory manager. By default, the Virtual Memory Manager is used
only if the application runs with paging enabled and uses DLLs.

The reason for two different memory managers is Win32’s requirement for uncommitted memory
support, which cannot be implemented without paging. Uncommitted memory is allocated address
space with no associated physical memory. A typical C/C++ or Pascal run-time system for Win32 imple-
ments its heap by allocating large regions of uncommitted memory which is then committed in smaller
chunks as memory is allocated by the application. The allocation of uncommitted memory is typically
performed even when no or only very little heap space is required by the application.

The following sections describe the differences between the two memory management strategies.

Fixed Memory Manager
The fixed memory manager uses exactly the virtual memory assigned to the heap by the locator. The
.LOC file can be inspected to see in which single consecutive address range the heap is located. The
fixed memory manager will not attempt to remap pages of memory. Thus, it is able to run without
paging.

Reserving uncommitted address space starts at the low end of the heap area. Reserving will succeed
even if the requested address range exceeds the available physical heap area. Committing memory will,
of course, fail if the requested address exceeds the available heap area.

Example 1:

106 On Time RTOS-32

Alternate Heap Manager RTTHeap

RTLoc has allocated a heap area of 2M size starting at address 1M. The program’s run-time system
initially reserves 4M of address space. Although 4M are not available, RTTarget-32 will allow this and
return address 1M (start of the heap area) to the run-time system. During the course of program
execution, the run-time system commits memory starting at address 1M. This will succeed until the
available heap area of 2M is exhausted.

Example 2:

The application uses a DLL which contains its own copy of the run-time system. The DLL is initialized
first and reserves 4M for application heap allocations. Then the .EXE’s startup code also reserves 4M
for the same purpose. Both calls will succeed (addresses 1M for the DLL and 5M for the .EXE), although
only 2M of physical heap space are available but 8M have now been reserved. Committing memory for
the DLL will succeed until all available physical memory is exhausted, but any attempt of the .EXE to
commit will fail, because no physical memory is present at addresses at or above 5M.

The advantages of the fixed memory manager are:

• Paging is not required.

• It is faster than the virtual memory managers, because the page table need not be scanned and no
pages are remapped.

• No memory is consumed by extending the page table due to large reserved memory areas.

Thus, the fixed memory manager is well suited for most applications not using DLLs or for programs
using only DLLs that do not contain their own run-time system (such as RTT32DLL.DLL, for example).

Virtual or Uncommitted Memory Manager
The virtual memory manager with uncommitted memory support is not limited to the address space
allocated for the heap by RTLoc. Rather, at initialization, it will completely decommit all memory in the
heap area. This is done by mapping all heap memory pages to their physical location and marking them
as inaccessible in the page table with appropriate page table attributes.

When the application’s run-time system reserves uncommitted memory, the page table is scanned for
an appropriate unused address range large enough to fulfil the request. If one is found, the address
range is then marked as reserved in the page table. This process may require the page table to grow.
Thus, only reserving address space can fail due to lack of memory.

Committing memory is implemented by mapping unused physical pages of RAM to address ranges
reserved in the previous step. Committing will fail as soon as no free physical pages of memory are
found.

The advantages of the virtual memory manager are:

• High degree of compatibility with Win32’s memory management.

• No physical memory is wasted in large uncommitted areas.

• Many large uncommitted areas of memory can be supported with only little physical memory usage
(reserving 4M of address space requires only 4k of physical memory).

The virtual memory manager is well suited for applications using one or more DLLs.

Alternate Heap Manager RTTHeap
The C/C++ heap managers included in the run-time libraries can have problems with very small heaps,
especially when RTTarget-32’s fixed memory manager is used. The run-time system will usually attempt
to preallocate a fair amount of heap space, even if the program does not make use of it. If insufficient
heap space is available, the run-time system may refuse to start up even when the available heap is
sufficiently large. Even with larger heaps, the wasted memory in reserved - but never committed -
memory blocks remains a problem.

Since many embedded systems cannot tolerate such a waste of memory, RTTarget-32 is shipped with
an alternate heap manager in library file RTTHEAP.LIB. Its use is recommended for heap sizes less
than 64k. RTTHEAP is usually not required for programs using RTTarget-32’s virtual memory manager
with uncommitted memory support.

Part I RTTarget-32 107

Chapter 7 RTTarget-32 Library

To use RTTHEAP, simply link RTTHEAP.LIB before the compiler’s run-time system libraries. For Pascal
programs, "use" unit RTTHeap as the first unit. There are no source code changes required.

RTTHeap is currently supported only for Borland and Microsoft compilers.

108 On Time RTOS-32

Running Demos with Command Line Tools

Chapter 8
Demo Programs

Numerous example programs are shipped with RTTarget-32. Each of them resides in a separate
directory under directories Demobc, Demomsvc, Demomsdev, Demowat, and Demodel for the
respective compilers Borland C/C++, Microsoft Visual C/C++ (command line tools), Microsoft Visual
Studio 6.0, Watcom C/C++, and Borland Delphi.

In addition to the source code of each example program, there are also a number of configuration files
included. These configuration files are preconfigured for five different typical target computer configur-
ations: a PC-compatible target computer with at least 2M of RAM, an i386EX based evaluation board
with 128k RAM and ROM, the AMD Élan Sc400 Evaluation Board, the AMD Élan Sc520 Evaluation
Board, and the National Semiconductor Evaluation Board for the NS486SXF microcontroller. Sections
below describe how to prepare each target to run the demos.

The demo configuration files are set up such that defining preprocessor symbol BOOT on RTLoc’s
command line will include boot code in the program build. If BOOT is not specified, the Debug Monitor is
"reserved" with command Reserve Monitor to enable the program to be run with RTRun or under the
Debug Monitor.

Running Demos with Command Line Tools
The On Time RTOS-32 installation has created shortcuts in the Start Menu to launch suitably configured
command prompts for all demos. The shortcuts will define all required environment variables (PATH and
RTTARGET) and set the current directory to the respective demo’s directory. To build the demo, follow
these steps:

• Connect the host and target with an RS232 NULL modem cable. If you do not want to use COM1
on the host, change the line "Port=COM1" in the RTTarget.ini file (click on "Edit Settings" in the On
Time RTOS-32 Start Menu folder).

• Invoke the MAKE utility that came with your compiler (MAKE for Borland/Inprise, NMAKE for
Microsoft, and WMAKE for Watcom). The makefile for each demo contains all commands to
compile, link, and relocate each demo and a Debug Monitor.

• Install the Debug Monitor on the target (see below, depends on the target type).

• Reboot the target.

• Invoke RTRun to download and execute the demo or call RTD32 to debug the program.

All demos are built to run under the Debug Monitor. To build a demo to be self-booting, relocate it using
RTLoc’s command line option -DBOOT. Example:

RTLoc -DBOOT Hello Demopc.cfg Hello.cfg
BootDisk Hello A:

All bootable demos intended to run on a standard PC can also be started from DOS with:
RTTBOOT Hello.rtb

Running Demos in Visual Studio 6.0
The On Time RTOS-32 installation has created shortcuts in the Start Menu to launch Microsoft Visual
Studio through RTTarget-32’s DBGShell program. The shortcuts load the required workspace and
project files for each demo. Please note that you must start MsDev.exe through DBGShell to be able to
use the integrated debugger. To build a demo, follow these steps:

• Connect the host and target with an RS232 NULL modem cable. If you do not want to use COM1
on the host, change the line "Port=COM1" in the RTTarget.ini file (click on "Edit Settings" in the On
Time RTOS-32 Start Menu folder).

• Set the active configuration to Target - Win32 Debug or Target - Win32 Release.

Part I RTTarget-32 109

Chapter 8 Demo Programs

• If the demo is intended to run on a standard PC, place an empty formatted diskette in drive A:.

• Build the project with the Build command.

• Install the Debug Monitor on the target (see below, depends on target type).

• Reboot the target.

• If you have selected the Debug configuration, you can use any debugging command to start a
remote debug session (e.g., Debug | Step Into). The program will be downloaded and executed. If
you are prompted to enter the program’s name, enter Debug\<project>.exe.

• If you have selected a Release configuration, the boot diskette contains the demo program as a
bootable image for any demos intended to run on a standard PC. Demos intended to boot from
ROM will generate a boot image as an Intel Hex file in the Release directory.

Preparing a Standard PC to Act as a Target
Most demos will run on a standard PC target. To install the Debug Monitor on a second PC, follow these
steps:

• Build the demo program Hello.

• For any of the command line demos, run command:
Bootdisk Monitor A:

with an empty formatted diskette in drive A:. Visual Studio projects perform this step automatically
as part of the build process.

• Reboot the target with this diskette.

• Use COM1 of the target to connect to the host.

Preparing a Standard PC to Act as a Target for GUI Demos
All RTPEG-32 demos require the target to boot into graphics mode. To install the Debug Monitor on a
second PC in graphics mode, follow these steps:

• Build the demo program PegDemo.

• For any of the command line demos, run command:
Bootdisk GraphMon A:

with an empty formatted diskette in drive A:. Visual Studio projects perform this step automatically
as part of the build process.

• Reboot the target with this diskette.

• Use COM1 of the target to connect to the host.

Preparing the AMD Élan SC400 Evaluation Board
If you intend to use the Élan SC400 Evaluation Board, you must first install the Debug Monitor on the
board using the following steps:

• Build the demo program HelloSc400.

• Program MonSc400.hex into a 128k EPROM and place it in the DIP socket.

• Configure the board to connect ROMCS0 to the DIP socket.

• Use COM1 of the Eval Board to connect to the host.

Preparing the AMD Élan SC520 Evaluation Board
If you intend to use the Élan SC520 Evaluation Board, you must first install the Debug Monitor on the
board using the following steps:

• Build the demo program HelloSc520.

110 On Time RTOS-32

Preparing the NS486 Evaluation Board

• Program MonSc520.hex into a 256k EPROM and place it in the BIOS DIP socket.

• Configure the board to connect ROMCS0 to the BIOS DIP socket (this is the default).

• Use COM2 of the Evaluation Board to connect to the host. COM1 is configured to be RS422 by
default and is therefore not suitable for communication with a RS232 port of the host.

Preparing the NS486 Evaluation Board
If you intend to use the NS486SXF Evaluation Board, you must first install the Debug Monitor on the
board using the following steps:

• Build the demo program NSHello.

• Install jumper W2 on the Evaluation Board. The monitor needs interrupt-driven serial I/O on the
DEBUG COM port.

• Use the DEBUG COM port to connect to the host.

• Run the Flashldr program supplied with the board and execute the following commands:
program nsmon.hex
vector=0FFFF0000p
setboot nsmon
boot nsmon
exit

Program Hello
Hello is the simplest of all demo programs. It contains a single printf statement to display the string
"Hello, RTTarget-32!" on the screen. You can use it to verify that RTTarget-32 is correctly installed and
configured on your system.

Program Hello2
Hello2 performs the same task as Hello. However, the program does not rely on the run-time system.
Instead, low-level RTTarget-32 functions are used to display a string on the screen. Since Hello2 uses
no run-time system functions (such as screen or file I/O, the heap, etc.), Hello2 is linked without the run-
time system and RTTarget-32’s simplified startup code C0RTT.OBJ is used. The make file contains the
complete command lines to compile and link Hello2. Please note that although Hello and Hello2 do the
same thing, Hello2 requires much less memory.

The Delphi version of Hello2 does not actually eliminate the run-time system. Rather, the program
shows how to access RTTarget-32’s native API from a Pascal program.

Program SerInt
Program SerInt demonstrates how to install a hardware interrupt handler with RTTarget-32. As an
example, this program installs a very simple interrupt handler to receive data on serial port COM2.

Since most Win32 compilers lack support for interrupt handling (because interrupts are not supported for
application programs by Win32), the low-level interrupt thunk is written in assembler and included in
SERISR.ASM or provided as inline assmebler code for Delphi and Microsoft C. It contains a little
function named _ASMHandler which saves all registers, loads ES and DS, and then calls the high-level
handler written in C (respectively Pascal). The high-level handler will read the byte received from the
UART chip and place it in a buffer.

The main program continually checks whether the user has requested program termination by pressing
Escape on the keyboard, or whether data has been received on COM2.

Programs using RTKernel-32 should not handle interrupts by the method described in this demo.
Rather, they should use RTKernel-32’s interrupt API demonstrated in program RTKInt.

The program is kept very simple and lacks many features of high-performance serial I/O applications.
However, it is a good example of interrupt processing under RTTarget-32. Please note that RTKernel-32
applications should use the RTKernel-32 API to install hardware interrupt handlers.

Part I RTTarget-32 111

Chapter 8 Demo Programs

Program SerDemo
SerDemo shows how to use RTTarget-32’s serial I/O support. It initializes the target’s COM2 for
9600 baud, 8 data bits, 1 stop bit, no parity, and RTS/CTS hardware handshake. All data received is
displayed on the screen and echoed to the same port. If transmission errors are detected, corresponding
error messages are displayed on the screen. Each time a carriage return character is received, a
complete line of text is echoed to the sender.

The program can be terminated by entering any character on the target’s keyboard.

Please refer to Chapter 7, section Serial I/O Functions for more information about RTTarget-32’s serial
I/O support. RTKernel-32 should not use module RTTCom for serial I/O; instead, use module RTCom as
demonstrated in demo program COMDemo.

Program MAPDemo
MAPDemo shows how RTTarget-32’s memory mapping functions work. The program uses an Init
function to extend the heap with function RTExtendHeap. In addition, it maps different parts of the
display memory into its virtual address space.

Please note that MAPDemo assumes the program is built using the preconfigured configuration files. If
DEMOPC.CFG is modified, modifications to MAPDemo’s source code may also become necessary.
Please refer to MAPDEMO.C or MAPDEMO.PAS for details.

Program EmuDemo
This program shows how to use the 387 FPU Emulator RTEmu.

Program DLLDemo
DLLDemo shows how an application can consist of several DLLs. The main program links LIB1.DLL
statically and LIB2.DLL dynamically with LoadLibrary. For the RTTarget-32 Library, RTT32DLL.DLL is
used.

Apart from an Init function (which is not executed under Win32), DLLDemo does not call any
RTTarget-32 native API functions. Thus, DLLDemo can actually be executed under Win32.

Program DLLDemo2
DLLDemo2 is similar to DLLDemo, but RTT32DLL.DLL is not used. Instead, the RTTarget-32 system
library RTT32.LIB is linked into the main program. All functions of RTT32.LIB needed by LIB1.DLL and
LIB2.DLL are exported from the main .EXE.

DLLDemo2 also demonstrates how utility program MakeDef is used to generate an RTTarget-32 system
module which exports only the API functions actually required by the main program and the two DLLs.

Program DLLDemo3
DLLDemo3 is also similar to DLLDemo, but instead of RTT32DLL.DLL, it uses a custom RTTarget-32
system DLL. All functions of RTT32.LIB needed by LIB1.DLL and LIB2.DLL are exported from that DLL.
DLLDemo3 also demos the use of DLMs. Unlike DLLDemo and DLLDemo2, LIB2.DLL is loaded as DLM
file through RTTarget-32’s RAM file system.

Program SysDemo
This demo is only available for Microsoft Visual C++ and Borland C++. SysDemo shows how a system
DLL can be constructed to minimize download times, in particular for programs using several On Time
RTOS-32 components. The demo builds a system DLL only with those Win32 and native API functions
actually called by the application. The main program then uses this DLL instead of linking the On Time
RTOS-32 libraries. Since the system DLL will rarely change, it will usually not be re-downloaded, even if
the much smaller program .EXE file has been modified. The Borland version of this demo even places
the C/C++ run-time system into the system DLL, resulting in a very small .EXE file size. However, file
RTL.TXT must be maintained manually with a list of all run-time system functions available for the .EXE.

112 On Time RTOS-32

Program Loader

This demo uses four On Time RTOS-32 components (RTTarget-32, RTKernel-32, RTFiles-32, and
RTPEG-32), but removing unneeded components is easily accomplished by removing the respective
libraries and API files from the make file or project file.

Program Loader
Program Loader shows how to use function RTRunProgram. The loader program includes a binary
image file of a child program to start at run-time. The loader copies the files to the address it was located
to by RTLoc and then starts it.

The build process for the two programs (Loader and Child) is a bit unusual since they are mutually
dependent. The Child program must be built with a Reserve Loader command; this requires the loader
to be built first. On the other hand, the loader contains a Locate File Child.rtb command, which requires
the Child to be built first. To get a valid configuration, both programs must be built several times. Real-
world applications which download the loaded child program will probably not have this problem, since
only the loaded program will depend on the loader but not vice-versa.

The method of starting one program from another with function RTRunProgram has the advantage that
the Child can return to the Loader, but this does require quite a bit of memory. A more efficient method
is used by function RTBootRM and RTBootPM introduced by demo program BootProg.

Program BootProg
Demo program Bootprog demonstrates using function RTBootRM(). The locator produces a BIN file of
program Child which is then loaded and executed by program Bootprog.

This demo can be built in three different configurations:

• Debug Bootprog
The target is booted with the Debug Monitor and program Bootprog can be executed by down-
loading. When program Bootprog calls RTBootRM(), Bootprog and the Monitor are overwritten by
the child. By default, this configuration is built by the command line versions of this demo with
commands:

RTLoc -DBOOT Monitor Demopc.cfg Monitor.cfg
RTLoc Child Demopc.cfg Child.cfg
RTLoc BootProg Demopc.cfg BootProg.cfg

• Debug Child
The target is booted with the Debug Monitor and program Child can be executed by downloading.
This configuration is built by the "Win32 Debug" configuration of the Visual Studio version of this
demo with commands:

RTLoc -DBOOT Monitor Demopc.cfg Monitor.cfg
RTLoc -DDEBUG Child Demopc.cfg Child.cfg

• Release
The target is booted with program Bootprog which will in turn boot to program Child. This configur-
ation is built by the "Win32 Release" configuration of the Visual Studio version of this demo with
commands:

RTLoc Child Demopc.cfg Child.cfg
RTLoc -DBOOT Bootprog Demopc.cfg Bootprog.cfg

Program BIOSDemo
This program shows how to use the PCI BIOS and PnP BIOS functions of RTTarget-32.

Program PCCard
This program shows how to use RTTarget-32’s PCMCIA driver. By default, this program requires
RTFiles-32 to support ATA-Flash disks, but it can easily be reconfigured not to use RTFiles-32 (see the
source code and makefile for details). The demo also supports PC cards which implement a UART (e.g.,
serial port cards, modems).

Part I RTTarget-32 113

Chapter 8 Demo Programs

Please note that this demo shows how PCMCIA events can be handled in a single-threaded environ-
ment. For multi-threaded programs, a separate thread should handle card insertion/removal events as
shown by the PCCardMT demo program.

Program PCCardMT
This program shows how to use RTTarget-32’s PCMCIA driver in a multithreaded program. It is similar
to program PCCard, but it uses a dedicated thread instead of a polling loop to handle PCMCIA events.
RTKernel-32 is required to run this demo.

Program EXLED
Program EXLED is intended for the Incosys EMU386EX Evaluation Board. Without this board, you
cannot run this demo program. However, you can study the configuration files DEMOEX.CFG and
EXLED.CFG as examples for programs which will boot the target directly from EPROM, without any
BIOS support. EXLED.CFG also demonstrates the use of virtual regions to run code in ROM and still
locate with the Locate NTSection command.

The configuration file DEMOEX.CFG contains the region definitions for the Incosys board. It has 128k of
static RAM and a 128k EPROM (the board’s flash memory is not used by EXLED). The 128k EPROM is
always written to a hex file with the same base name as the program being built and extension .HEX.
Thus, when the Monitor ExMon is built, Intel hex file ExMon.hex is generated. When ExLED is built as a
self-booting program, file ExLED.HEX is produced. This file has to be programmed into the last 128k of
physical address space on the target to run it.

The configuration of the EX386 board and the ExLED demo program are examples only. Since this
particular board has only 128k of RAM, the demo may fail to build due to an overflow of the SRAM
region. The program is only intended as an example and a starting point for real projects. Please do not
attempt to run this example unmodified if you do not have the Incosys EMU386EX Evaluation Board.

Program HelloSc400
This demo program can run on the AMD Élan SC400/SC410 Evaluation Board without a BIOS. The
included configuration file Sc400ini.cfg contains an example chipset initialization for the AMD Élan
SC400/410 CPU family.

Program HelloSc520
This demo program can run on the AMD Élan SC520 Evaluation Board without a BIOS. The included
configuration file Sc520ini.cfg contains an example chipset initialization for the AMD Élan SC520 CPU.

Program NSHello
This program is configured to run on the NS486SXF evaluation board. To run it, you must first install the
Debug Monitor for the NS486SXF (NSMON) on the evaluation board (see description at the beginning of
this chapter).

NSHello displays some information about the target hardware configuration and checks that the on-chip
real-time clock is working properly and has been set.

Program TVDemo
TVDemo shows how to use Borland’s Turbo Vision class library for text mode user interfaces. TVDemo
can only be used with Borland C/C++ and was originally supplied by Borland with Turbo Vision.

The Turbo Vision library itself is not included with RTTarget-32. It can be downloaded from Borland’s
Web site (http://www.borland.com) or CompuServe forum (GO BCPPLIB, library 19, file TV.ZIP or the
patched version TV2BUG.ZIP).

TVDemo can be compiled, linked, and located using the supplied makefile. Two versions of TVDEMO
can be built: one with and another without RTKernel-32. To build without RTKernel-32, just type:

make tvdemo

114 On Time RTOS-32

Program ClassDemo

To build the program with RTKernel-32, use command line:
make -DRTK32 tvdemo

Program ClassDemo
This demo is only available for Microsoft Visual C++ 6.0 and Borland Delphi. The Visual C++ version
demonstrates the use of some non-GUI MFC classes and templates. Supported classes and templates
include CString, CTime, CTimeSpan, CFile, CArchive, CArray, CCriticalSection, CList, CMap, and
CMapStringtoOb, as well as most classes derived from these. To use non-GUI MFC classes, a program
must adhere to a few restrictions:

• All Win32 API libraries such as kernel32.lib, user32.lib, shell32.lib, and advapi32.lib, must be
excluded using linker option /nodefaultlib.

• The Microsoft debug run-time system libraries cannot be used.

• RTTHeap cannot be used.

• The application must define replacements for MFC functions AfxMessageBox and AfxGetFile-
Name.

Please refer to demo program ClassDemo.cpp for further details.

The Delphi version of this program demonstrates how some non-GUI classes of VCL unit Classes can
be used in On Time RTOS-32 programs. The use of classes TList, TThreadList, TBits, THandleStream,
TFileStream, TMemoryStream, TResourceStream, TStrings, and TStringList is demonstrated.

Program MetWorld
The MetWorld program demonstrates how to use Metagraphics’ graphics library MetaWINDOW with
RTTarget-32. The graphics demos only work if you have purchased and installed the MetaWINDOW
library from MetaGraphics.

The graphics example programs expect the MetaWINDOW library to reside in directory \METAWIN. If it
is not found here, define environment variable METAW to be the top level MetaWINDOW directory.

The graphics examples require a differently configured Debug Monitor. Unlike the Monitor for all other
examples, it configures its boot code to select video graphics modes 105h 103h 101h 102h 12h (256
color modes with resolutions 1024x768, 800x600, 640x480, and then 16 color modes with resolutions
800x600 and 640x480). The makefile accompanying the demos builds the required monitor.

This demo can only be compiled with Microsoft Visual C++ if the COFF version of MetaWINDOW is
installed. Registered MetaWINDOWs users can download the COFF library MET_MR3L.LIB from Meta-
graphics’ Web site at http://www.metagraphics.com.

Program HelloGUI
The HelloGUI demo program was originally supplied by Metagraphics and has been slightly modified to
make it work under RTTarget-32. HelloGUI demonstrates how to implement a simple, mouse and
keyboard driven Graphical User Interface (GUI) with the MetaWindow library.

Please note that both graphics demo programs are supplied by MetaWINDOW. If you have any
questions about these programs or the MetaWINDOW library, please contact MetaGraphics.

Part I RTTarget-32 115

Chapter 9 Advanced Topics

Chapter 9
Advanced Topics

This chapter discusses some of the services provided by RTTarget-32 and some techniques for creating
reliable embedded systems applications.

Choosing a Locate Method
RTLoc offers a rich set of options to map your application to the target hardware. While these options
provide a high degree of flexibility, you must decide how to map your program. Frequently, several
different approaches are possible with varying advantages and disadvantages.

The following sections discuss some of the required design decisions.

Locate Section or NTSection
The only major disadvantage of Locate NTSection is that all sections must be placed in the same region.
Thus, for ROMable applications, all sections having an image must be copied to RAM, which duplicates
at least the code section, and possibly other read-only sections. Another problem could be that there is
no region large enough to contain the whole program. However, both problems can be solved by using a
virtual region. An advantage of this approach is the Windows NT compatible fixup method. Locate
NTSection is required if you want to debug your program.

The disadvantage of Locate Section is the different mapping algorithm required for fixing-up. Since this
fixup method can fail (though only in very rare circumstances), some programs cannot be mapped in this
way. The advantage is its high degree of flexibility. Locate Section sections can be located in different
regions, making ROMable applications possible without copying the code or other read-only sections.
Paging is not required to fully exploit the mapping flexibility of Locate Section.

NTSection should be used whenever possible. Not all programs can run with Locate Section, since the
compiler or run-time system may rely on the way Windows NT loads programs. If you want to use
Locate Section anyway, make sure the program runs with Locate NTSection first. If it works with Locate
NTSection but not with Locate Section, then you will probably not be able to use Locate Section.

Physical or Virtual Regions

The disadvantages of virtual regions are the requirement to use paging, a minimum alignment of 4096
bytes, and the possible need for the page table to be enlarged to accommodate a potentially larger
linear address space.

Virtual regions have no advantages if the program is mapped with Locate Section. However, if Locate
NTSection is used, there are two circumstances that could make use of a virtual region necessary: if the
program is to run completely in RAM and no physical RAM region is large enough to contain the
program, or if parts of the program should reside in ROM.

Running with or without Paging
RTTarget-32 supports paging through the Locate PageTable command. However, this feature is
optional. Some advantages of paging are:

• Memory protection. Each 4k page of memory has its own access rights. In this way, memory which
should not be accessed or modified at run time can be protected. Since every invalid memory
access causes an exception, this feature is very useful for debugging a program with stray pointers
or similar bugs.

• Virtual Regions. Some programs can be mapped more efficiently in a virtual region.

• RAM remapping. Unused pages of memory can be appended to another region. This has two
advantages: regions larger than physically available can be created for program entities that must
be located in consecutive address space (such as stack or heap). In addition, memory that would
be wasted due to alignment restrictions without paging can be used.

116 On Time RTOS-32

Running at CPL 0 or 3

• Uncommitted memory support. RTTarget-32’s virtual memory manager can be used only if paging
is enabled.

Disadvantages of paging are:

• Memory overhead. The page table itself requires memory on the target system. For example, the
page table for a computer with 4M of memory needs 8k. If RAM remapping is used, the page table
grows to 12k.

• Run-time overhead. Paging can lead to slightly slower program execution. The amount of overhead
incurred depends on the program’s use of memory and the CPU used. However, the overhead is
hardly measurable and can be ignored on most systems.

Generally, the use of paging is recommended. The extra level of protection usually outweighs the small
overhead incurred. If very low resource requirements are a major design goal, paging could be used
during software development only and disabled for the production release. For applications using DLLs,
paging is recommended to be able to use the virtual memory manager.

Running at CPL 0 or 3
Similar to paging, selecting the program’s privilege level is a trade-off between maximum protection and
performance.

Advantages of privilege level 3 are:

• Maximum page level protection. At CPL 3, the CPU distinguishes four different access rights for
memory pages. System data structures can be completely protected. AT CPL 0, the CPU allows
read and write access to all pages actually mapped to memory. For example, there is no protection
against corruption of the system tables or the code segment.

Advantages of privilege level 0 are:

• The program can execute privileged instructions (CLTS, HLT, LGDT, LIDT, LLDT, LMSW, LTR,
MOV to/from CR0/DRn/TRn). While most privileged instructions have little value for application
programs, HLT can be useful. Multitasking systems such as RTKernel-32 can execute HLT in their
idle task. Any program that waits for an interrupt can call function RTHalt, which executes HLT.
While in the HLT state, the CPU consumes only a small fraction of the power it would need
otherwise. Note that function RTHaltCPL3 can be employed to execute Halt while running at
CPL 3.

• Lower interrupt latency. Some functions of RTTarget-32’s native API are handled by the boot code
and accessed through a software interrupt. To guarantee proper interrupt processing, the boot
code executes with interrupts disabled if called from CPL 3, but with interrupts enabled if called
from CPL 0. The effect on the interrupt latency depends on which functions of RTTarget-32’s boot
API are actually used. There is no penalty for applications that do not use it.

CPL 3 is recommended at least during the development phase of a program. If low power consumption
or a very low interrupt latency are of great importance, CPL 0 may be considered for the production
release.

Installing Hardware Interrupt Handlers
The RTTarget-32 boot code installs interrupt handlers for all 16 IRQs and disables all IRQs except 0, 1,
and 2. The BOOTFLAGS command can be used to modify this behavior. On IRQ 0 (the timer interrupt),
the master interrupt controller is reset. On IRQ 1 (the keyboard interrupt), the keyboard controller is read
and the master interrupt controller is also reset. If the scan code pressed is the DEL key on the numeric
keyboard, function RTReboot() is called. All other scan codes are ignored. The interrupt handlers on all
other IRQs reset the interrupt controller(s) and display a warning message.

RTTarget-32’s Win32 emulation library can install interrupt handlers on IRQ 0 and 1, overriding the boot
code’s handlers. The first call to GetTickCount() will install a handler on IRQ 0. The handler simply
increments an integer which is evaluated by function GetTickCount. The first call to any function that

Part I RTTarget-32 117

Chapter 9 Advanced Topics

might read keyboard input (for example, any file I/O function, kbhit(), getch(), or any of the console I/O
functions) will install a handler on IRQ 1 to read and interpret keyboard scan codes. This handler does
not reboot the target on any scan code such as DEL or Ctrl-Alt-DEL.

It is important to be aware of the installation sequence of these handlers if you plan to install your own
handlers. For example, if you wish to install your own timer interrupt handler and you also want to use
function GetTickCount(), you must call GetTickCount once before you install your own handler and your
handler should chain to the previously installed handler (otherwise, GetTickCount will no longer work).
You should also consider that you can only chain to interrupt handlers running at the same privilege
level as your program (except if you reinstall them on a different vector and chain with the INT instruc-
tion). Thus, you should not chain to a handler installed by the boot code (which runs at CPL 0).

Catching NULL Pointer Assignments
The nastiest type of bug results from the use of uninitialized or corrupted pointers. The most frequent
incorrect value of a pointer is NULL (0). The simplest method to catch these errors is to make the first
page of memory inaccessible. Of course, paging must be used to achieve this.

The simplest method is to define a region of 4k size at address 0 and give it NoAccess access rights.
Example:

Region FirstPage 0 4k RAM NoAccess
Region LowMem 4k 636k RAM Assign
...

This will guarantee that all references to address 0 will trigger an exception at run-time.

If you want to avoid wasting a whole page of memory, you could just remap it:
Region FirstPage 0 4k RAM Assign
Region LowMem 4k 636k RAM Assign
Region HighMem 1M 3M RAM Assign
FillRAM HighMem
...

If you don’t allocate anything to region FirstPage, RTLoc will append the physical memory page at
address 0 to the end of HighMem, making it available for the heap and stack.

However, you should consider that this approach will destroy the real mode interrupt vector table and
the real mode BIOS data area. This is usually no problem, but if your program needs to look up some
information in this area at run time, you can’t use this approach. Instead, region FirstPage would need
ReadOnly or ReadWrite access.

Catching Stack Overflows
Protecting from stack overflows works in a similar way. The stack grows from high address to low
address. To detect a stack overflow, the memory immediately preceding the stack should have less than
read/write access. For example, the stack could be placed following the code section or in a region
separated from other regions by at least one page. Example:

Region FirstPage 0 4k RAM Assign
Region LowMem 4k 636k RAM Assign
Region HighMem 1M 3M RAM Assign

Virtual ProgMem 4M // for code and data
Virtual StackMem 5M // for the stack
Virtual HeapMem 6M // for the heap which gets

FillRAM HeapMem // all remaining memory

...
Locate Stack S StackMem->LowMem 16k
Locate Heap H HeapMem

Both the stack and the heap are placed in separate virtual regions, completely isolating them from other
program entities. Any stack overflow will cause the stack pointer to leave region StackMem and will
trigger a page fault.

118 On Time RTOS-32

Running with or without Run-Time System

Running with or without Run-Time System
RTTarget-32 fully supports the run-time systems of the supported compilers. This simplifies porting
programs that use the run-time system extensively. However, there is some overhead involved.
Depending on the application’s use of the run-time system, up to 100k of memory can be required to
support it.

Simple applications that don’t need the heap can be significantly reduced in size if the run-time system
is eliminated. However, all calls to run-time system functions (such as malloc, free, printf, etc.) must be
removed.

Advantages of the run-time system are:

• Easy porting. Existing software containing calls to the run-time system can run under RTTarget-32,
often with no or only minor modifications.

• Ease of programming. The functionality of the run-time system can be used for the benefit of the
application.

• Availability of the heap. Dynamic memory management using malloc, free, realloc, etc., is fully
supported.

• RAM files. Programs requiring read access to files can run even though RTTarget-32 does not
include a file system.

• C++ features can be used. The run-time system takes care of automatic constructor/destructor
calls, exception handling, etc.

• Run-time checks of the run-time system can be used. For example, most compilers can be
instructed to generate calls to run-time system routines for stack overflow or other checks.

Benefits of running without the run-time system are:

• Lower resource requirements. Programs without the run-time system are much smaller.

• No Heap. Most Win32 programs expect a heap of at least 64k to be available, even if the applica-
tion requires much less heap space. Without the run-time system, there is no need to allocate a
single byte of heap memory.

RTTarget-32 does not support eliminating the Delphi run-time system for Pascal programs. However,
due to Delphi’s smart linker, the Pascal run-time system’s size can be next to negligible. If unit SysUtils
is not used, the Delphi run-time system does not allocate any heap space for its internal housekeeping.

Generally, the use of the run-time system is recommended. It should be eliminated only if low resource
requirements must be met.

Avoid Repeated Downloads
If a program is frequently tested using the cross debugger, repeated downloads can become quite
time-consuming, even at 115200 baud with data compression. However, the debugger will always check
whether downloading data repeatedly is actually required by performing a CRC check on the different
parts of the program on the target. If all data resides in read-only memory, the program needs to be
downloaded only once and never again.

Some program entities never change anyway (for example, the code). For other entities, the Locate
Copy command can be used to keep protected and compressed copies on the target. Example (for
Borland C++):

#include "demopc.cfg"

FillRAM HighMem

Reserve Monitor

Part I RTTarget-32 119

Chapter 9 Advanced Topics

Locate PageTable Pages LowMem
Locate Header Header HighMem
Locate NTSection CODE HighMem
Locate NTSection DATA HighMem
Locate Stack Stack HighMem 16k
Locate Heap Heap HighMem

Locate DecompCode Expand LowMem
Locate DecompData ExBuf LowMem
Locate Copy Pages LowMem
Locate Copy DATA LowMem
Locate Copy CODE LowMem

The only two entities that can change at run-time are the page table and the DATA section. However,
since copies of these are available on the target, repeated downloads after a program reset are not
required. Copying the CODE section compresses it, reducing download times.

Switching between Configurations with and without Debug Monitor
Typically, the RTTarget-32 Debug Monitor will be resident on the target computer during the develop-
ment phase of a project to allow downloading and source level debugging. On the other hand, the final
configuration will probably require including boot code instead.

RTLoc’s preprocessor can be used to easily switch between these configurations without the need to
edit any configuration files.

Suppose we have the following configuration files to build the monitor and program TestProg to run on a
PC, booted from disk:

HARDWARE.CFG:
Region NullPage 0 4k RAM
Region LowMem 4k 636k RAM
Region VideoM B0000h 4k Device ReadWrite
Region VideoC B8000h 4k Device ReadWrite
Region HighMem 1M 3M RAM

#ifdef BOOT
 Locate BootCode BIOSBOOT.EXE LowMem
 Locate BootData SystemData LowMem
 Locate DiskBuffer Buffer LowMem
#else
 Reserve Monitor
#endif

BOOTFLAGS = BF_NO_FPU
VideoRAM VideoC
COMPort COM1 115200

MONITOR.CFG:
Locate Section CODE LowMem 1
Locate Header Monitor LowMem 0 4
Locate Section DATA LowMem 2
Locate Stack Stack LowMem 1k 4

Locate PageTable PageTable LowMem
Locate DecompCode Expand LowMem
Locate DecompData ExBuffer LowMem

Locate Copy CODE LowMem
Locate Copy DATA LowMem
Locate Copy Pages LowMem

120 On Time RTOS-32

Using Data Compression

TESTPROG.CFG:
Virtual ProgMem 4M
Virtual StackMem 5M
Virtual HeapMem 6M
FillRAM HeapMem

Locate Header TestProg LowMem
Locate PageTable Paging LowMem 16k

Locate NTSection CODE ProgMem->HighMem
Locate NTSection DATA ProgMem->LowMem
Locate Stack Stack StackMem->HighMem 16k
Locate Heap Heap HeapMem

Locate DecompCode Expand LowMem
Locate DecompData ExBuffer LowMem

Locate Copy CODE LowMem
Locate Copy DATA LowMem
Locate Copy Paging LowMem

Now you can build the Monitor, TestProg for debugging, and TestProg’s release version with the
following commands:

RTLoc -DBOOT Monitor Hardware.cfg Monitor.cfg

RTLoc TestProg Hardware.cfg TestProg.cfg

RTLoc -DBOOT TestProg Hardware.cfg TestProg.cfg

Using Data Compression
Except for headers, the boot code, and the decompression code, any program entity containing an
image can be compressed by RTLoc. The following prerequisites must be satisfied for data compres-
sion:

• Locate DecompCode and Locate DecompData commands must be present.

• Entities to be compressed must be copied using the Locate Copy command. The copied entity will
be compressed. At boot time, the copied entity is expanded to the original entity.

The extra entities required for compression (DecompCode, DecompData, and Copies) are all discard-
able. Thus, if they reside in RAM, their memory can be reused by the application’s stack and heap
without causing any memory overhead.

Apart from reducing program image sizes, data compression has an impact on application initialization
times. Decompressing program code and data may require several seconds (the .LOC file contains the
times needed for decompression, as measured on the host). The only exception is the page table, which
will typically decompress faster than it can be copied. Of course, compression also requires time on the
host, slowing down RTLoc. However, with modern desktop systems equipped with a Pentium or higher
CPU, this can be neglected for most systems. Again, the Compression Report in the .LOC file shows
these times.

Boot time may be an issue for systems which must be able to start up very quickly. The following
sections discuss how boot times and overall memory requirements vary depending on how the applica-
tion is loaded.

Downloading and Cross Debugging
Compressed applications can typically be downloaded twice as fast. Since all discardable entities are
located to RAM, there is no memory lost on the target. Thus, compression is highly recommended
during the development phase.

Applications Booted from Disk

The disk space requirement is typically 50% of an uncompressed application, and there is no extra
memory required, since all extra program entities required for compression are discardable and reside in
RAM.

Part I RTTarget-32 121

Chapter 9 Advanced Topics

Even program load time will be faster with compression for most systems, because less data has to be
read from the boot device and decompressing is typically faster than reading data from disk. However,
the net gain or loss in load time depends on the speed of the boot device and the speed of the CPU. If
booting from floppy disk, compression will certainly improve startup time, even on slow CPUs. The same
is true for most hard disk based systems with 486 or higher CPUs. Silicon disks, however, may be faster
than RTTarget-32’s decompression algorithm (with the exception of page tables).

Applications copied from ROM to RAM
Applications which are booted from ROM, but then completely copied to RAM will benefit from signifi-
cantly reduced ROM space requirements with no extra RAM needs. Thus, the total memory requirement
is actually reduced. Boot time, however, will be higher with compression.

Applications Running in ROM
If all read-only entities remain in ROM, data compression can only be used for initialized data and the
page table. Since the decompression code itself requires about 2k of memory (and cannot be reused
because it resides in ROM), the total ROM space requirement may actually increase if no paging is used
and the initialized data size is not reduced by more than 2k.

Memory savings and boot time differences may be small for such applications and depend heavily on
initialized data size.

Using DLLs through RTLoc
The RTTarget-32 locator RTLoc supports the DLL command which adds DLLs to an application image.
Both static references to DLL exported functions and dynamic linking using LoadLibrary/GetProcAd-
dress are supported. Loading DLLs as files on the target is supported if a file system is used. For details
about loading DLLs through a file system, see section Loading DLLs through a File System later in this
chapter.

To use DLLs successfully, a thorough understanding of Win32’s DLL mechanism is mandatory. If you
are not familiar with terms such as import library, DLL exports, DLL imports, static DLL references,
LoadLibrary, GetProcAddress, or DllEntryPoint, please consult your compiler’s documentation before
trying to use RTTarget-32’s DLL support.

To successfully use DLLs located into a program’s image, the following prerequisites must be satisfied:

• For each DLL to be used, a separate DLL command must appear in the configuration file.

• All code and data sections of all modules must be mapped using separate Locate Section or
Locate NTSection commands.

• For each module (EXE or DLL) which statically imports DLL entrypoints, the .idata section must be
mapped with Locate Section or Locate NTSection commands. RTLoc will issue warning messages
if this is not the case.

• For each module whose exported entrypoints must be available to GetProcAddress at run-time, the
.edata section must be mapped with Locate Section or Locate NTSection commands. The .edata
sections are not required for static fixups which are processed by RTLoc.

• The RTTarget-32 library RTT32.LIB must be linked into exactly one module (either the main
program or one of the DLLs). The preconfigured DLL RTT32DLL.DLL may be used for this
purpose. All RTTarget-32 native API and Win32 emulation functions which are referenced by other
modules must be exported using a module definition file (DEF file).

• Any module which needs to call an RTTarget-32 native API function must define symbol
RTT32DLL before including header file RTTARGET.H and must link import library RTT32DLL.LIB
instead of RTT32.LIB. For Delphi programs, access to the RTTarget-32 API is available through
unit RTTarget.

122 On Time RTOS-32

Using DLLs through RTLoc

In addition, it is recommended to link only one run-time system, preferably into the main EXE. Multiple
run-time systems are supported, but may lead to very inefficient heap memory usage, especially when
no paging is used. DLLs without a run-time system can be produced with RTTarget-32’s special startup
code C0RTTD.OBJ. For optimal heap management in multi-module applications, it is recommended to
use RTTarget-32’s alternate heap manager RTTHeap in all DLLs and the main EXE. RTTHeap will
insure that only one memory manager is used for all modules.

Here are some advantages of using DLLs:

• Programs and DLLs which do not need access to RTTarget-32’s native API can be binary compat-
ible with Win32. For example, the DLLDemo example program shipped with RTTarget-32 consists
of four modules: DLLDEMO.EXE, LIB1.DLL, LIB2.DLL, and RTT32DLL.DLL. The application can
be executed under Win32 without relinking.

• Projects can be composed of modules developed with different compilers and even programming
languages. For example, RTTarget-32’s Delphi support relies on Pascal programs using RTTarget-
32’s run-time support implemented with a DLL written in C and assembler.

• DLLs which were not developed for RTTarget-32 can be used as long as these DLLs do not call
Win32 API functions not supported by RTTarget-32.

• Reduced download times. Although applications with DLLs are typically larger, repeated
downloads during software development can be accelerated if code modifications do not affect all
modules. In this case, unmodified modules are not downloaded again.

Disadvantages of DLLs are:

• The complexity of an application can increase significantly. Most applications will need custom
linker definition files.

• Memory requirements increase because more memory is lost in section alignment.

• Application image size and memory requirements increase due to redundant code in several
modules.

• If several run-time systems are used, heap memory is potentially used less efficiently.

The following sections describe several different configuration options available.

Using RTT32DLL.DLL
RTT32DLL.DLL is a preconfigured module in RTTarget-32’s BIN directory. It exports RTTarget-32’s
native API as well as RTTarget-32’s Win32 API emulation. To use RTT32DLL.DLL, the corresponding
import library RTT32DLL.LIB can be linked. Please note that import library RTT32DLL.LIB does not
contain import records for the Win32 emulation. The linker will resolve such calls against the Win32
import library supplied with the compiler (e.g., IMPORT32.LIB, KERNEL32.LIB, or unit Windows for
Delphi). If RTT32DLL.DLL is used, #define RTT32DLL must be included in the source files immediately
before #include <rttarget.h>.

RTT32DLL.DLL contains all functions provided by RTTarget-32, even those which might never be used
by the application. Thus, linking RTT32.LIB instead of using RTT32DLL.DLL may result in smaller appli-
cations.

Example program DLLDemo shows how to use RTT32DLL.DLL.

Linking RTT32.LIB into the EXE
When RTT32.LIB is linked into the main program, other DLLs can access RTTarget-32’s functions in the
EXE if they are exported. This generally means that a module definition file has to be used when linking
the EXE. The DEF file must list all functions (RTTarget native and Win32 emulation) needed by other
modules with EXPORT directives. The advantage of this method is that only those parts of RTT32.LIB
actually used by the application are linked. The disadvantage is that maintaining DEF files can be
cumbersome. However, utility MakeDef.exe can be used to automate DEF file maintenance (see section
Utility MakeDef later in this chapter).

Part I RTTarget-32 123

Chapter 9 Advanced Topics

RTLoc’s Dynamic Link Report (which must be explicitly enabled with option -Rd+) in the LOC file can be
used to analyze exactly which functions must be exported. All missing functions will be reported in
warning messages. If you have exported functions not required by the application, they will be listed
under unreferenced entrypoints at the end of the Dynamic Link Report.

Example program DLLDemo2 shows how to link RTT32.LIB and export RTTarget-32 functions to other
DLLs.

Using a Custom RTTarget-32 System DLL
A mixture of the two strategies described above is to create a custom DLL containing RTTarget-32’s
API. You can create an application specific DLL which contains a subset of RTT32DLL.DLL. This
method avoids linking code which is never used. On the other hand, it also requires maintaining a
custom DEF file for those functions which are required, or using MakeDef.

Example program DLLDemo3 shows how to create and use an application specific RTTarget-32 system
DLL.

Utility MakeDef
Commandline utility MakeDef can significantly ease the maintenance of .DEF files. MakeDef reads
function names from one or more function list files and converts them into a DEF file suitable for
exporting or importing these function for various compilers. Regardless of the used compiler, MakeDef
always uses the same naming conventions as Win32: no function names pre- or postfixes.

MakeDef’s command line:
Makdef [Options] DLLName DefFileName F.Lists...

Available options are:

-M Generate a .DEF file for Microsoft Visual C++ (imports and exports use the same format).

-Bi Generate an import .DEF file for Borland C/C++.

-Be Generate an export .DEF file for Borland C/C++.

-Wi Generate an import .LBC file for Watcom C/C++.

-We Generate an export .LBC file for Watcom C/C++.

-EExeName Use ExeName’s import table as a function filter. Only the functions required by the given
.EXE file(s) will be included in the resulting .DEF file. ExeName can be the name of any
PE file. Thus, it also supports DLLs. Several -E options can be specified.

-IPath Search for Filelist files in directory Path.

Parameter DLLName is the name (with file name extension) of the DLL for which an import or export
library is to be generated.

Parameter DefFileName is the name of the output file.

Parameter F.Lists is one or more function name list file. Function name list files are line oriented. Each
line must start with a function name without leading underscore. If the function uses the stdcall calling
convention, the number of bytes pushed onto the stack as parameters must follow. Blank lines or lines
starting with a colon ";" are ignored. Example:

; sample function list file for MakeDef

CreateFile 28 ; Win32 API functions use stdcall
malloc ; this is a cdecl function

On Time RTOS-32 is shipped with function list files for all APIs it makes available. The following files are
available in directory Source:

Rtt32api.txt RTTarget-32’s native API.

Win32api.txt RTTarget-32’s Win32 emulation API.

Rtk32api.txt RTKernel-32’s native API.

124 On Time RTOS-32

Loading DLLs through a File System

W32apimt.txt RTKernel-32’s Win32 emulation API (only functions not covered by Win32api.txt).

Rtf32api.txt RTFiles-32 native API.

Demo programs DLLDemo2 and DLLDemo3 show how MakdeDef can be used.

Differences from Win32

The following properties of RTTarget-32’s DLL support differ from Win32’s implementation:

• LoadLibrary always supports DLLs included in the locate process. It can load DLLs as files only if
they are converted to DLMs and if the file system RTFiles-32 is used.

• GetProcAddress finds exported entrypoints only in modules which have their .edata section
mapped on the target.

• GetModuleHandle will return the handle of the module containing RTT32.LIB for module names
KERNEL32.DLL, USER32.DLL, ADVAPI32.DLL, OLEAUT32.DLL, and
RTT32DLL.DLL.

• At program termination, the DllEntryPoint functions are not called for event DLL_PROCESS_DE-
TACH. If this is required by an application, it should call FreeLibrary or RTDLLThreadEvent(NULL,
DLL_PROCESS_DETACH) instead.

• In multithreaded applications, the DLL_THREAD_ATTACH and DLL_THREAD_DETACH events
are not passed automatically to the DllEntryPoint functions. However, the application can explicitly
call these with function RTDLLThreadEvent.

• The data segment of a DLL is not reloaded when a DLL is initialized more than once.

Loading DLLs through a File System
RTTarget-32 can load DLLs as files in addition to loading them from the program image. This feature
can be useful for applications using RTFiles-32, which need to dynamically load only a subset of
available DLLs.

The actual DLL file format used by RTTarget-32 is not identical (but similar) to the PE format used by
Win32. Rather, DLM (Dynamically Loadable Modules) are used. Command line utility MakeDLM can
convert a standard Win32 DLL to a DLM. It’s command line syntax is:

MakeDLM [Options] DLLName

The following options are available:

-c[+|-] Compression, default is on. This option controls whether the DLM should be compressed.
Typically, compression reduces the file size by a factor of 2.

-q[+|-] Quiet, default is off. Controls whether compression statistics should be displayed.

-g[+|-] Debug symbol conversion, default is on. Controls whether MakeDLM should prepare debug
symbol tables for RTD32. Symbol table conversion is only required for Microsoft and Watcom
compilers. Disabling this option can speed up MakeDLM if you do not need to debug DLMs.

Parameter DLLName must be the name of the DLL to process. If no filename extension is given, .DLL is
assumed. The file is first searched in the default directory, then in the directory MakeDLM is loaded
from. The resulting DLM file will reside in the same directory as the original DLL with filename extension
.DLM.

Please note that program MakeDLM is not redistributable. It may only be used by RTTarget-32 license
owners. For information on distributing MakeDLM with your applications to your customers, please
contact On Time.

The use of compression for DLMs entails a tradeoff between disk space efficiency, load time, and
memory requirement at run-time. Obviously, compressed DLMs will always need much less disk space.
Compressed DLMs must be decompressed at run time. For fast disks and/or slow CPUs, compression
will slow down DLM load time. However, for slow disks (e.g., diskettes) and/or fast CPUs, compressed

Part I RTTarget-32 125

Chapter 9 Advanced Topics

DLMs will load faster. Another issue is that LoadLibrary will need some temporary storage to expand the
DLM. Depending on the installed memory management options, this temporary storage may not be
available for subsequent allocations of the program. Please refer to the following table.

Fixed Memory Manager Virtual Memory Manager

Run-Time The temporary storage is returned to the The temporary storage is decommitted
System Win32 default heap and is not available to and deallocated and can be reused by
Heap allocations through malloc or new. It is any allocation method.
Manager available for allocations through HeapAlloc

only.
RTTHEAP The temporary storage is returned to the The temporary storage is decommitted

Win32 default Heap and is available to and deallocated and can be reused by
allocations through malloc, new, and any allocation method.
HeapAlloc.

The rows and columns specify the memory manager and heap manager used by your program at run
time.

Win32 API function LoadLibrary should always be passed the original DLL’s file name; it will automati-
cally convert extension DLL to DLM if the DLL is to be loaded as a file. LoadLibrary first checks whether
the DLL is loaded already; if so, its reference count is incremented. If it is not found, LoadLibrary
attempts to open the corresponding .DLM file. The file is first searched in the default directory, then in all
directories given in the PATH environment variable (see RTLoc command SET on how to specify a path
on the target). If the file is found, it is loaded. If no file is found, LoadLibrary attempts to locate the DLL in
the program’s image. Thus, a program image can contain a DLL which can be replaced with a DLM file
without rebuilding the program image.

DLLs loaded as DLM files cannot be statically referenced by the program EXE or any DLL the main EXE
statically references, either directly or indirectly. DLMs can only be loaded through LoadLibrary.
However, a DLM can reference other DLMs and DLLs of the program image. A single call to LoadLibrary
can load any number of DLLs through the file system or from the program image.

LoadLibrary does not support imports or exports by ordinal. The only exception are ordinal imports of
DLLs linked into the program image that have been resolved through RTLoc’s LINK command.

When LoadLibrary loads a DLM, it will require approximately 2k of stack space. The application should
ensure that enough stack space is available.

The maximum number of DLLs which can be loaded simultaneously is 31. This limit applies to all DLLs,
regardless of how they were loaded.

DLLs loaded as DLM files can be debugged with RTD32 just like DLLs loaded from the program image.
However, the debugger will need access to the original DLL and to the associated debug symbols on the
host. For Borland compilers, the symbol tables can reside within the DLL or in a separate TDS file. To
reduce the memory requirements of a DLM at run time, it is recommended to move the debug symbol
tables to a TDS file using Borland’s command line utility TDSTRP32 prior to running MakeDLM. For
Microsoft and Watcom compilers, the TDS file is by default generated by MakeDLM.

Demo program DLLDEMO3 shows how DLMs can be used. DLLDEMO3 does not actually need
RTFiles-32. Instead, it loads a DLM file through RTTarget-32’s RAM file file system driver.

RTTarget-32 offers alternate methods to use DLLs: either linking DLLs into the program image
described in the previous section using the DLL command in the RTLoc configuration file, or by loading
them as DLM files. Both methods have advantages and disadvantages:

Advantages of DLMs
• DLLs which may not always be required do not use up any memory on the target.

• DLMs can be replaced through the file system without the need to rebuild the application image.

126 On Time RTOS-32

Installable File System

Disadvantages of DLMs
• A DLL loaded as a DLM will usually need more memory on the target because all of its sections

are always loaded. With RTLoc, only those sections actually required at run time will be included
using the Locate NTSection or Locate Section commands. Examples of unneeded information are
relocation tables, debug symbol tables, etc.

• No checks for static DLL references. RTLoc will verify that all static imports/exports can be
matched up. If exports are missing, an error will be issued. In addition, the Link command can be
used to change the standard method of matching imports against exports. However, DLMs loaded
by LoadLibrary cannot do this; when exports are missing, LoadLibrary will simply fail.

• The application has no control over how DLMs are mapped in memory. LoadLibrary will allocate
the required address space through VirtualAlloc. For example, program code of a DLM cannot be
placed in ROM. When DLMs are frequently loaded and unloaded, heap fragmentation can become
a problem. However, heap fragmentation can be minimized by using RTTarget-32’s virtual memory
manager by calling:

RTSetFlags(RT_MM_VIRTUAL, 1);

from an Init routine. For even better memory management, RTTarget-32’s alternate heap manager
RTTHEAP and the use of paging is strongly recommended.

Installable File System
This section is only relevant for applications which need to interface with a third-party file system or if
you need to change the default file system configuration of RTTarget-32 (or RTFiles-32, if applicable).

RTTarget-32 can make its Win32 API emulation for file I/O functions available even for files it cannot
handle. This is achieved through installable file I/O drivers. RTTarget-32 is shipped with drivers for
console files, LPT files, and RAM files. For example, On Time’s product RTFiles-32 adds a file I/O driver
for files on devices with a FAT file system.

A file system driver consists of structure RTFileSystemHandlers defined in RTTARGET.H. Its first
member must contain the size of the structure. Members FileHandleType and FindHandleType must be
-1. The rest of the structure consists of function pointers which will handle the various file I/O operations.
Functions which are not required or not applicable to a particular file system can be set to NULL. In this
case, RTTarget-32 will simply return an appropriate error when such a function is called.

Each file I/O function has a file name or a file handle as a parameter. RTTarget-32 uses this parameter
to determine which file system (if several are installed) should handle the request. For file handles, it will
simply pass the request to the file system which created the handle. For file names, two different criteria
are used. First, the type of file is determined (e.g., disk file, console, communication device, etc.). For
disk files, the desired drive letter is also determined.

For each installed driver, RTTarget-32 knows which file types and which logical drives it can handle and
will dispatch the call to the appropriate driver accordingly.

The file system drivers do not deal with Win32 file handles. RTTarget-32 requires that functions Create-
File and FindFirstFile return unique 32-bit values which will be passed to subsequent handle-based
functions. RTTarget-32 will automatically allocate true Win32 handles for such values, to be passed
back to the application. All functions of the driver must otherwise behave just like the corresponding
Win32 functions. This includes setting an appropriate error value using SetLastError if the function fails.

The CloseFile and FindClose functions of the driver do not use the Win32 __stdcall calling conventions,
but RTTAPI (__cdecl) instead.

The list of available file I/O drivers is retrieved from global variable RTFileSystemList:
typedef struct {
... // see RTTARGET.H
} RTFileSystemHandler;

Part I RTTarget-32 127

Chapter 9 Advanced Topics

typedef struct {
 DWORD Flags;
 DWORD Drives;
 DWORD PhysicalDisks;
 RTFileSystemHandlers * Handlers;
} RTFileSystem;

// file systems shipped with RTTarget-32. All are installed by default
extern RTFileSystemHandlers RTConsoleFileSystem;
extern RTFileSystemHandlers RTRAMFileSystem;
extern RTFileSystemHandlers RTLPTFileSystem;

The default file system installation is:
static RTFileSystem Console =
{ RT_FS_CONSOLE, 0, 0, &RTConsoleFileSystem };

static RTFileSystem LPTFiles =
{ RT_FS_LPT_DEVICE, 0, 0, &RTLPTFileSystem };

static RTFileSystem RAMFiles =
{ RT_FS_FILE | RT_FS_IS_DEFAULT, 0x00000004, 0, &RTRAMFileSystem };

RTFileSystem * RTFileSystemList[] =
{ &Console,
 &LPTFiles,
 &RAMFiles,
 NULL
};

This configuration assigns drive letter ’C’ to the RAM file system, which holds the initial default directory.
The console and printer file systems cannot handle logical drives.

The Flags field for each RTFileSystem can have a combination of the values given below. It indicates
which file types are supported:

RT_FS_FILE Standard data files.

RT_FS_CONSOLE Console files CONIN$ and CONOUT$.

RT_FS_DISK_DEVICE Device files such as \\.\A: or \\.\PHYSICALDRIVE0.

RT_FS_PIPE Pipes such as \\.\pipe\name.

RT_FS_MAILSLOT Mailslots such as \\.\mailslot\name.

RT_FS_NET_FILE Remote network files such as \\servername\name.

RT_FS_COM_DEVICE COM devices such as COM1 or \\.\COM1.

RT_FS_LPT_DEVICE LPT devices such as LPT1 or \\.\LPT1.

RT_FS_IS_DEFAULT This flag indicates that the initial default directory is held by this driver.

The Drives field is used for file systems which support data files. Each bit set indicates a logical drive
supported by this driver. Bit 0 corresponds to drive ’A’, bit 1 corresponds to drive ’B’, etc. RTTarget-32’s
file I/O emulation supports up to 32 logical drives.

The PhysicalDisks field is used for file systems which support disk device files. Each bit set indicates a
physical disk supported by this driver. Bit 0 corresponds to drive ’A’, bit 1 corresponds to drive ’B’, etc.
RTTarget-32’s file I/O emulation supports up to 32 physical disks.

Multithread Applications
RTTarget-32 does not contain a scheduler, but it does support RTKernel-32, On Time’s real-time multi-
tasking kernel. In multitasking applications, the following issues must be considered:

• RTTarget-32 implements a number of Win32 thread API functions as dummy functions. These
must be replaced by the multitasking system. This is achieved by linking the multitasking library
before the RTTarget-32 library.

128 On Time RTOS-32

Using the MetaWINDOW Graphics Library

• If DLLs are used, both the RTTarget-32 and the multitasking library must reside in the same EXE
or DLL. Thus, RTTarget-32’s predefined system DLL RTT32DLL.DLL cannot be used. You must
create your own custom system DLL as in example programs DLLDemo2 and DLLDemo3.

• If DLLs are used, the DLL_THREAD_ATTACH and DLL_THREAD_DETACH events are not
passed to the DllEntryPoint functions automatically. If you are using DLLs which require these
calls, each thread using such DLLs must explicitly call function RTDLLThreadEvent.

• RTTarget-32’s Win32 memory management functions are thread safe (they are protected with a
critical section). However, RTTarget-32’s memory mapping functions (RTFindPhysMem,
RTReserveVirtualAddress, RTReleaseVirtualAddress, RTMapMem, RTExtendHeap, and RTCMO-
SExtendHeap) are not. If any of these function can execute simultaneously with other memory
management or memory mapping functions, they must by protected with function RTLockHeap and
RTUnlockHeap. However, in most applications, they can be executed before any threads are
created to avoid reentrance problems.

Please consider that the run-time systems (in particular the run-time system heaps) might not be
thread safe. Please refer to your compiler’s documentation and the mulitasking system’s documen-
tation for information about how to solve reentrance problems in this area.

Using the MetaWINDOW Graphics Library
With a few run-time restrictions, the graphics library MetaWINDOW by MetaGraphics - which was orig-
inally designed for DOS and DOS extenders - can be used with RTTarget-32. However, to use Meta-
WINDOW, it is important to understand how the support for it has been implemented. For professional
GUIs, On Time RTOS-32 component RTPEG-32 is recommended instead of MetaWINDOW.

MetaWINDOW performs BIOS calls to communicate with the graphics adapter, in particular to change
the graphics mode. However, RTTarget-32 is a pure protected mode environment which does not
support such BIOS calls (the PC BIOS consists of 8086 real mode code which cannot be executed in
protected mode).

To overcome this problem, RTTarget-32 can set a desired graphics mode during the boot process
before switching to protected mode. This is achieved with the GMode directive (see Chapter 3, GMode
Command). At run-time, RTTarget-32’s function RTGetGMode() can be used to enquire which mode
has been set.

This mechanism is used to place the display hardware in graphics mode. To prevent the MetaWINDOW
library from performing int 10h calls, a dummy int 10h handler is installed which will trap all such calls.
The handler simulates success, but actually does nothing except to pass some diagnostics information
to the host debugger (if desired).

Prerequisites

To successfully run graphics programs under RTTarget-32, the following
conditions must be satisfied:

• The target computer must have a BIOS and a graphics display adapter.

• The first 4k of physical address space must not be used, because MetaWINDOW needs to access
the BIOS data area located here. Reserving this memory area is best achieved with the following
directive:

Region BIOSMem 0 4k RAM NoAccess

 • Any graphics video memory required for the graphics modes to be supported must have read/write
access. Example:

Region ColorGraphic A0000h 64k Device ReadWrite
Region MonoText B0000h 32k Device ReadWrite
Region ColorText B8000h 32k Device ReadWrite

• The RTTarget-32 configuration file used to build the program containing the boot code (either the
Debug Monitor or the graphics application itself) must contain directive

VideoRAM = None

Part I RTTarget-32 129

Chapter 9 Advanced Topics

to suppress text mode style screen I/O. All text mode screen output will be sent to the host
debugger (if present). (Note: you can re-enable text mode I/O at run-time by supplying your own
OutCharHandler, see Chapter 7, Function RTDisplayChar).

• The same configuration file must contain a GMode directive with at least one BIOS graphics mode
to be set. Example for VGA 640x480, 16 colors:

GMode 12h

 • All required MetaWINDOW driver DLLs must be included in the program image with the DLL
command. Example:

DLL \MetaWindow\metwnd05.dll

The driver DLLs can also be loaded as DLMs as done be the exa,ple programs.

• All required font files must be mapped with Locate File commands. Example:
Locate File \MetaWindow\fonts\system00.fnt HighMem

• The program’s source code should #include header file RTMETAW.H supplied with RTTarget-32
and function RTMetaWInit() must be called before any MetaWINDOW function is called (see
below).

• The program must be linked with the RTTarget-32 library RTT32.LIB, RTMETAW.LIB and a
suitable MetaWINDOW library (e.g., one for DPMI-32).

• Selector 7Bh (or 78h at CPL 0) is reserved for MetaWINDOW and must not be used by the applica-
tion.

• If the graphics program also uses RTKernel-32, you must use the CPU386 driver and not
CPU386F which is the default. This is very important! MetaWINDOW frequently changes segment
registers. If CPU386F is used, random and evasive to debug program crashes will occur.

Initialization
RTMetaWInit() must be called to initialize MetaWINDOWS. Example:

int main(void)
{
 int i;
 printf("Current BIOS video mode: %04X\n", RTGetGMode());
 i = RTMetaWInit(RT_METAW_INIT_GRAPHICS);
 RTIdleHandler = RTGetMetaWEvents; // update event queue
 if (i != 0)
 {
 printf("MetaWINDOW InitGraphics error - %d\n",i);
 exit(1);
 }
 SetDisplay(GrafPg0); /* switch display to graphics mode */
 ...

Limitations
Several features of MetaWINDOW are not available under RTTarget-32, mainly because no BIOS calls
are possible at run-time. In particular, these are the limitations:

• Mode switches are not possible at run time. The hardware is placed to a particular mode at boot
time which cannot be changed later.

• Only display page 0 (GrafPg0) can be used and switching pages is not supported.

• Functions QueryGraphics() and FindBestGraphics() are not supported.

• Functions QueryMouse() and FindBestMouse() are not supported.

• The mouse drivers MsDriver and Joystick are not supported. However, MsCOM1, MsCOM2,
MoCOM1, and MoCOM2 are supported.

130 On Time RTOS-32

Using the 387 Emulator

Function RTMetaWInit
RTMetaWInit must be called once before the MetaWindow library can be called. The function’s
prototype is defined in Rtmetaw.H as follows:

int RTMetaWInit(unsigned long Flags);

The Flags parameter may have any combination of the following values:

RT_METAW_KEYSTOMETAW Keys-To-MetaWINDOW. It instructs RTTarget-32 to send all key
events to MetaWINDOW’s event queue. This is done by the keyboard
interrupt handler and is therefore not recommended. The additional
processing load for the keyboard interrupt handler is severe and can
degrade the interrupt latency of the system significantly. A better
approach is to call RTGetMetaWEvents in a loop whenever the
program expects user input.

RT_METAW_SHOW_INT10 This flag is supplied for debugging purposes. If set, all int 10h calls
performed by MetaWINDOW are displayed if the program runs under
the Debug Monitor. Use this flag if you encounter problems selecting a
particular graphics mode or if you suspect that MetaWINDOW uses
the BIOS for other graphics operations.

RT_METAW_INIT_GRAPHICS This flag will map a linear frame buffer, call InitGraphics(), and
configure MetaWINDOW to use the linear frame buffer. When this flag
is used (which is always recommended), RTMetaWInit() will return the
return code of MetaWINDOW’s InitGraphics() function.

Function RTGetMetaWEvents
This function will transfer all currently pending keyboard events from RTTarget-32’s Win32 compatible
event queue to MetaWINDOW’s event queue.

void RTGetMetaWEvents(void);

It is not required to call this function if flag RT_METAW_KEYSTOMETA was specified in the call to
RTMetaWInit. Typically, you should call this function when the program is waiting for user input.

Using the 387 Emulator
RTTarget-32 contains the 387 Floating Point Emulator RTEmu. Although RTEmu is bundled with
RTTarget-32, it is a separate product with different licensing terms.

This emulator has been derived from the DJGPP emulator EMU387 version 1.12, Copyright (c) DJ
Delorie, 24 Kirsten Avenue, Rochester, NH 03867-2954, USA, email dj@ctron.com. DJGPP is released
under the GNU General Public Licensing terms, which also apply to this emulator. Please read the
complete licensing terms given later in this section before considering the use of this emulator.

For Borland C++, Microsoft Visual C++, and Delphi, two versions of the emulator are supplied: a single-
thread version and a multi-thread version. The single-thread version can be used in a multitasking
system only if the emulator’s context is swapped with FNSAVE/FRSTOR in every task switch. The multi-
thread version is completely reentrant on the task level and requires no swapping. However, it uses TLS
data, which, unfortunately, is not supported by Watcom. The reentrant emulator is compatible with
RTKernel-32’s floating point driver FLTEMUMT.LIB.

Both emulator versions are non-reentrant for interrupt handlers. If you intend to do floating point calcula-
tions in interrupt handlers, FNSAVE/FRSTOR are required to preserve the foreground thread’s floating
point context.

The emulator never disables interrupts. Thus, it is well-suited for real-time systems requiring a low
interrupt latency.

Part I RTTarget-32 131

Chapter 9 Advanced Topics

In addition to the emulator, source file FPEXH.C contains a sample exception handler for 387 excep-
tions. It can be used for the emulator as well as for actual floating point hardware. It traps int 16 and
displays some information about the exception on the screen. Then it continues, allowing the FPU or
emulator to take its default action. FPEXH.C is recommended only for debugging. Real applications
should mask all floating point exceptions.

Linking the Emulator in C/C++ Programs

Since the run-time systems contain floating point instructions in their startup code, the emulator should
be installed before the startup code executes. This can be accomplished using RTTarget-32’s INIT
directive in the application’s RTTarget-32 configuration file. Example:

INIT _RTEmuInit

or, for Microsoft C:
INIT RTEmuInit

Function RTEmuInit is exported by module RTEMU.OBJ, which must be linked to the program. It installs
the emulator’s exception 7 handler as a trap gate. If you must call several functions at init time, you must
write your own exported Init function, which in turn calls all Init functions required by your program.

Applications which can guarantee that no floating point operations are required by application code
before main() is called (e.g., in constructors of global objects, DLL initialization code, etc.), can alterna-
tively call RTEmuInit() explicitly in function main(), followed by fpreset().

Apart from module RTEMU.OBJ, you must also link RTEMU.LIB (single-thread) or RTEMUMT.LIB
(multithread). Please note that the multithread library requires TLS data. If you use RTKernel-32, you
must select an appropriate floating point driver. For RTEMUMT.LIB, use driver FLTEMUMT; for
RTEMU.LIB, use driver FLT387.

There are no source code modifications required to use the emulator. You only need to link it (RTE-
MU.OBJ + RTEMU.LIB or RTEMUMT.LIB) and make sure it is initialized through the RTTarget-32 INIT
directive. If you use the multithread version, be sure to include all sections generated for TLS by the
compiler and linker.

If you want to use the floating point exception handler included with the emulator, install it using the
following call:

#include <rttarget.h>

int main(void)
{
 RTFPInstallExHandler();
 ...

To make sure you actually see all exceptions, unmask all FPU exceptions in the development phase of
your project with:

_control87(0, 0xFFFFFFFF);

Demo program EmuDemo shows how to use the emulator.

Linking the Emulator in Delphi Programs
Using the emulator in Pascal programs is much simpler. Just add unit RTEmu (or RTEmuMT for multi-
thread support) to the main program’s USES clause. The emulator will be installed automatically by the
unit’s initialization code.

Only if floating point instructions are executed at an earlier stage (e.g., in the initialization code of a stati-
cally referenced DLL), you must call RTEmuInit as an Init function. To do this, add

Init RTEmuInit

to your program configuration file.

Demo program EmuDemo shows how to use the emulator.

132 On Time RTOS-32

Using the 387 Emulator

Emulator Licensing Terms
Although you have obtained this floating point emulator bundled with RTTarget-32, it is a separate
product with different licensing terms.

On Time Informatik GmbH and the original author of the emulator, DJ Delorie, supply this software
without any warranty.

The emulator is made available to all RTTarget-32 users free of charge. It may be further distributed
under the terms of the GNU General Public License, with the following exceptions:

• You may distribute this emulator programming library only if you also make available its source
code under the GNU General Public Licensing terms.

• Any existing copyright or authorship information in any given source file must remain intact. If you
modify a source file, a notice to that effect must be added to the authorship information in the
source file.

• You can distribute executable applications linked with the emulator library without restrictions. In
particular, there is no need to supply any object, library, or source files or references to the emula-
tor’s authors or the GNU licensing terms with such executables.

Please refer to file Source\Emu\Copying for the GNU General Public License.

Part I RTTarget-32 133

Appendix A Compiling and Linking with On Time RTOS-32

Appendix A
Compiling and Linking with On Time RTOS-32

This appendix describes how to compile and link embedded systems programs. Whenever applicable,
special considerations for a particular compiler are detailed. All compiler options apply identically to the
command line tools and respective IDEs.

Complete examples are given in directories Demobc, Demomsvc, Demowat, and Demodel. Examples
for compiling/linking programs with Microsoft’s Visual Studio and Visual C++ 6.0 or higher are included
under directory Demomsdev.

General Rules
This section describes some general considerations to keep in mind for compiling and linking On Time
RTOS-32 applications.

• On Time RTOS-32 .EXE and .DLL files are Win32 Console Mode executables and are compiled
and linked as such.

• The startup code and run-time libraries for Win32 Console applications supplied with the supported
compilers are used in unmodified form.

• If you do not intend to use the compiler supplied run-time system (for example, to save memory),
RTTarget-32’s custom startup code C0RTT.OBJ (for EXE files) or C0RTTD.OBJ (for DLLs) is used
as a replacement for the compiler-supplied startup code. This option is not available for Delphi
programs. RTTarget-32’s custom startup code is not compatible with the run-time systems and
cannot be used if you need the run-time system.

• An application consists of a single .EXE. In addition, it can use up to 31 DLLs.

• The On Time RTOS-32 libraries must be linked to one and only one EXE or DLL of the application.
All required On Time RTOS-32 libraries must reside in the same EXE or DLL.

• EXEs or DLLs which do not contain On Time RTOS-32 libraries and which do not need access to
the On Time RTOS-32 native APIs are compiled and linked exactly as standard Win32 Console
Mode modules. They can execute unmodified both under Win32 and On Time RTOS-32. No On
Time RTOS-32 specific libraries need to be linked.

• EXEs or DLLs which do not contain On Time RTOS-32 libraries, but do need to access the On
Time RTOS-32 native API can call such functions if

• the EXE or DLL containing On Time RTOS-32 exports the required API functions;

• they #define RTT32DLL before including RTTARGET.H or other On Time RTOS-32 header
files.

• they link an import library of the EXE or DLL containing the On Time RTOS-32 libraries.

Delphi programs always use import units to access the On Time RTOS-32 native APIs contained in
RTT32DLL.DLL or a custom built system DLL.

Order of Libraries
The order of libraries can be very important. For a program or DLL to link directly against the On Time
RTOS-32 libraries, the recommended order of libraries is as follows:

Object files of Typically, the startup code and code of the application.
the application

387 Emulator init RTEMU.OBJ (only if the 387 emulator is needed).
object file

134 On Time RTOS-32

Order of Libraries

Libraries of If you have any application libraries, link them here.
the application

RTPEG-32 library PEG.LIB only if a GUI is required.

RTFiles-32 library RTFILES.LIB only if a file system is required.

RTFiles-32 driver Needed only if RTFILES.LIB is linked. RTFSRTT.LIB for single-threaded applica-
tions or RTFSK32.LIB for RTKernel-32 applications. DRVDOC.LIB must be linked
if M-Systems DiskOnChip support is required.

RTKernel-32 library Only required for multithreaded applications. RTK32.LIB for the RTKernel-32
Debug Version and RTK32S.LIB for the Standard Version.

RTKernel-32 drivers Only required for multithreaded applications. DRVRT32.LIB or any set of alternate
drivers followed by DRVRT32.LIB.

RTT32.LIB Always required. RTTarget-32’s native API and Win32 emulation.

RTTHEAP.LIB Always optional. This library replaces the run-time system’s heap manager with
RTTarget-32’s heap manager.

387 Emulator library Only required if the application needs floating point support on CPUs without FPU.
RTEMU.LIB or RTEMUMT.LIB.

MetaWINDOWS Only required if MetaWINDOWS is also linked. Library RTMETAW.LIB.
support library

Compiler-supplied Whatever your compiler documentation recommends for console mode applica-
run-time system tions. For RTKernel-32 programs, use the multithread run-time system or the

singlethread run-time system in conjunction with Automatic Library Protection.

EXEs or DLLs which do not link the On Time RTOS-32 libraries but must still have access to the On
Time RTOS-32 API should link an import library. See examples DLLDemo2 and DLLDemo3 for details.

The order of object files is not important. The linker will unconditionally link all object files regardless of
their relative order, but object modules contained in libraries are only linked if they are referenced. Thus,
if two libraries define the same referenced symbol, the first symbol encountered in the list of libraries is
linked.

The following symbols are redefined by various On Time RTOS-32 libraries:

Symbols Defined in Comment

Win32 API run-time system All Win32 API functions are defined in import libraries
libraries supplied with the compiler (e.g. KERNEL32.LIB,

IMPORT32.LIB, etc.).

RTT32.LIB RTT32.LIB contains replacement implementations of these
functions.

Win32 thread API RTT32.LIB Implemented as dummies (do nothing or program abort).

RTK32[S].LIB Real implementations.

GetTickCount RTT32.LIB Simple implementation using an interrupt handler.

RTK32[S].LIB Implementations using RTKernel-32’s clock driver.

RTFileSystemList RTT32.LIB Includes Console, LPT, and RAM file systems.

RTFILES.LIB Includes Console, LPT, and disk (FAT) file systems.

malloc, free, run-time system C/C++ heap management routines.
realloc

RTTHEAP.LIB RTTarget-32 alternate heap manager.

The following examples list the On Time RTOS-32 libraries in the recommended link order.

Part I RTTarget-32 135

Appendix A Compiling and Linking with On Time RTOS-32

An application using only RTTarget-32, no floating point:
RTT32.LIB

An application using RTTarget-32 and RTKernel-32’s Debug Version with RTTarget-32’s alternate heap
manager:

RTK32.LIB DRVRT32.LIB RTT32.LIB RTTHEAP.LIB

An application using RTTarget-32, RTPEG-32, RTKernel-32’s Standard Version, Pentium High-Resolu-
tion timer driver, need for FPU emulation, DiskOnChip support, and RTTarget-32’s alternate heap
manager:

RTEMU.OBJ PEG.LIB RTFILES.LIB RTFKS32.LIB DRVDOC.LIB RTK32S.LIB HRTPENT.LIB
CLKPC.LIB FLTEMUMT.LIB DRVRT32.LIB RTT32.LIB RTTHEAP.LIB RTEMUMT.LIB

Borland C++
On Time RTOS-32’s Libbc and Include directories must be added to the compiler library and include
paths.

Important (multithreaded programs only): If you plan to use RTKernel-32’s Automatic Library Protection
instead of the multithreaded run-time library, you must install Automatic Library Protection first and make
sure the linker searches On Time RTOS-32’s Libbc directory before the compiler’s Lib directory. In
addition, you must specify compiler command line option -WM-. If you plan to use the multithread run-
time libraries, use command line option -WM+.

Assuming On Time RTOS-32 is installed in directory C:\ONTIME, the example program HELLO.C can
be compiled and linked using:

bcc32 -v -IC:\ONTIME\Include -LC:\ONTIME\Libbc hello.c rtt32.lib

If you prefer to call the linker explicitly, HELLO.C can be compiled and linked in two separate steps:
bcc32 -c -v -IC:\ONTIME\Include hello.c

tlink32 -v -c c0x32.obj hello.obj, hello.exe, hello.map,
 C:\ONTIME\Libbc\rtt32.lib cw32.lib

ILINK32 can be used instead of TLINK32.

Demo program HELLO2.C demonstrates how to eliminate the run-time system using RTTarget-32’s
startup code C0RTT.OBJ. It can be compiled using:

bcc32 -c -v -IC:\ONTIME\Include hello2.c

and linked (enter on one line):
tlink32 -c -v C:\ONTIME\libbc\c0rtt.obj hello2.obj,
 hello2.exe,,C:\ONTIME\Libbc\rtt32.lib

If RTT32DLL.DLL is used instead of RTT32.LIB, any EXE or DLL which needs to call RTTarget-32
native API functions must link import library RTT32DLL.LIB. RTT32DLL.LIB is not required to call Win32
emulation functions.

PE files produced by Borland C++ always contain two sections which must be located: section CODE
and DATA. If Borland’s incremental linker ILINK32 is used, these two sections are named .text and
.data, respectively. Section CODE/.text contains the executable part of the program, requires only read-
only access, and corresponds to segment number 1 in the map file. Section DATA/.data needs
read/write access, contains both initialized and uninitialized global data, and corresponds to segment
number 2 in the map file. If you want to debug the program, Locate NTSection commands must be used;
otherwise, most programs should also work with command Locate Section. If the program uses statically
referenced DLLs, section .idata must also be included. If exported functions must be available at run
time using GetProcAddress, the .edata section is also required. If the run-time system is used, a heap
with at least 64k is required. Otherwise, no heap is needed. A stack of at least 16k is recommended.

If the program contains TLS (thread) variables, sections .tls and .rdata must also be included in the
program image.

If the program needs to access resources of the PE file at run-time, section .rsrc is also required.

136 On Time RTOS-32

Microsoft Visual C++

A typical configuration file for a program suited for debugging is:
#ifsection .text // redefine some section names for ILINK32
 #define CODE .text
 #define DATA .data
#endif

FillRAM HighMem

#ifndef BOOT
 Reserve Monitor
#endif

Locate Header Header HighMem
Locate PageTable PageTable HighMem

Locate NTSection CODE HighMem // program code
Locate NTSection DATA HighMem // program data
Locate NTSection .tls HighMem // needed for TLS data
Locate NTSection .rdata HighMem // needed for TLS data

Locate Stack Stack HighMem 16k
Locate Heap Heap HighMem

For a program which does not use the run-time system, contains no TLS data, and does not require
debugging, you could use:

Locate PageTable PageTable LowMem
Locate Section CODE HighMem
Locate Header Header HighMem 0 4
Locate Section DATA HighMem
Locate Stack Stack HighMem 16k 4

Unfortunately, the 32-bit linker integrated in the Borland C 4.5 IDE has some severe bugs. Therefore, it
is strongly recommended to use the command line compiler or the command line linker for linking.
However, if you prefer to use the integrated linker, always enable debug information. There is no run-
time overhead if debug information is included in a PE file. If desired, the debug information can be
removed after linking using command line utility TDSTRP32.EXE.

To enable source level debugging with RTD32, option -v should be added to BCC32/TLINK32/ILINK32
command lines.

Please refer to the sample make files in all directories under Demobc for numerous examples of building
programs for On Time RTOS-32.

Microsoft Visual C++
On Time RTOS-32’s Libmsvc and Include directories must be added to the compiler’s library and include
file search paths.

Microsoft’s 32-bit linker has one serious bug: it does not strictly follow the order of libraries specified on
the linker command line. Usually, C/C++ linkers will search for a symbol required by a program in all
libraries in the order the libraries are supplied. With Microsoft’s linker, the first occurrence of the symbol
after its reference is used. Since RTKernel-32 and RTTarget-32 replace symbols usually present in
run-time or Win32 system libraries, this can lead to the wrong modules being linked if that symbol is not
referenced by any of the application’s object file.

For example, library LIBC.LIB of Visual C++ contains the function malloc and also references to malloc.
However, in On Time RTOS-32 programs, this function will usually be supplied by RTTHEAP.LIB, which
is linked before LIBC.LIB. If the application itself does not reference malloc, the wrong version of malloc
will be linked.

Consider the following libraries linked in the given order:

Part I RTTarget-32 137

Appendix A Compiling and Linking with On Time RTOS-32

RTK32.LIB
DRVRT32.LIB
RTT32.LIB
RTTHEAP.LIB
LIBC.LIB

None of the On Time RTOS-32 libraries contain references to malloc, so LINK will not look for it until
LIBC.LIB is parsed. malloc is located in RTTHEAP.LIB, but LINK missed that definition. Instead, it will
link the version of malloc defined in LIBC.LIB.

To solve this problem, it is recommended to force the inclusion of symbols redefined by RTFiles-32,
RTKernel-32, or RTTarget-32 on LINK’s command line using the /include option. It is sufficient to include
_RTFileSystemList, EnterCriticalSection@4, and _malloc. The only reason not to reference these
symbols would be programs known not to require them (e.g., programs not using a standard run-time
system).

Library KERNEL32.LIB should be excluded with option /nodefaultlib:kernel32.lib to ensure that all
required Win32 functions will be emulated by RTKernel-32 or RTTarget-32.

Assuming On Time RTOS-32 is installed in directory C:\ONTIME, the example program HELLO.C can
be compiled and linked using the following command line (enter on one line):

cl /IC:\ONTIME\Include /LC:\ONTIME\Libmsvc /Fm /Zi hello.c rtt32.lib
 /link /nodefaultlib:kernel32.lib /fixed:no

If you prefer to call the linker explicitly, you can compile and link the program in two separate steps:
cl /c /IC:\ONTIME\Include hello.c

link /fixed:no /nodefaultlib:kernel32.lib hello.obj C:\ONTIME\Libmsvc\rtt32.lib

Demo program HELLO2.C shows how to eliminate the run-time system with RTTarget-32’s startup code
C0RTT.OBJ. It can be compiled and linked using the following command line (enter on one line):

cl -I..\include hello2.c /link /entry:Start
 ..\libmsvc\c0rtt.obj ..\libmsvc\rtt32.lib
 /fixed:no /map /nodefaultlib:kernel32.lib

If RTT32DLL.DLL is used instead of RTT32.LIB, any EXE or DLL which needs to call RTTarget-32
native API functions must link import library RTT32DLL.LIB. RTT32DLL.LIB is not required to call Win32
emulation functions.

Starting with Visual C++ 5.0, the Microsoft linker will not write a fixup table to .EXE files by default.
Because such programs cannot be processed by RTLoc, linker option /fixed:no is required starting with
Visual C++ 5.0.

PE files generated by Microsoft Visual C++ contain four sections that must be located: sections .text,
.bss, .rdata, and .data. Section .text contains the executable part of the program and only requires read-
only access. Section .bss is only created by Visual C++ versions up to 2.2, needs read/write access, and
contains uninitialized global data. Section .rdata contains read-only data. Section .data contains initial-
ized data and needs read/write access. Visual C++ up to version 4.2 places the export table in section
.edata; version 5.0 in .rdata.

If the program contains TLS (thread) variables, section .tls must also be included in the program image.

If the program needs to access resources of the PE file at run-time, section .rsrc is also required.

The Microsoft linker writes very precise information into PE files. Therefore, it is not necessary to use
.MAP files to truncate unused information, and there is usually no need to specify any size information in
the Locate NTSection or Locate Section commands. The default alignment is 4k, which is also RTLoc’s
default. Therefore, using command Locate NTSection is recommended instead of Locate Section. The
latter should only be used if several sections must be located into different memory regions and you do
not want to use virtual regions.

If the run-time system is used, a heap with at least 64k is required by Visual C++ 2.0/2.2;
Visual C++ 4.0/4.1 may run with less than 32k. If no run-time system is used, no heap is needed. A
stack with at least 16k is recommended.

138 On Time RTOS-32

Watcom C/C++

A typical configuration file for a Visual C++ program is:
FillRAM HighMem

#ifndef BOOT
 Reserve Monitor
#endif

Locate PageTable PageT LowMem
Locate Header Header LowMem

Locate NTSection .text HighMem // code section
Locate NTSection .rdata HighMem // read only data
Locate NTSection .data HighMem // read/write initialized data
#ifsection .bss // not generated by all linker versions
 Locate NTSection .bss HighMem // uninitialized data
#endif
#ifsection .tls // only in multithreaded apps
 Locate NTSection .tls HighMem
#endif

Locate Stack Stack HighMem 16k
Locate Heap Heap HighMem

For a program that doesn’t use the run-time system, the Locate Heap command can be omitted.

To enable source level debugging with RTD32, compiler command line switch /Zi is required. RTLoc will
by default convert debug symbol tables to the format required by RTD32. You can disable this behavior
with RTLoc option -g- (recommended if you plan to use the Visual Studio 6.0 debugger). If you plan to
use RTTarget-32’s debugger RTD32 with programs compiled within the Visual Studio IDE, linker debug
option "Separated Types" and compiler option Debug Info "Program Database for Edit and Continue"
must both be disabled.

If RTLoc option -g- is not specified, RTLoc requires a DLL of your Visual C++ installation to read the
debug symbol tables. The name of this DLL is Visual C++ version dependent:

VC++ 2.x DBI.DLL
VC++ 4.0 MSPDB40.DLL
VC++ 4.1/4.2 MSPDB41.DLL
VC++ 5.0 MSPDB50.DLL
VC++ 6.0 MSPDB60.DLL

It will usually reside in the same directory as your Visual C++ compiler or IDE. Please make sure that
the required DLL is on your path or in RTTarget-32’s BIN directory.

Please refer to the examples under directory Demomsvc for numerous examples of building On Time
RTOS-32 programs using command line tools. Examples for the Visual Studio 6.0 IDE are given in
directory Demomsdev.

Watcom C/C++
On Time RTOS-32’s Libwat and Include directories must be added to the compiler’s library and include
file search paths. It is recommended to add them to the environment variables INCLUDE and LIB.
Example:

SET INCLUDE=C:\ONTIME\INCLUDE;%INCLUDE%
SET LIB=C:\ONTIME\LIBWAT;\%LIB%

The example program HELLO.C can then be compiled and linked with:
wcl386 -s -d2 -hc hello.c rtt32.lib

If you prefer to call the linker explicitly, you can compile and link the program in two separate steps:
wcc386 -s -d2 -hc hello.c

wlink system nt Debug CodeView option cvpack file hello.obj library rtt32.lib

Demo program HELLO2.C demonstrates how to eliminate the run-time system with RTTarget-32’s
startup code C0RTT.OBJ. It can be compiled and linked with:

Part I RTTarget-32 139

Appendix A Compiling and Linking with On Time RTOS-32

wcl386 -s hello2.c C:\ONTIME\Libwat\c0rtt.obj rtt32.lib

Please note that compiler option -s is required to prevent the compiler from generating calls to the stack
checking routines of the run-time system (which is not available).

If RTT32DLL.DLL is used instead of RTT32.LIB, any EXE or DLL which needs to call RTTarget-32
native API functions must link import library RTT32DLL.LIB. RTT32DLL.LIB is not required to call Win32
emulation functions. Due to Watcom’s lack of support for module definition files (DEF files), the import
library in the Libbc directory must be used.

Init functions are executed before the C/C++ startup code. The Watcom compiler by default generates
calls to a stack check routine at the entry of each function. However, this stack check routine does not
work correctly before the run-time system’s initialization has run. Thus, all code which can be executed
from an Init function must be compiled with stack checking off (command line option -s).

PE files produced by Watcom C++ always contain three sections that must be located: section
BEGTEXT (respective AUTO for Watcom C++ starting with version 11.0), DGROUP, and .bss.
BEGTEXT/AUTO contains the executable part of the program and requires read-only access. Section
DGROUP needs read/write access and contains initialized global data. Section .bss contains uninitial-
ized data. Both Locate NTSection and Locate Section commands work fine. If the run-time system is
used, a heap of at least 64k is usually required. Otherwise, no heap is needed. A stack of at least 16k is
recommended.

The Watcom C++ linker generates separate sections for initialized and uninitialized data, but both
sections are reported to reside in one segment in the map file. Therefore, RTLoc cannot determine the
section sizes from the map file. You should not specify the size parameter in a Locate Section or Locate
NTSection command.

A typical configuration file for a Watcom C/C++ is:
FillRAM HighMem

#ifndef BOOT
 Reserve Monitor
#endif

#ifsection AUTO // for Watcom C 11.0
 #define BEGTEXT AUTO // this section is renamed
#endif

Locate PageTable PageT LowMem 12k
Locate Header Header LowMem

Locate NTSection BEGTEXT HighMem
Locate NTSection DGROUP HighMem
Locate NTSection .bss HighMem

Locate Stack Stack HighMem 16k
Locate Heap Heap HighMem

For a program that doesn’t use the run-time system, the command Locate Heap can be omitted.

To enable source level debugging for Watcom C programs, wcl386 command line options -d2 (full
debug info) and -hc (CodeView style debug info) must be used. For linker wlink, use command "Debug
CodeView". Unfortunately, the debug symbol table generator of Watcom contains a few bugs which may
cause wcl386 or wlink to fail with a CVPACK error. In this case, disabling debug info for some modules
frequently helps.

RTLoc will by default convert debug symbol tables to the format required by RTD32 (you can disable
this behavior with RTLoc option -g-). The Watcom compiler does not generate debug symbols for code
source lines located in #include files and for register variables. Turning off optimization can work around
the latter problem.

Please refer to the numerous examples under directory Demowat on how to compile and link On Time
RTOS-32 programs.

140 On Time RTOS-32

Borland Delphi

Borland Delphi
On Time RTOS-32 applications are compiled and linked as Win32 Console mode applications. Since the
Delphi compiler by default generates GUI programs, command line option -CC must be specified.

Programs using any of On Time RTOS-32’s import units located in directory Libdel must be compiled
with command line option -U to enable the compiler to find these units. Assuming On Time RTOS-32
has been installed in directory C:\ONTIME, the example program HELLO.PAS can be compiled and
linked using:

DCC32 -v -CC -UC:\ONTIME\Libdel hello.pas

Delphi programs cannot directly link any LIB files shipped with On Time RTOS-32. Instead, a system
DLL containing these libraries must be used. For applications not using RTKernel-32 or RTFiles-32, a
preconfigured system DLL named RTT32DLL.DLL is included in the Bin directory. It contains RTTarget-
32’s complete API except function RTMakeBootDisk (which requires RTFiles-32). If you need additional
functions from RTKernel-32 or RTFiles-32 or if you want to link a smaller subset version of
RTT32DLL.DLL, you must create a custom system DLL using a linker which can process .LIB files (e.g.,
TLINK32 or ILINK32 shipped with Borland C++ or Borland C++ Builder). Please refer to Chapter 9,
section Using a Custom RTTarget-32 System DLL for details on how custom system DLLs are linked.

PE files produced by Delphi always contain six sections which must be located: section CODE, DATA.
BSS, .tls, .rdata, and .idata. If exported functions are to be available at run time using GetProcAddess,
the .edata section is also required. Locate NTSection commands must be used to build Delphi
programs. A heap with at least 32k is required. A stack of at least 16k is recommended. The linker of
Borland C++ Builder names section CODE and DATA .text and .data, respectively.

A typical configuration file for Delphi programs is:
FillRAM HighMem // remap unused RAM

#ifndef BOOT
 Reserve Monitor // leave room for the debug monitor
#endif

DLL RTT32DLL.DLL // include the RTTarget-32 system DLL

#ifsection .text // redefine some section names for BCB
 #define CODE .text
 #define DATA .data
#endif

#ifsection rtt32dll.dll..text // redefine some section names for BCB
 #define rtt32dll.dll.CODE rtt32dll.dll..text
 #define rtt32dll.dll.DATA rtt32dll.dll..data
#endif

Locate PageTable PageT LowMem
Locate Header Header LowMem

Locate Stack Stack HighMem 16k
Locate Heap Heap HighMem

Locate NTSection CODE HighMem
Locate NTSection DATA HighMem
Locate NTSection BSS HighMem
Locate NTSection .tls HighMem
Locate NTSection .rdata HighMem
Locate NTSection .idata HighMem

Locate NTSection rtt32dll.dll.CODE HighMem
Locate NTSection rtt32dll.dll.DATA HighMem

Please refer to the demos under directory Demodel for numerous examples of building programs with
Delphi.

Part I RTTarget-32 141

Appendix B Redistributable Components of RTTarget-32

Appendix B
Redistributable Components of RTTarget-32

The following files shipped with RTTarget-32 may be redistributed by RTTarget-32 license owners with
their applications:

• The Debug Monitor as RTB, RTA, or Hex file produced by RTLoc, or an absolute image of the
Monitor, also produced by RTLoc, burned into a ROM, EPROM, Flash, or similar non-volatile
memory.

• BOOTDISK.EXE and BOOTD16.EXE.

• RTRUN.EXE, RTTDBG32.DLL, RTCOMNT.DLL, RTTARGET.INI.

• RTTBOOT.COM.

The above files may only be distributed under the licensing terms given in section Licensing Terms and
Liability. In particular, they may be distributed exclusively for the purpose of loading RTTarget-32 binary
files (RTB files) you have created using a full RTTarget-32 license.

Program MAKEDLM.EXE is not redistributable. If you want to distribute MAKEDLM.EXE, please contact
On Time for additional information.

If you want to distribute BOOTDISK.EXE, RTRUN.EXE, or RTTBOOT.COM to allow your customers to
start your RTTarget-32 program, please use the following table to determine which files are required.
The columns specify the host operating system the customer will be using.

Program MS-DOS Windows 3.x Windows 95/98/ME Windows NT/2000
BOOTDISK BOOTDISK.EXE BOOTDISK.EXE BOOTDISK.EXE BOOTDISK.EXE

BOOTD16.EXE
RTRUN - - RTRUN.EXE RTRUN.EXE

RTTDBG32.DLL RTTDBG32.DLL
RTCOMNT.DLL RTCOMNT.DLL
RTTARGET.INI RTTARGET.INI

RTTBOOT RTTBOOT.COM - - -

RTRUN is not supported under MS-DOS or Windows 3.1. RTRun requires the RTTARGET.INI file to
find the correct port parameters to be used for downloads. If the file is missing, COM1 at 115200 baud is
assumed.

142 On Time RTOS-32

 RTLoc Error, Warning, and Information Messages

Appendix C
RTLoc Error, Warning, and Information Messages

RTLoc can issue information, warning, error, and fatal error messages. Information messages usually
don’t indicate a serious problem. Warnings can (and frequently do) indicate a problem. The cause of the
message should be investigated to determine whether the message can safely be ignored. Error and
fatal error messages indicate that the application cannot be located. RTLoc will not produce an .RTB,
.HEX, or .BIN file if any errors are encountered. Fatal errors will immediately abort RTLoc.

All messages are written to stdout and to the .LOC file. This behavior can be modified by command line
options (see Chapter 3, RTLoc Options for details).

The following sections contain all messages in alphabetical order. Message portions in italic typeface
are replaced by more specific information. For example, in the message

Region RegionName not found

RTLoc will replace RegionName with the actual name of the region that could not be found.

#include files and/or macros nested too deeply
RTLoc’s preprocessor has run out of resources. Possibly, macros and/or include files invoke each other
recursively.

All NT sections must reside in same region, section: SectionName
RTLoc has encountered Locate NTSection commands specifying different regions. All NTSections of a
specific EXE or DLL must be located in a single region. If you must locate sections in different regions,
use the Locate Section command instead. If you prefer to use Locate NTSection, but the application
must be ROMable, use the Locate Copy command to move the sections to ROM or use a virtual region.

All parameters after region name ignored
A Locate NTSection * command was used with optional parameters following the region name. RTLoc
only supports the default values in this case.

Application header should have ReadOnly access
The application header has a higher access value than ReadOnly. Therefore, the application could acci-
dentally overwrite it causing unpredictable results.

Application uses DLLs, but RTTarget32SystemInit is not exported
The application consists of several modules, but RTLoc did not find the function responsible for initia-
lizing those DLLs. Function RTTarget32SystemInit is contained in RTT32.LIB and declared as "export",
but some linkers ignore this attribute for functions linked into .EXE files. In this case, some other means
of exporting has to be used. For example, with Microsoft Visual C++, the function can be exported with
linker option /export:RTTarget32SystemInit.

Boot code and boot code copy must be paragraph (16-byte) aligned
The boot code’s alignment is set to a value below 16, which is not supported.

Boot code and boot vector must reside within the same 64k segment
Control is transferred from the boot vector to the boot code using a near jump, which limits the range to
64k.

Boot code contains fixups, file name: FileName
The .EXE file containing the boot code requires fixups; this is not supported by RTLoc. Change the
source of the boot code to eliminate all memory references requiring fixups.

Boot code located twice
RTLoc has encountered two Locate BootCode commands. Only one may be specified.

Boot code must be paragraph (16-byte) aligned
The boot code alignment is set to a value below 16, which is not supported.

Part I RTTarget-32 143

Appendix C RTLoc Error, Warning, and Information Messages

Boot code must be placed immediately after boot vector
RTLoc has found that both the BIOS boot vector and the boot code are located in the same region, but
are not adjacent to the vector located first. Place the vector and the boot code in separate regions or
rearrange them to make them adjacent.

Boot code must have at least SysRead access
The boot code has access value NoAccess, making its execution impossible.

Boot code should have SysRead access
The boot code has a higher access value than SysRead. Consequently, the boot code is not protected
and could be corrupted at run time.

Boot data located twice
RTLoc has encountered two Locate BootData commands. Exactly one must be specified if a Locate
BootCode command is used.

Boot data must be located in first megabyte
The boot data was mapped to memory inaccessible in real mode. Locate it to a region below 1M.

Boot data must be paragraph (16-byte) aligned
The boot data alignment is set to a value below 16, which is not supported.

Boot data must have at least System access
The boot data has access value NoAccess or SysRead, making it inaccessible for the boot code.

Boot data should have System access
The boot data has a higher access value than System. Consequently, the boot data is not protected and
could be corrupted at run time.

Boot data too small, needs at least Size bytes
The boot data size specified in a Locate BootData command is less than the size required by the boot
code. Do not specify a size and let RTLoc determine the correct value.

Boot vector not located at CPU boot location
A Locate BootVector command was used and the boot vector is not located at address FFF0h or
FFFFFFF0h. However, all Intel 80x86 compatible CPUs boot from this location. The boot process will fail
if the vector is not located at the correct address. Ignore this warning only if your hardware maps the
CPU’s address to the actual physical address.

Boot vector section should have SysRead access
A Locate BootVector or Locate BIOSVector command has specified a different access value for the boot
vector. The application can boot, but the boot vector is not protected against corruption.

Boot Vector too small, size specification ignored
A Locate BootVector or Locate BIOSVector command has specified an invalid size. The size should be
at least 16 bytes.

Cannot copy SectionName
A Locate Copy command was applied to an entity which cannot be copied. Locate Copy supports only
entities Section, NTSection, File, PageTable, Header, and BootCode.

Cannot link ModuleName.FunctionName in ModuleName: no import table
RTLoc was unable to resolve a static DLL reference because the .idata section was not mapped. Add
command Locate [NT]Section .idata.

Cannot mix ’Locate Section’ with ’Locate NTSection’
Both Locate Section and Locate NTSection commands were encountered for the same EXE or DLL.
You must decide which of the two locate methods you wish to use.

Compress buffer overflow; cannot compress SectionName
The compression of data has failed, causing random memory locations to be corrupted. The given
section cannot be compressed. Use option -c- to suppress compression for this particular section.

144 On Time RTOS-32

Compressed section SectionName precedes decompression code

Compressed section SectionName precedes decompression code
The application header contains a list of program entities. This list is processed by the boot code to
initialize the application. During this process, all copied sections are copied and/or decompressed.
Before the decompression code is used for decompression, it must be at its final address. Thus, it must
precede any compressed entries in the list. To fix this problem, move the Locate DecompCode and its
Locate Copy to a location preceding any other Locate Copy commands in the configuration file.

Configuration file not FileName not found: ErrorMessage
A configuration file references another configuration file which could not be opened. RTLoc will search
for configuration files in the default directory first and subsequently in the directory RTLoc was loaded
from.

Copied sections should have NoAccess access
A Locate Copy command has specified a different access value for the copied section. The application
can run, but the section is not protected optimally.

Copy of section SectionName larger than required, reduce from Size to Size to save memory
RTLoc has found that the size of a copied section could be reduced. To save memory, specify the
recommended size for the given Locate Copy command.

Data in reserved application corrupted
RTLoc’s verification of the data contained in a program image file specified in a Reserve command has
failed. The file is corrupted and must be recreated using RTLoc.

Decompress code/data located twice
RTLoc has encountered more than one Locate DecompCode or Locate DecompData or Locate Disk-
Buffer command.

Decompress code/data should have NoAccess access
A Locate DecompCode or Locate DecompData command has specified a different access value for the
section. The application can run, but the section is not protected optimally.

Decompression code/data located, but not required
Memory has been allocated for data decompression, but no sections are compressed. Either make
copies of sections which can be compressed or remove the decompression code and/or data.

Disk buffer located twice
The disk boot code requires only one disk buffer.

Disk buffer must be sector (512 byte) aligned
This requirement is imposed by the disk loader and the BIOS.

Disk buffer outside real mode address space
The disk buffer must be accessible to the BIOS and must therefore be located below 1M.

Disk buffer should have NoAccess access
A Locate DiskBuffer command has specified a different access value for the section. The application can
run, but the section is not protected optimally.

DLL dependency in ProgramModule: ModuleName.FunctionName
RTLoc encountered a DLL import, but was unable to resolve the reference against a DLL export. You
must supply the missing function in your program (see Chapter 7, Adding other Win32 Functions for
details). Alternatively, you can use RTLoc’s LINK command to reroute the call to a different, existing
function to be used as a replacement.

ENDM without matching MACRO
RTLoc encountered and ENDM directive but no matching MACRO directive.

Entities located in virtual regions must be page aligned, entity: Name
The given entity is located to a virtual region with an alignment value of less than 4096, which is not
supported.

Error directive: Message
RTLoc has processed an #error command in a configuration file.

Part I RTTarget-32 145

Appendix C RTLoc Error, Warning, and Information Messages

Error opening file FileName, errno: ErrorMessage
RTLoc was unable to open the specified file for the given reason.

Expression syntax error
The expression in an #if expression could not be parsed.

Failed to decompress section SectionName
RTLoc’s verification of compressed data has failed: the decompressed data is not identical with the
original data. Option -c- must be used to suppress compression for the given section.

File data should have at least ReadOnly access
The access value specified in a Locate File command is too low to allow the application to read the data.

File data size for file FileName too small; file truncated
The size given in a Locate File command is less than the actual file size. RTLoc disregards the rest of
the file. If this is not desired, remove the size specification and let RTLoc assign the actual file size auto-
matically.

FillRAM region must end on page boundary
The region specified in the FillRAM command does not end on a page (4k) boundary. Therefore, no
pages can be added to the region without leaving a gap. Change the region specification accordingly.

FillRAM region not found, region: RegionName
The region specified in a FillRAM command was not found. Define the Region before the FillRAM
command.

FillRAM specified twice
RTLoc encountered two FillRAM commands. Only one such command is supported.

Fixup target beyond section, target address: Address
A fixup referenced an address immediately following a section. Such a fixup is only valid if it was
generated by a reference to a sybmol which does not point to a storage location, but rather the first
available address after a segment. In all other cases, use Locate NTSection instead of Locate Section to
locate the program.

Function _RTTarget32SystemInit not found, must be exported
Function _RTTarget32SystemInit is required by all applications using DLLs to ensure proper DLL initia-
lization. The module containing RTT32.LIB must export this function.

Header located twice
RTLoc encountered two Locate Header commands. Only one such command is supported.

Heap located twice
RTLoc encountered two Locate Heap commands. Only one such command is supported.

Heap should have at least 64k, size: Size
The application’s heap is rather small. Many Win32 programs that use the run-time system will require at
least 64k of heap space. However, if you know that your program can run with a smaller heap, this
warning can be ignored.

hex/bin file FileName overlaps hex/bin file FileName
Two HexFile or BinFile commands specify overlapping address ranges. Please check the parameters of
all HexFile and BinFile commands.

Import by ordinal ModuleName.Ordinal, ignored
RTLoc has encountered an import by ordinal, which is not supported. Use Import by name instead. The
warning can be ignored if the imported function is never called.

Init function FunctionName not found, must be exported
The name given in an Init command does not reference a function exported by the .EXE or a .DLL file.
Please check the spelling of the function name. Use RTLoc’s option -Rd to get a detailed list of all
exported and imported function names. Name comparison is case sensitive.

InitCode exe file FileName entrypoint must be 0:0, but is seg:Ofs
Exe files used with InitCode must have an entry point at the start of the file.

146 On Time RTOS-32

InitCode exe file contains fixups, file name: FileName

InitCode exe file contains fixups, file name: FileName
Exe files used with InitCode must use the tiny memory model and may not contain fixups.

InitCodeDump: no data to dump
An InitCodeDump directive was encountered, but no InitCode or OUT... commands generating InitCode
data precede it.

InitCodeOrg not allowed outside code section; call InitCode first
The InitCodeOrg statement makes no sense in the context it was encountered.

InitTable overflow
The data generated by InitCode and OUT... commands is limited to about 60k bytes.

Internal: Message
RTLoc encountered an internal error. Please contact On Time’s technical support for assistance.

Invalid boot code exe file, file name: FileName
The file name given in a Locate BootCode command does not reference a valid MS-DOS .EXE file or
the file is corrupted.

Invalid boot code signature in file FileName
RTLoc did not find the expected boot code signature in the boot code file. Please make sure the file
contains boot code with a valid header.

Invalid InitCode exe file, file name: FileName
The file name given in an InitCode command does not reference a valid MS-DOS .EXE file or the file is
corrupted.

Invalid PE file: FileName
RTLoc did not find the expected signature in the application PE file (.EXE or .DLL). Either the file was
not linked as a Win32 console mode program or the file is corrupted.

Invalid video mode: Mode
A parameter specified in a GMode command was not in the range 0..7Fh or 100h..17Fh.

Locate NTSection * not supported for virtual regions
The use of a wildcard name (*) in a Locate NTSection command is only supported for physical regions.

Location of fixup not found at: Address
RTLoc was unable to locate a fixup in the program image and ignores the fixup. The cause is probably
that the fixup is located in a section not included in the program image. For example, if the program
contains a DLL dependency, it will also contain an import table which is possibly not mapped (the import
section is usually named .idata).

Location of Item not found, address: address
RTLoc attempted to apply a fixup to Item, but Item was not found to be part of the image. Verify that all
sections required by the program are actually included with Locate Section or Locate NTSection
commands. Address is the address in the PE file’s virtual address space.

Macro cannot have keyword name: Keyword
You are trying to declare a macro with the name of a configuration file reserved word, which is not
supported.

Memory access for section SectionName into region RegionName not possible.
It was attempted to locate the given section into a region that doesn’t support the required access. For
example, locating a data section requiring read/write access into a ROM Region is not possible.

Misplaced #else
The preprocessor was unable to resynchronize.

Missing ENDM for macro MacroName
Macro and Endm directives do not match.

Missing or misplaced #endif
#if and #endif directives do not match.

Part I RTTarget-32 147

Appendix C RTLoc Error, Warning, and Information Messages

Missing parameter
The command encountered in a configuration file does not specify all required parameters.

ModuleName.FunctionName expected in Link command
The first parameter of a Link command did not have the required syntax.

More than one instance of RTT32.LIB linked
RTLoc has found functions of library RTT32.LIB in more than one EXE/DLL. Only one module may
contain RTT32.LIB.

No application header located
The configuration file(s) did not contain a Locate Header command, which is required.

No boot code, application cannot be booted
RTLoc did not find any boot code which could start the application. Add a Locate BootCode command or
a Reserve command for an application that contains boot code.

No boot code, application cannot be started
RTLoc has detected that you have not included any boot code and no Reserve command for an applica-
tion with boot code. This warning message can be ignored only if some other means is employed to
invoke the application.

No boot code, boot code configuration command(s) ignored
A BOOTFLAGS, CodeSeg, DataSeg, CPL, NoFPU, COMPort, VideoRAM, or GMode command was
encountered in the configuration file, but there was no Locate BootCode command. Boot code configur-
ation commands only have an effect in applications that include boot code. If boot code is indirectly
imported through a Reserve command, this warning is only issued if the requested parameter differs
from the value found in the imported boot code.

No boot data section for boot code
A Locate BootCode command was encountered, but no Locate BootData. Add a Locate BootData
command.

No boot vector or disk buffer specified, application cannot boot
RTLoc has not found any means of transferring control to the boot code. Add the required Locate Boot-
Vector, Locate BIOSVector, or Locate DiskBuffer command. This warning message can be ignored only
if some other means is employed to invoke the boot code (e.g. RTTBOOT).

No Decompression code/data located
Data compression has been requested, but no decompression code or data has been mapped to enable
RTTarget-32 to decompress the data on the target. Add appropriate Locate DecompCode and/or Locate
DecompData commands.

No fixup table found for ModuleName
RTLoc did not find a fixup table in the PE file of the application or a DLL. This is most likely due to a
missing /fixed:no option for the Microsoft Visual C++ linker.

If the linker did not include a fixup table because the program must be located at a specific address,
RTLoc is unable to relocate the program. The only way to run such programs under RTTarget-32 is to
locate them at the exact base address set by the linker.

No heap region specified
RTLoc did not find a Locate Heap command. This warning indicates an error if you intend to use the
C/C++ run-time system. If no run-time system is used, the warning can be ignored.

No image base found for ModuleName
RTLoc was unable to find the code base in a PE file. A possible cause is that the section containing the
program code is not included. The only other cause can be an error in the PE file.

No image base to allocate SectionName
RTLoc was unable to find the code base in a PE file. A possible cause is that the section containing the
program code is not included or is not located before SectionName.

148 On Time RTOS-32

No MAP file found, file name: MapFileName

No MAP file found, file name: MapFileName
One or more Locate Section commands contain segment numbers, but RTLoc was unable to find a map
file to calculate the actual segment sizes. RTLoc will use the sizes given in the PE file instead. The
warning can be ignored.

No module found for init function FunctionName
RTLoc was unable to determine the module in which the Init function resides. Please verify the spelling
of the module name in the Init command. The module name must be specified for Init functions in DLLs.

No module found for section SectionName
RTLoc was unable to determine the module in which a section referenced in a Locate Section or Locate
NTSection command resides. Please verify the spelling of the module name in the Locate command.
The module name must be specified for sections in DLLs.

No page table; FillRAM ignored
A FillRAM command was encountered, but the application does not use paging. The application is built
without RAM remapping. Either remove the FillRAM command or add a Locate PageTable command to
eliminate this warning.

No size information found in map file for section SectionName
A Locate Section command has specified a segment number that was not found in the map file. RTLoc
will use the size given in the PE file instead.

No size reduction in compressing SectionName, storing instead
RTLoc has attempted to compress the given section, but was unable to reduce the image size. Very
small sections or data which is already compressed may show this property. Use option -c- for the given
section to suppress compression.

No stack region specified
RTLoc did not find a Locate Stack command required by every program.

No VideoRAM command, assuming ’VideoRAM = None’
No VideoRAM command was encountered. RTLoc assumes that the target has no display.

Numeric parameter expected but found Parameter
The given parameter of the given command line in a configuration file must be numeric.

Numeric parameter too large: Parameter
The given parameter exceeds the upper limit of the valid range.

Numeric parameter too small: Parameter
The given parameter is smaller than the lower limit of the valid range.

Obsolete module DUMMYDLL.OBJ is no longer required; do not link it
RTLoc encountered a reference to the DLL NODLL. Object file DUMMYDLL.OBJ and DLL NODLL.DLL
should no longer be used with RTTarget-32. You can remove all references to them.

Option syntax error: Option
RTLoc encountered the given option either on the command line or in a configuration file and was
unable to interpret it.

Out of memory to allocate Name
RTLoc ran out of heap space.

Page table located twice
RTLoc found two or more Locate PageTable commands. Only one such command is supported.

Page table must be page (4096 byte) aligned
The alignment of the page table must be at least 4k. This is required by the 386 architecture.

Page table must have at least SysRead access
The page table must have at least SysRead access, but NoAccess is specified, making it inaccessible
for the boot code.

Page table required to support virtual regions
The configuration file defines virtual regions, but no Locate PageTable command.

Part I RTTarget-32 149

Appendix C RTLoc Error, Warning, and Information Messages

Page table should have System access
A Locate PageTable command has specified an access value other than System. If you want to place
the page table in ROM, SysRead is also possible. In this case, however, page attributes cannot be
changed at run-time! As a consequence, the heap must have ReadWrite access.

If the page table is located in RAM, access System is recommended for maximum protection and flexi-
bility.

Page table size must be multiple of 4k
The specified page table size is not a multiple of 4k. The 386 CPU does not support page tables that do
not consist of a whole number of pages.

Page table too small, need at least Size bytes
RTLoc found that the required address space cannot be mapped onto the page table. This is a common
error if command FillRAM or virtual regions are used, since RAM remapping can enlarge the address
space after the page table’s size has been determined. The problem is solved by explicitly setting the
page table’s size to the required value.

Parameter must be power of two, found: Number
The given numeric parameter in the given line of a configuration file must be a power of two.

Parts of section SectionName not covered by any hex or bin file
The given section needs data in a region of memory not covered by any hex or bin file. If the data is not
placed in its location by some other means, the program will not be able to run.

Physical region name expected after virtual region name
A Locate command references a virtual region without also specifying a physical region name. Except
for Heap and Stack, a physical region must be supplied.

Protected mode boot code does not support BIOS boot vector
A Locate BIOSVector command was specified with a protected mode boot code, which is not supported.

Recursive preprocessor symbol expansion for symbols Sym and Sym
A loop was encountered expanding preprocessor symbols.

Region RegionName exceeds 4gb address space
RTLoc has found a region definition with a region’s end address beyond 4G. Check the parameters of
the Region command.

Region RegionName must be virtual
A Locate command references a physical region name followed by another physical region name. Either
use only a single physical region or use a virtual region.

Region RegionName not found for section SectionName
A Locate command references an undefined region. All regions must be defined before they can be
used.

Region RegionName overflow
Too many program entities have been allocated to the given region. Allocate some of the sections or
other entities to other regions. If the given region is a virtual region, make sure a FillRAM command
remaps memory to it to accommodate the stack and heap.

Region RegionName overlaps region RegionName
The two given regions overlap. Please check the address and size settings for these regions in the
configuration file(s).

Reserved app old image file. Rebuild ApplicationName with current version of RTTarget-32
RTLoc found that the program specified in a Reserved command was built with an older version of
RTTarget-32 incompatible with the current version.

Reserved application built with different memory layout, rebuild AppName
RTLoc found that the program specified in a Reserved command was built with a different set of region
commands. If two programs to be run simultaneously on one computer assume a different memory
layout, mutual corruption can result. Therefore, it is recommended to build all programs (including the
debug Monitor) with the same set of regions, preferably stored in a single file shared by all programs.

150 On Time RTOS-32

Reserved application contains remapped page at logical address: Address

Reserved application contains remapped page at logical address: Address
RTLoc has detected that the application given in a Reserve command contains remapped pages, which
is not supported. Remove the FillRAM command or any virtual regions from the reserved application’s
configuration file and re-run RTLoc for both applications.

Reserved application file invalid or different version, file name: FileName
RTLoc did not find the expected signature in the application file of an application given in a Reserve
command. The file was either not produced by the current version of RTLoc or the file is corrupted.

Reserved application has no page table
The application specified in a Reserve command does not contain a page table, but the current applica-
tion does. Either both or none of the two programs must use paging.

Reserved application uses page table, add Locate PageTable
The application specified in a Reserve command contains a page table, but the current application does
not. Either both or none of the two programs must use paging.

ROM does not support write access in region: RegionName
A Region command specifies memory type ROM and access System or ReadWrite, which is not
supported for ROM.

Section containing code not mapped, section: SectionName
RTLoc found a section in the PE file that contains code but is not included in the application image. This
warning should only be ignored if it is guaranteed that the application will never try to access that
section. Otherwise, add an appropriate Locate Section or Locate NTSection command to include the
section.

Section SectionName access rights possibly too low
RTLoc has compared the access requirements specified by the PE file’s section table with the access
rights in the configuration file and found a discrepancy. For example, if you have located a data section
as ReadOnly, but the PE file specifies that write access is required for this section, RTLoc issues this
message.

RTLoc adheres to the access value specified in the Locate Section command. The warning can only be
ignored if it is guaranteed that the actual access at run time does not violate the given value.

Section SectionName has no image, command Locate Copy has no effect
The given section has no data associated with it. Thus, a copied section which consists of only such
data contains nothing. You should remove the corresponding Locate Copy command since it has no
effect.

Section SectionName has no size and is not mapped
The given section has no size. The section was probably not found in the EXE or DLL file and can
therefore be removed from the configuration file.

Section SectionName in ROM; application not loadable
RTLoc has determined that the application is loaded to RAM, but the given section resides in ROM. Map
the section to a RAM region.

Section SectionName must be in RAM to be able to be copied
The section referenced in a Locate Copy command resides in ROM. At run-time the RTTarget-32 boot
code would not be able to copy or expand the data to its destination.

Section SectionName not compressed, because no decompression code located
RTLoc has encountered a copied section which could not be compressed because no decompression
code or data is present. Either add appropriate Locate DecompCode and/or Locate DecompData
commands or disable compression with option -c-.

Section SectionName not in ROM; application not ROMable
This warning is only issued when option -o (ROMable) is specified or a HexFile command is present. It
identifies a program entity that requires an image in RAM at boot time. To make the application
ROMable, move the section to ROM or use the Locate Copy command for this section to place a copy of
it into ROM.

Part I RTTarget-32 151

Appendix C RTLoc Error, Warning, and Information Messages

Section SectionName overlaps section SectionName
Two sections overlap in the given region. This can happen if Locate NTSection and other Locate
commands are mixed for the same region. RTLoc is forced to locate all but the first NTSection at
specific addresses, even if these addresses are already allocated to other entities. To avoid this
problem, all Locate NTSection commands should be grouped together in the configuration file in order of
ascending addresses, without other interleaving Locate commands.

Section to copy not found, section: SectionName
A Locate Copy command references an undefined program entity. Entities to be copied must be located
first.

Segment value in Intel hex start address record truncated from Address to Address
An Intel Hex file Start Address record has been requested with RTLoc option -s, but the target’s boot
vector is outside the real mode address space.

Size of section SectionName too small, need at least Size bytes
RTLoc has found that the size specified for a section is too small. Either increase the size in the Locate
command or let RTLoc determine the size automatically.

Size specification for boot code/data ignored
RTLoc found a size specification for the boot code or data. RTLoc uses the size given in the boot code’s
.EXE file. This behavior cannot be overridden.

Size specification for decompression code/data ignored
RTLoc found a size specification for decompression code or data. RTLoc uses the size required by the
decompression algorithm. This behavior cannot be overridden.

Size specification of application header ignored
RTLoc found a size specification for the application header. RTLoc calculates the size automatically.
This behavior cannot be overridden.

Stack is suspiciously small, size: Size bytes
RTLoc found that the application stack is smaller than 512 bytes. Only very small applications without a
run-time system will be able to run with such a small stack. Increase the stack size. Typically, a C/C++
or Pascal program will need 4k to 32k of stack space.

Stack located twice
RTLoc found two or more Locate Stack commands. Only one such command is supported.

Stack section must have ReadWrite access
The specified access in a Locate Stack was not ReadWrite, the only supported value.

Stack size is 0
The stack of the program has zero length. Probably all available memory has been allocated to other
entities (such as the heap). Either reduce the heap’s size or specify an explicit value for the stack size in
the Locate Stack command.

Target of fixup not found, fixup: Address, target: Address. Fixup ignored!
RTLoc was unable to locate the target of a fixup in the application image. Both addresses given are
virtual addresses of the PE file. This warning can only occur if Locate Section is used instead of Locate
NTSection. There are two possible causes for this warning:

• The section containing the target of the fixup is not included. From the target address and the .EXE
file report in the .LOC file, it can be inferred which section is required. If it is guaranteed that the
application will never access that section, the warning can be ignored. Otherwise, add the section
containing the target with a Locate Section command.

• The fixup target address does not belong to any section. This can happen if a fixup references a
program entity with an offset and an index. Example:

int MyArray[10];
...
if ((i>=1000) && (i<1010))
 i = MyArray[i-1000];

The code produced for the last line with variable i in register eax could be:

152 On Time RTOS-32

Target of fixup not found, fixup: Address, target: Address. Fixup ignored!

mov eax, [4*eax + offset MyArray - 4000]

The problem is that the compiler will already calculate the value offset MyArray - 4000. Therefore,
RTLoc will assume the fixup to reference a memory location located 4000 bytes before variable
MyArray. However, this location could well be located outside the section containing MyArray.

The only method to resolve this problem is to use Locate NTSection instead of Locate Section or to
modify the above code so that the fixup references MyArray directly. Example:

int MyArray[10];
...
if ((i>=1000) && (i<1010))
{
 i -= 1000;
 i = MyArray[i];
}

TLS and TEB need Size bytes stack space. Stack possibly too small
The Thread Local Storage and Thread Environment Block are allocated from the program’s stack at run-
time. The required size exceeds 20% of the available stack. This warning can be ignored if the program
does not need more than the remaining stack space.

TLS and TEB need Size bytes stack space. Stack too small
The Thread Local Storage and Task Environment Block are allocated from the program’s stack at run-
time. The required size exceeds the available stack. Increase the stack size or reduce the size of
variables declared with __thread.

Too many #ifs
#if directives are nested too deeply. RTLoc supports at most 64 levels.

Too many graphics modes
Too many modes were specified in GMode commands. Note that when multiple GMode commands are
used, each command adds modes. Up to 16 modes are supported.

Too many hex or bin files
The maximum number (64) of supported hex or bin files has been exceeded.

Too many lines in macro MacroName
The given macro has more than 256 lines, which is not supported.

Too many links
The maximum number (256) of supported Link commands has been exceeded.

Too many macro parameters: MacroName
The given macro has more than 8 parameters, which is not supported.

Too many messages
The maximum number of error and warning messages of 20 has been reached. If you do not want
RTLoc to stop after 20 messages, use option -m.

Too many modules
RTLoc has encountered more than 31 DLL commands, which is not supported.

Too many parameters
The maximum number of supported parameters is exceeded in the given configuration file line.

Too many regions, region: RegionName
The maximum number of supported regions (64) has been exceeded. Combine adjacent regions or
remove unneeded regions.

Too many sections, section: SectionName
The number of supported program entities (255) has been exceeded.

Two regions have the same name: RegionName
Two regions have been defined with the same name. Change the name of one of them.

Part I RTTarget-32 153

Appendix C RTLoc Error, Warning, and Information Messages

Two sections have the same name: SectionName
RTLoc found two or more Locate commands defining program entities with identical names. The name
of each entity must be unique.

Unmatched parenthesis
A preprocessor expression contains unmatched parenthesis.

Unable to create file FileName, errno: ErrorMessage
RTLoc is unable to create the given file for the given reason.

Unable to open file: FileName, errno: ErrorMessage
RTLoc is unable to open the given file for the given reason. RTLoc first searches for the file in the
default directory and then in the directory RTLoc was loaded from.

Unable to rename .LOC file from FileName to FileName
Assigning the correct name to the .LOC file failed, possibly because the file is currently opened by some
other process.

Undefined identifier: Identifier
The preprocessor was unable to convert Identifer to a number.

Unknown keyword: Keyword
RTLoc cannot interpret the given command in a configuration file. Please check the keyword’s spelling.

Unknown operator
The given command contains an unknown numeric operator.

Unknown option Option: ignored
RTLoc encountered the given unknown option.

Unsupported boot vector type for protected mode boot code
RTLoc has detected that protected mode boot code is being used. Use a Locate BootVector command
to invoke the boot code.

Unsupported fixup type: Number at Address
RTLoc encountered a fixup type it does not know. The fixup is ignored and the program can only run if
the fixup location is never used at run-time. RTLoc can only process fixups of type IMAGE_REL_BA-
SED_ABSOLUTE and IMAGE_REL_BASED_HIGHLOW. All others will lead to this warning.

VESA mode info block at physical address 0C00h clashes with section SectionName
A VESA mode has been specified in a GMode command, but the memory at address 0C00h serving to
hold the VESA Info block has been allocated to other entities. RTPEG-32 or MetaWINDOW drivers will
not be able to read the VESA Info block. Locate a Nothing entity to the first page of RAM to avoid this
warning.

VESA mode info block at physical address 0C00h has been allocated to FillRAM
A VESA mode has been specified in a GMode command, but the memory at address 0C00h serving to
hold the VESA Info block has been allocated to some other region through FillRAM. RTPEG-32 or Meta-
WINDOW drivers will not be able to read the VESA Info block. Locate a Nothing entity to the first page of
RAM.

VideoRAM region RegionName not found
The region name specified in a VideoRAM command was not defined previously.

VideoRAM region RegionName should have at least 4k size
RTLoc encountered a suspiciously small video RAM. The RTTarget-32 run-time functions assume at
least 4k of video RAM to be available. For non PC compatible displays, specify VideoRAM = None.

VideoRAM region RegionName should have ReadWrite access
Access right for the video RAM is too low. The RTTarget-32 run-time functions writes to the video RAM.

Virtual region must start at page boundary, region: RegionName
The starting address of a virtual region must be page aligned, which it is not.

Virtual regions not supported for section SectionName
An attempt was made to locate an unsupported entity to a virtual region. Only Locate Section,
NTSection, File, Nothing, Stack, or Heap may be placed in virtual regions.

154 On Time RTOS-32

 RTKernel-32

Part II
RTKernel-32
RTKernel-32 is a powerful real-time multitasking system. It was designed for software developers who
wish to implement professional process control applications on 32-bit embedded systems. Every effort
has been made to ensure easy usage and excellent run-time performance. RTKernel-32 is compact
(about 16k of code, 6k of data) and provides the programmer with the basic tools needed to develop
efficient real-time software.

RTKernel-32 is a library you can link to your application program. It offers a number of functions to
manage tasks, semaphores, mailboxes, interrupts, etc. All RTKernel-32 threads run within a single
program. An RTKernel-32 application consists of a single executable containing the kernel, the required
drivers, and all threads.

The main features of RTKernel-32:

• Unlimited number of tasks
RTKernel-32 can handle as many tasks as will fit into the computer’s available memory. One
thread requires about 1k.

• Task switch time of about 5 microseconds (80486/33)
RTKernel-32 is a powerful system offering unequaled performance.

• Task switch time remains constant for any number of tasks
Many multitasking systems exhibit severely reduced performance when too many tasks are
activated. RTKernel-32’s performance is independent of the number of tasks activated.

• 64 priorities
The behavior of programs may be fine-tuned precisely using different priorities.

• Cooperative and preemptive scheduling
With preemptive scheduling, task switches can take place at practically all times. Tasks can be
activated directly out of interrupt handlers. Preemptions can be enabled or disabled.

• Support of math coprocessor / emulator
If a math coprocessor is installed, it can be utilized by any number of tasks. Its registers can be
preserved by RTKernel-32 during task switches. 80387 software emulators are also supported.

• Interrupt support
Using RTKernel-32, it is possible to exchange data with other tasks and to suspend or activate
tasks out of interrupt handlers. The interrupt priorities of the interrupt controller can be re-pro-
grammed to achieve the best possible interrupt response times. This qualifies RTKernel-32 for
high-speed data acquisition, communications, process control, and similar tasks.

• Time slicing
RTKernel-32 can be used as a time sharing system, sharing CPU time evenly among a number of
tasks.

• Semaphores
Semaphores can be used to exchange signals between tasks. RTKernel-32 supports counting,
binary, event, resource, and mutex semaphores. Semaphores may also be used by interrupt
handlers.

• Mailboxes
Mailboxes can be used to exchange data between tasks. Mailboxes may also be used by interrupt
handlers (e.g., for data buffering).

• Message passing
Message passing can be used to exchange data between tasks directly. This synchronizes the
tasks involved.

Part II RTKernel-32 155

Part II RTKernel-32

• Real-Time Memory Management
RTKernel-32’s Memory Pools allow memory allocation and deallocation within guaranteed time
limits and can even be used by interrupt handlers.

• Portability
RTKernel-32 is completely written in ANSI C; only some hardware or CPU dependent drivers
contain assembler code. Since the portable kernel, which is written completely in ANSI C, has
been implemented separately from hardware or systems dependent drivers, RTKernel-32 can
easily be ported to other environments.

• Three different APIs
RTKernel-32’s application interface has three different forms: RTKernel-32 native, RTKernel-C for
DOS, and Win32. Depending on your requirements for compatibility with other systems, you can
select the appropriate API. It is even possible to mix different APIs within the same program.

156 On Time RTOS-32

What is Multitasking?

Chapter 1
Multitasking, Real-Time, and RTKernel-32

This chapter gives an introduction to the terms and concepts of RTKernel-32 and multitasking systems
in general.

What is Multitasking?
A thread (also called a task) is a sequential path of execution. The discrete statements of a thread are
processed sequentially according to the semantics of C, C++, or Pascal.

The term multitasking means that several sequential tasks are processed in parallel. However, on single
processor systems, several tasks cannot run at the same time; therefore, task switches must be
performed. This is the job of a multitasking system like RTKernel-32.

In many cases, tasks cannot run completely independently of each other, but are expected to cooperate.
For example, it may be required that a certain task can only continue to run after another task has
completed a certain operation. In such a case, the tasks involved must be synchronized, i.e., the paral-
lelism of tasks is restricted again. Synchronization can be accomplished using inter-task communication.

For a good understanding of parallel programming, it is important to be aware of the different require-
ments of multitasking systems. The following two sections discuss the most important differences
between time sharing and real-time systems.

Time Sharing
Time sharing utilizes multitasking for the purpose of sharing a high performance computer among
several users (or batch jobs) at the same time. In general, tasks run largely independently of each other
in time sharing systems. Therefore, inter-task communication is only offered in a simple fashion.

One of the most popular time sharing systems is Unix. It was developed when the processing power of
the available computer was smaller than that needed for the job. Consequently, the multitasking system
had to share the scarce resource "processing power" as "fairly" as possible among competing tasks.
However, it should be noted that system throughput is usually degraded by multitasking in such
systems, because the scheduling overhead is significant. Under Unix, for example, it is possible that two
compute-bound programs each runs a minute when it is the only program running; however, running in
parallel, they would need 2.5 minutes. Parallel processing may be more fair (User 1 and User 2 have to
wait equally long for their job to finish), but is usually less efficient.

Real-Time Systems
Real-time systems satisfy a completely different set of requirements. A real-time system must never be
overloaded. As soon as no more processing power is available, real-time response cannot be sustained.
For example, a situation with real-time requirements might be: a meter generates data every second.
The data must be collected, processed, and stored by the computer. If processing a data record requires
more than a second on the target computer, the system is overloaded and real-time response cannot be
sustained.

Real-time systems are not concerned about "fairness". Tasks have priorities which must be obeyed
strictly. A task with a high priority can take away CPU time from another task with a lower priority at any
time without "being fair" to the other task. Since overloading is ruled out, tasks having low priorities will
sooner or later also receive CPU time.

Real-time systems are furthermore characterized by the requirement that they have to react to events
within a predetermined - usually short - time span. External events are processed using interrupts
whenever possible. Thus, the most stringent real-time requirements apply to interrupt handlers.
Therefore, real-time systems must have a low interrupt latency (the time between the hardware interrupt
signal and execution of the first statement of the interrupt handler).

Part II RTKernel-32 157

Chapter 1 Multitasking, Real-Time, and RTKernel-32

For the task response time, the cases of cooperative and preemptive scheduling must be distinguished.
In preemptive scheduling, the task response time to interrupts is mainly the interrupt latency and the
task switch time. In cooperative scheduling, the maximum time span between two kernel calls is added.

Cooperative and Preemptive Multitasking
Preemptive multitasking means that task switches can be initiated directly out of interrupt handlers. With
cooperative (non-preemptive) multitasking, a task switch is only performed when a task calls the kernel,
i.e., it behaves "cooperatively" and voluntarily gives the kernel a chance to perform a task switch.

Example: a receive interrupt handler for a serial port writes data to a mailbox. If a task is waiting at the
mailbox, it is immediately activated by the scheduler during preemptive scheduling. In cooperative
scheduling, however, the task is only brought into the state "Ready". A task switch does not immediately
take place; after the interrupt handler has completed, the task having been interrupted continues to run.
Such a "pending" task switch is performed by the kernel at some later time, as soon as the active task
calls the kernel.

RTKernel-32 supports both cooperative and preemptive scheduling. The preconfigured default is coop-
erative scheduling.

Real-Time
The term "real-time" is often used but seldom defined. One possible definition is given here:

Real-time software must deliver computation results under application specific time
constraints. When a result is made available to late (or to early in some systems), the
software has failed, even if the result is otherwise correct.

This definition says nothing about multitasking. Multitasking is not necessarily required to develop real-
time software; however, usually multitasking will simplify real-time software development. Multitasking
can achieve excellent response times even when other jobs must be performed in parallel to the real-
time processing. Prerequisites for real-time processing are a sufficiently small interrupt latency, a
constant task switch time (which should be as small as possible), and, in many cases, preemptive
scheduling. Therefore, complex operations with non-deterministic run-time requirements (e.g., loading a
process from disk) cannot be performed by a real-time system during a task switch.

RTKernel-32’s Scheduler
The decision which task is to run is made by the Scheduler. Only task states and priorities are
considered in this process.

RTKernel-32’s scheduler is not - like in many other systems - primarily based on the timer interrupt;
rather, RTKernel-32 is an event-driven system. An event is an inter-task communication that may be
initiated by a task or an interrupt handler. Events can lead to task state changes of the tasks involved.
RTKernel-32’s timer interrupt handler is just one interrupt handler among others. It has the sole purpose
of bringing tasks waiting for a certain point in time into the state "Ready". Some multitasking programs
could run completely without the timer interrupt handler (e.g., demo program RTPrimes).

The scheduler obeys the following rules:

1. Of all tasks in the state Ready, the task with the highest priority runs.

2. If the scheduler has to choose among several Ready tasks having the same priority, the task
that hasn’t run for the longest time is activated.

3. If several tasks are waiting for an event, they are activated at the occurrence of the respective
event in sequence of their priorities.

4. Except for time slice task switches, task switches are only performed if otherwise rule 1 would be
violated. The number of task switches is minimized.

Normally, the rules given above are obeyed strictly, i.e., they are never violated. Whenever a task’s state
changes, the scheduler checks whether a task switch becomes necessary according to the scheduling
rules. Only during cooperative scheduling, rule 1 can be violated between the occurrence of an interrupt
and the next call to the kernel.

158 On Time RTOS-32

Task Switches

Time slice task switches are performed if the following conditions are satisfied:

1. Time slicing must be on (default is off).

2. At least one task with the same priority as the current task must be in the state Ready.

3. The last task switch must have occurred at least TimeSlice timer ticks ago. The last task switch
may have been caused by an event other than time slicing.

The value of TimeSlice is set using function RTKTimeSlice. If TimeSlice is 1, condition 3 is true in every
timer interrupt. Please note that preemptions are not required for time slicing.

Time slicing plays a minor role and must not violate the scheduling rules given above.

Task Switches
RTKernel-32 distinguishes three principal types of task switches: Blocking, Activating and Time Slice. A
task always continues exactly where it has been previously suspended by a task switch. The three types
of task switches occur under the following conditions:

Blocking A blocking task switch takes place whenever a task blocks itself, i.e., cannot continue to
task switch run. This will happen, for example, if a task attempts to retrieve data from an empty

mailbox, or if a task releases the CPU for a certain time by calling function RTKDelay.
RTKernel-32 will in this case select the highest priority task with state Ready to run. Should
none of the application’s tasks be ready, the Idle Task is activated.

Activating Activating task switches are performed whenever a task having a higher priority than the
task switch current task becomes Ready. An activating task switch is carried out, for example, if a task

with a high priority is waiting for data at a mailbox when data is stored in the mailbox. The
formerly blocked task can now continue to run and is immediately activated.

Time slice Time slice task switches are performed by RTKernel-32’s timer interrupt handler if the
task switch conditions given above are satisfied. Time slice task switches can also be triggered directly

by a call to RTKDelay(0).

In addition to the task switch types discussed above, cooperative and preemptive task switches are
distinguished. Preemptive task switches are initiated by an interrupt handler; cooperative task switches
are initiated by tasks. Blocking task switches are always cooperative, because they are not allowed to
be initiated by interrupt handlers. A blocking preemptive task switch is considered an error by
RTKernel-32. Activating task switches can occur in both forms using the same respective mechanisms.
For example, a task or an interrupt handler storing data in a mailbox can lead to an activating task
switch. In the first case, the task switch would be cooperative; in the latter, it would be preemptive.

RTKernel-32 can be configured for cooperative or preemptive scheduling. When preemptions are
disabled, task switches which would be preemptive with preemptions enabled are postponed by the
kernel until the currently running task calls a scheduler entrypoint (an RTKernel-32 API function). In this
way, potentially preemptive task switches are converted to cooperative task switches if the application
has not enabled preemptions.

RTKernel-32 Tasks
A task or thread is a C function with its own stack. A task has a priority between 1 and 64. A high priority
means high urgency. Within a program, priorities are only meaningful relative to each other, e.g., the
behavior of a program with two tasks is identical if the priorities are 1 and 2 or 10 and 50.

Tasks are referenced using task handles15. Task handles are similar to file handles. When a task is
created, RTKernel-32 returns a unique handle to the creating task which can subsequently be used to
reference the task (e.g., to send data to it).

15 RTKernel-32 task handles are not identical to Win32 handles.

Part II RTKernel-32 159

Chapter 1 Multitasking, Real-Time, and RTKernel-32

All variables declared local to the task function are allocated on the task’s stack (except static variables).
The same is true for the local variables of all functions called by the task. Therefore, several tasks can
be started using the same task function, and each would be allocated its own stack and thus its own
local variables. A function may be called by different tasks; this results in the same code being executed,
but no reentrance problems arise, because each task has its own stack - provided the called function
accesses only its parameters and local (non-static) variables.

The common C/C++ visibility rules fully apply to multitasking programs. All tasks can access global data.

When RTKernel-32 is initialized, two tasks are created: the Idle Task and the Main Task. The Idle Task
has a priority of 0. Since user tasks must have priorities between 1 and 16, it is ensured that the Idle
Task has the lowest priority in the program. It runs whenever no other task can run. The Idle Task is
required by the scheduler, which always needs at least one "Ready" task it can activate.

The Main Task’s priority is specified when function RTKernelInit is called. The Main Task’s stack is
provided by the run-time system, i.e., RTKernel-32 does not modify the Main Task’s stack.

A task is always in one of the following states:

Current The currently active task is in the state Current. Under RTKernel-32, exactly one task is in
this state at any time (possibly the Idle Task).

Ready All tasks ready to run are in the state Ready. Usually, all Ready tasks have the same or
lower priorities as the active task.

Suspended Suspended tasks cannot run because they were stopped explicitly by the RTKernel-32
operation RTKSuspend. They can only be made Ready by calling the RTKernel-32 function
RTKResume.

Blocked Tasks in the state Blocked cannot run because they are waiting for an event (e.g., a
semaphore signal or a message coming in at a mailbox). These tasks can only be made
Ready by another task or an interrupt handler.

Delaying These tasks have blocked themselves for a certain time span. They will be made Ready
automatically by RTKernel-32’s timer interrupt handler after their delay has elapsed.

Timed Tasks waiting for the occurrence of an event with a timeout are in the state Timed. Such a
task will become Ready either if the event occurs or if the timeout expires.

All tasks not currently running are maintained by RTKernel-32 in several queues. There is, for example,
a queue for all Ready tasks. Another queue contains all tasks waiting for a certain point in time. Queues
can also build up at semaphores or mailboxes if tasks are blocked on them.

Inter-Task Communications
The term inter-task communication comprises all mechanisms serving to exchange information among
tasks. RTKernel-32 offers three different techniques: semaphores, mailboxes, and message passing.

Semaphores are offered by virtually all multitasking systems. They allow the exchange of signals for
activating and suspending tasks. A semaphore is a variable signals can be stored in or read from. Task
switches may take place whenever a semaphore containing 0 signals is accessed. RTKernel-32 defines
five different types of semaphores: counting, binary, event, resource, and mutex.

Mailboxes extend the concept of semaphores. Instead of signals, data of any type can be stored in or
read from a mailbox. A task switch occurs whenever an empty or a full mailbox is accessed. The number
of data records a mailbox can store is configurable. Mailboxes are especially suited for data buffering
between tasks or between interrupt handlers and tasks.

Message passing serves to exchange data directly between two tasks; specifically, no data or signals
will be buffered. This represents the tightest coupling between tasks because the tasks involved must
synchronize for the data exchange.

160 On Time RTOS-32

Reentrance

Reentrance
The term reentrance denotes the problems that can occur when the same code is simultaneously
executed by several tasks or when global data is simultaneously accessed by several tasks. Reentrant
code means that a task may "re-enter" the code before another task has left it. In a multitasking environ-
ment, care should be taken that as much code as possible is reentrant so that it may be used by several
tasks.

The problems that can occur when global data is used shall be illustrated by a little example. Assuming
that two tasks are supposed to count something and the program contains a global variable "Counter" of
type int which is initialized with the value 0. Both tasks perform the statement

Counter = Counter + 1;

whenever an event to be counted occurs. This statement might be translated by the compiler as follows:
MOV EAX, Counter ; line 1
ADD EAX, 1 ; line 2
MOV Counter, EAX ; line 3

For the sake of simplicity, assume that both tasks have the same priority, preemptive scheduling is
enabled, and time slicing is active.

Now the following could happen: Task 1 recognizes an event and begins to execute the machine
language instructions given above. After line 1 has been executed (register EAX contains 0), a time slice
task switch occurs and Task 2 is activated. Task 2 also recognizes an event and increments variable
Counter to a value of 1 without being interrupted. At some later time, Task 1 resumes (at line 2),
increments EAX from 0 to 1 and stores this value in the variable Counter. Even though Counter has
been incremented twice, it still has a value of 1.

This example shows that two - or more - tasks must never access global data simultaneously if at least
one of the tasks can modify the data. Actually, it is not the code which is non-reentrant, but rather, it is
the data being manipulated by the code. Even when the statement "Counter = Counter + 1;" is included
in both tasks separately, the reentrance problem is not solved.

As a consequence, shared global data should be avoided. The same is true for local variables declared
as static. If this is impossible, access to global data should be protected by semaphores. Chapter 7,
Mutual Exclusion discusses how to implement mutual exclusion areas in order to avoid access conflicts.

Unfortunately, some parts of the code are not under the programmer’s control, e.g., the run-time system
libraries. Please refer to Chapter 7, Reentrance of the C/C++ Run-Time Systems for a discussion of
solving reentrance problems of the run-time library.

Part II RTKernel-32 161

Chapter 2 Module RTKernel-32

Chapter 2
Module RTKernel-32

Module RTKernel-32 contains all constants, types, and functions needed for multitasking operation. A
multitasking program should #include file RTK32.H; it contains the declarations detailed in this chapter.

All identifiers declared PUBLIC in module RTKernel-32 start with the letters "RTK" in order to avoid
naming conflicts with other modules. If naming conflicts with other identifiers (e.g., types or constants)
do arise, the identifier concerned can be renamed in RTK32.H.

RTKernel-32 Configuration
Some of the kernel’s configuration parameters are stored in the global structure RTK32Config with the
following layout:

typedef struct {
 int StructureSize;
 DWORD DriverFlags;
 DWORD UserDriverFlags;
 DWORD Flags;
 DWORD DefaultTaskStackSize;
 DWORD DefaultIntStackSize;
 int MainPriority;
 int DefaultPriority;
 DWORD HookedIRQs;
 DWORD TaskStackOverhead;
 RTKDuration TimeSlice;
} RTK32Config;

A default version of this structure is included in the RTKernel-32 library. The source code of the default
configuration is contained in file MODULES\RTKCFG.C. If you want to define your own configuration,
include this structure in your program.

Example:
RTK32Config RTKConfig = {
 sizeof(RTK32Config), // StructureSize
 0, // Driver flags
 0, // User driver flags
 RF_AUTOINIT | RF_TRACE | // Flags
 RF_TCPUTIME | RF_STACKCHECKS, // ditto
 16*1024, // DefaultTaskStackSize
 512, // DefaultIntStackSize
 5, // MainPriority
 0, // DefaultPriority
 0x00000003, // HookedInterrupts (IRQ 0 and 1)
 256, // TaskStackOverhead
 0 // Time slice (0==off)
};

The example given above corresponds to RTKernel-32’s defaults.

Alternatively, you can modify parts of RTKConfig at run time. However, care must be taken not to
change them after RTKernel-32 has read and used them. Most values should only be changed before
RTKernelInit is called.

The various fields of RTK32Config are described below.

StructureSize
This field must always be equal to sizeof(RTK32Config); if not, RTKernel-32 will generate a fatal error.

162 On Time RTOS-32

RTKernel-32 Configuration

DriverFlags
DriverFlags defines 32 bits which may be enquired by the drivers supplied with RTKernel-32. Currently,
the following values are defined:

DF_TIMER_CHAIN If this flag is specified, the clock driver (which supplies timer interrupts to the kernel)
will chain to the interrupt handler installed before RTKernel-32 was loaded. Specify
this flag if you have other software components installed which require the timer
interrupt. Setting this flag can degrade RTKernel-32’s accuracy for activating tasks
waiting for a specific point in time. Interrupt latency can also be affected adversely.
By default, this flag is not set.

DF_IDLE_HALT Some system drivers can execute the CPU instruction Halt in RTKernel-32’s Idle
Task, significantly reducing power consumption and heat generation. However, the
target computer must be able to handle Halt bus cycles, which is frequently not the
case for low-cost embedded systems. If this flag is set, Halt will be executed by the
Idle Task if the program runs at CPL 0 and preemptions are enabled. Be default, this
flag is not set.

UserDriverFlags
Field UserDriverFlags is not used by RTKernel-32 or any drivers supplied with it. It is reserved for
user-defined drivers. If you intend to write your own drivers requiring options definable at run-time, use
this field to specify them.

Flags
Field Flags controls various options of the kernel itself. Currently, the following flags are available:

RF_TCPUTIME If set, RTKernel-32 will accumulate the CPU time consumed by each task. This
flag is only recognized by the Debug Version of RTKernel-32. The Standard
Version ignores it. It is set by default.

RF_ICPUTIME If set, RTKernel-32 will accumulate the CPU time consumed by each interrupt
handler. When RF_ICPUTIME is set, RTKernel-32 will also set RF_TCPUTIME
automatically. RF_ICPUTIME is only recognized by the Debug Version of
RTKernel-32. The Standard Version ignores it. It is not set by default.

This flag can severely degrade interrupt latency, primarily depending on the
speed of the high resolution timer driver being used. For example, the Pentium
timer is very fast and thus will not degrade performance significantly. However,
the default PC timer driver may be too slow for many systems. Use RF_ICPU-
TIME only for testing and performance analysis.

RF_PREEMPTIVE Setting this flag instructs RTKernel-32 to start up in preemptive mode. It is not
set by default, causing RTKernel-32 to run cooperatively.

You can change the scheduling mode at any time using RTKPreemptionsON
and RTKPreemptionsOFF.

RF_AUTOINIT Specifies that RTKernel-32 should automatically initialize itself on the first call
to RTKCreateThread. This flag is set by default. If you attempt to create tasks
before the kernel is initialized and this flag is not set, RTKernel-32 will generate
a fatal error message.

With automatic initialization, RTKCreateThread calls
RTKernelInit(RTKConfig.MainPriority);

and there is no need for the application to call RTKernelInit explicitly.

RF_TRACE This flag is set by default and enables the kernel tracer. It is only recognized by
RTKernel-32’s Debug Version and is ignored by the Standard Version.

RF_FPCONTEXT This flag is not set by default. If set, RTKernel-32 will by default maintain a
floating point context for each task.

Part II RTKernel-32 163

Chapter 2 Module RTKernel-32

Note that RF_FPCONTEXT only specifies RTKernel-32’s default behavior. You
can specify a floating point context for each task in the call to RTKCreate-
Thread, overriding the default set by RF_FPCONTEXT. In addition, floating
point context swapping can be switched on and off dynamically at run time
using RTKProtect8087() and RTKFree8087().

RF_STACKCHECKS This flag is set by default and is only recognized by the kernel’s Debug Version.
When set, it causes RTKernel-32 to call RTKStackCheck on entry to every
RTKernel-32 API function. This flag can be set and reset dynamically at run-
time. It is checked on every kernel entry. You must reset this flag at least
temporarily if the stack is set to some data area not allocated by RTKernel-32.

RF_PULSWIN32 This flag is not set by default. If it is set, RTKPulse behaves just like the Win32
PulseEvent function. If no task is being released by the call to RTKPulse, the
event is left in a signalled state. RTKernel-32’s default behavior is to always
reset the event, regardless of the number of tasks released.

You should set this flag if you prefer Win32’s behavior (see Chapter 3, Function
PulseEvent).

RF_WIN32CS_MUTEX If set, RTKernel-32 will use mutex semaphores to implement Win32 Critical
Sections. By default, binary semaphores with recursion support are used.

RF_WIN32MUTEX_MUTEX If set, RTKernel-32 will use mutex semaphores to implement Win32 Mutex
semaphores. By default, binary semaphores with recursion support are used.

DefaultTaskStackSize
This field specifies the default task stack size. This value is used if the stack size parameter for
RTKCreateThread is zero. The default is 16k.

DefaultIntStackSize
This field specifies the default interrupt stack size. The default is 512. You can change the interrupt
stack size for each IRQ with RTKSetIRQStack.

MainPriority
This field defines the priority of the main task if zero is specified in the call to RTKernelInit or when the
kernel is initialized through auto initialization. This value also defines the absolute value of Win32’s
relative priority PRIORITY_NORMAL. If this field is zero, RTKConfig.DefaultPriority is used instead; its
default value is 5.

DefaultPriority
When the Priority parameter to RTKCreateThread is zero, this value is used instead. If DefaultPriority is
also zero, the new task inherits its priority from the creating task.

HookedIRQs
This field defines a bit for each IRQ on which RTKernel-32 should install its low-level interrupt handlers
even when no interrupt handler is installed through RTKernel-32’s interrupt API. You should set these
bits for all interrupt handlers wich are installed before RTKernel-32 is initialized by software. This will
ensure that these interrupt handlers are executed on their own interrupt stack and will protect them from
preemptive task switches. By default, only bit 0 (for IRQ 0) is set.

TaskStackOverhead

The TaskStackOverhead is added to the stack size parameter given for each task to accommodate
interrupts and stack space needed by RTKernel-32 internally. It defaults to 256.

164 On Time RTOS-32

RTKernel-32 Initialization

TimeSlice
If this field has a value greater zero, RTKernel-32 will start up with time slicing enabled. The default
value is zero (no time slicing). Please note that preemptions and time slicing are independent of each
other.

RTKernel-32 Initialization
Before tasks can be created, RTKernel-32 must be initialized by function RTKernelInit. RTKernelInit
must either be called explicitly by the application or implicitly by the first RTKCreateThead call of the
program. Automatic initialization can be disabled by not setting the RF_AUTOINIT flag in RTKCon-
fig.Flags.

Function RTKernelInit
Function RTKernelInit initializes RTKernel-32:

RTKTaskHandle RTKernelInit(unsigned MainPrio);

Parameter MainPrio defines the priority of the main task. If it is zero, RTKConfig.MainPriority is used. If
RTKConfig.MainPriority also is zero, RTKConfig.DefaultPriority is used. A floating point context is main-
tained for the main task if RF_FPCONTEXT is set in RTKConfig.Flags.

RTKernelInit will call the initialization routines of all drivers, install its low-level interrupt handlers for all
IRQs specified in RTKConfig.HookedIRQs, create the Idle Task, and install an exit function using atexit.
If the kernel has already been initialized through a previous explicit or implicit call to RTKernelInit, only
the priority of the main task is set and no other actions are performed.

The task handle of the main task is returned.

RTKernel-32 Exit Function
RTKernel-32’s exit function is called by function exit() or after the return of function main().

All tasks (except the active task and the Idle Task) are suspended.

Finally, all interrupt vectors modified by RTKernel-32 are restored to their original values.

Task Management
This section describes the RTKernel-32 operations for creating, terminating, and managing tasks.

Function RTKCreateThread

Any task in a program can create other tasks using this function:
RTKTaskHandle RTKCreateThread(RTKThreadFunction TaskCode,
 unsigned Priority,
 unsigned StackSize,
 unsigned Flags,
 void * Parameter,
 const char * Name);

Parameter TaskCode is a C function with __cdecl calling conventions and a single void * parameter. It
contains the code to be executed by the new task. Any number of tasks can be created using the same
function. All these tasks would execute the same code, but each would have its own local data. Methods
of classes cannot be used for parameter TaskCode. Starting a task with a class method is discussed in
Chapter 7, Starting Objects’ Methods as Tasks.

Parameter Priority is the base priority of the new task as an integer between MIN_PRIO (1) and
MAX_PRIO (64). Alternatively, zero may be specified to instruct RTKernel-32 to use the default priority
given in RTKConfig.DefaultPriority. If this value also is zero, the new task is created with the same base
priority as the creating task. The higher the priority, the higher is the urgency of the task. If the priority of
the new task is higher than that of the creating task and the task is not created in suspended state, the
new task is immediately activated.

Part II RTKernel-32 165

Chapter 2 Module RTKernel-32

RTKernel-32 distinguishes between the base priority and the execution priority of a task. For scheduling
purposes, only the execution priority is considered. The execution priority of a task is the maximum of its
base priority and the priorities of all resource or mutex semaphores occupied by the task. The priority of
a resource or mutex semaphore is the highest priority of all tasks waiting at the semaphore. Please refer
to section Semaphores for details on resource and mutex semaphores and priority inheritance.

Parameter StackSize is the net stack required by the new task (in bytes). RTKernel-32 adds the value
RTKConfig.TaskStackOverhead to the value specified and allocates a memory block of corresponding
size. If parameter StackSize is zero, RTKConfig.DefaultStackSize is used instead.

Please note that stack overflows are one of the most common and most evasive errors of multitasking
programs. During program development, use functions RTKGetTaskStack, RTKGetMinStack, and
RTKTaskInfo extensively to analyze actual stack usage of your tasks. At least during the program devel-
opment phase, stacks should be dimensioned generously (at least 8k - 16k).

Parameter Flags can be used to select options for the new task. The following values are currently
defined:

TF_SUSPENDED If this flag is specified, the task is created in suspended state. It does not start
running until RTKResume is called.

TF_MATH_CONTEXT This flag instructs RTKernel-32 to maintain a floating point context for the new
task. You cannot combine this flag with TF_NO_MATH_CONTEXT.

TF_NO_MATH_CONTEXT This flag instructs RTKernel-32 not to maintain a floating point context for the
new task. You cannot combine this flag with TF_MATH_CONTEXT.

If neither TF_MATH_CONTEXT nor TF_NO_MATH_CONTEXT are given, RTKernel-32 will set up a
floating point context if RF_FPCONTEXT is set in RTKConfig.Flags.

Parameter Parameter is passed to the task’s function. RTKernel-32 does not interpret this value; it is just
passed on. You can use it to pass arbitrary information to the new task.

Parameter Name is a pointer to the name of the task. The name of the new task is only used for easy
identification of the task and should not be longer than 15 characters. RTKernel-32 just copies the
pointer to the name. Therefore, the name should not be modified after the task has been created.

The function value returned to the caller is an RTKernel-32 task handle (not a Win32 handle). It is a
reference to the newly created task.

In addition to the stack, RTKernel-32 allocates a TCB (Task Control Block, used by RTKernel-32 inter-
nally) and - if required - a buffer for the floating point context. If RTKernel-32 is unable to allocate suffi-
cient memory through its memory driver, the program is aborted with a corresponding error message.
Please note that creating a task with a higher priority immediately leads to a task switch if the task is not
created in suspended state.

Function RTKRTLCreateThread
Function RTKRTLCreateThread creates a thread with multithread run-time system library support:

RTKTaskHandle RTKRTLCreateThread(RTKThreadFunction TaskCode,
 unsigned Priority,
 unsigned StackSize,
 unsigned Flags,
 void * Parameter,
 const char * Name);

This function has the same parameters as function RTKCreateThread (see previous section). The only
difference is that the program’s C/C++ or Pascal run-time system is made aware of the new thread. This
is required to avoid reentrance problems when several threads call non-reentrant run-time systems
function.

RTKRTLCreateThread requires the compiler’s multithread run-time system libraries to be linked.

166 On Time RTOS-32

Task Management

Threads created with RTKRTLCreateThread should not be terminated with RTKTerminateThread,
because resources allocated by the run-time system for the thread would not be deallocated. Instead,
such threads should return from their thread function or they should call whatever terminating function is
made available by the tun-time system.

Function RTKTerminateTask

Function RTKTerminateTask normally does not need to be called. The natural termination of a task
occurs when the task reaches the end of its task function. Only the Main Task terminates all tasks (and,
consequently, the whole program) when it reaches the end of function main, or when function exit is
called.

void RTKTerminateTask(RTKTaskHandle * Handle);

Parameter Handle is a pointer to a task handle identifying the task to be terminated. It must have been
assigned a legal value by RTKCreateThread or RTKCurrentTaskHandle. If an illegal value is passed to
RTKTerminateTask, the program is aborted with an error message. RTKTerminateTask initiates a task
switch if the task to be terminated is the active task. Handle is assigned the value RTK_NO_TASK.

Prior to actually terminating the task, RTKernel-32 makes sure the task is not occupying a resource or
mutex semaphore (see section Semaphores). If this is the case, the task continues to run until all
resources have been released. The task calling RTKTerminateTask does not wait until task termination
has been completed, but continues to run immediately.

Stack and TCB of the task to be terminated are deallocated, provided that *Handle does not reference
the current task. The memory of a task terminating itself is released by the next call to RTKCreate-
Thread or RTKDeallocTerminatedTasks. Until then, the task still exists in the state Terminated; however,
it cannot run any more.

Care should be taken that a task is not terminated twice (e.g., by itself and another task), because the
task would not exist any more when RTKTerminateTask is called the second time. In this case,
RTKernel-32 would abort the program with an error message since the handle would have an illegal
value.

Threads created with RTKRTLCreateThread should not be terminated with RTKTerminateThread,
because resources allocated by the run-time system for the thread would not be deallocated. Instead,
such threads should return from their thread function or they should call whatever terminating function is
made available by the tun-time system.

As in sequential programs, function exit can be called at any time to terminate the program (and conse-
quently all tasks). However, function abort should be avoided because it does not restore the interrupt
vectors.

Function RTKSuspend
Function RTKSuspend can be used to deactivate a task. Thereafter, the task can only be reactivated by
calling function RTKResume.

void RTKSuspend(RTKTaskHandle Handle);

Parameter Handle references the task to deactivate. If the task is already suspended, RTKSuspend has
no effect.

Prior to actually suspending the task, RTKernel-32 makes sure the task is not occupying a resource or
mutex semaphore. In this case, the task continues to run until all resources have been released. The
suspending task does not wait until task termination has been completed, but continues to run immedi-
ately.

Function RTKResume
RTKResume is the counterpart of RTKSuspend. A task suspended by RTKSuspend can be reactivated
using RTKResume.

void RTKResume(RTKTaskHandle Handle);

If task "Handle" is not suspended, RTKResume has no effect.

Part II RTKernel-32 167

Chapter 2 Module RTKernel-32

Function RTKSetPriority
Function RTKSetPriority serves to change a task’s priority.

void RTKSetPriority(RTKTaskHandle Handle, unsigned Priority);

Parameter Handle references the task whose priority to change. Parameter Priority is the new base
priority of the task. It must be in the range MIN_PRIO to MAX_PRIO. After a call to RTKSetPriority, the
execution priority of the task is re-evaluated and the scheduler performs a task switch if required.

Function RTKProtect8087
In addition to the main processor, a task can use a math coprocessor, if installed, or an 80387 software
emulator. In this case, the state of the coprocessor will also be saved and restored during a task switch.
Coprocessor/emulator usage can be turned on or off separately for each task using RTKProtect8087
and RTKFree8087. The initial floating point usage of a task is controlled by the Flags parameter to
RTKCreateThread or flag RF_FPCONTEXT in RTKConfig.Flags.

RTKProtect8087 turns on coprocessor protection:
void RTKProtect8087(void);

The coprocessor task switch is only performed if actually required.

The exact behavior of floating point context switching is determined by the floating point driver used by
RTKernel-32. For further details, please refer to Chapter 5, Floating Point.

If tasks use the coprocessor without coprocessor protection enabled, calculations may yield wrong
results or the program may crash due to an error exception of the coprocessor.

During cooperative scheduling, coprocessor protection is not required at all if it is guaranteed that task
switches cannot occur during the evaluation of a floating point expression.

If RTKernel-32 finds that no floating point context switching is required by the floating point driver (for
example, because the emulator used is reentrant), all calls to RTKProtect8087 are ignored.

Function RTKFree8087
Function RTKFree8087 can be used to turn off coprocessor/emulator protection:

void RTKFree8087(void);

This may result in significantly improved task switch times.

Function RTKAllocUserData

RTKernel-32 reserves up to 16 user data entries for each task. Each entry is a void pointer and can be
used by the application for arbitrary purposes.

To reserve an entry for each task, the following function call can be used:
int RTKAllocUserData(void);

The function result is a valid index for every task, even those created at a later time. It can be used as a
parameter for RTKGet/SetUserData.

If all 16 user data entries are already occupied, the program is aborted by RTKAllocUserdata with an
error message.

RTKernel-32’s user data corresponds to Win32’s TLS data. However, unlike Win32, RTKernel-32 also
allows access to the TLS of tasks other than the current task. However, task user data indexes and TLS
indexes should not be mixed (e.g., do not call TlsGetValue with a task user data index).

Function RTKSetUserData
A task’s user data entry can be set to a specific value with the following function call:

void RTKSetUserData(RTKTaskHandle Handle, int Index, void * UserData);

168 On Time RTOS-32

Enquiring Tasks

Parameter Index must be a value returned by RTKAllocUserdata. Parameter UserData is stored in the
TCB of the task referred to by parameter Handle and can be retrieved later using RTKGetUserData or
RTKGetLocalData.

Function RTKGetUserData
A task’s user data entry set by function RTKSetUserData can be retrieved using this function:

void * RTKGetUserData(RTKTaskHandle Handle, int Index);

If no entry has been set for the respective task using RTKSetUserData, NULL is returned.

Function RTKGetLocalData

This function returns a user data entry for the currently running task:
void * RTKGetLocalData(int Index);

This function returns the same result as
RTKGetUserData(RTKGetCurrentTaskHandle(), Index);

but is faster.

Enquiring Tasks
This section discusses all RTKernel-32 operations for enquiring the properties of tasks.

Function RTKCurrentTaskHandle
Function RTKCurrentTaskHandle returns the handle of the currently running task:

RTKTaskHandle RTKCurrentTaskHandle(void);

Function RTKGetTaskState

Function RTKGetTaskState returns the current state of a task:
RTKTaskState RTKGetTaskState(RTKTaskHandle Handle);

The result is of enumeration type RTKTaskState. One of the following values can be returned:

TS_READY The task is ready to run.

TS_CURRENT The task is running.

TS_SUSPENDED The task has been suspended by a call to RTKSuspend.

TS_DELAYING The task is waiting in a call to RTKDelay or RTKDelayUntil.

TS_BLOCKED_WAIT The task is waiting in a call to RTKWait at a semaphore.

TS_TIMED_WAIT The task is waiting in a call to RTKWaitTimed at a semaphore.

TS_BLOCKED_PUT The task is waiting in a call to RTKPut at a full mailbox.

TS_BLOCKED_GET The task is waiting in a call to RTKGet at an empty mailbox.

TS_TIMED_PUT The task is waiting in a call to RTKPutTimed at a full mailbox.

TS_TIMED_GET The task is waiting in a call to RTKGetTimed at an empty mailbox.

TS_BLOCKED_SEND The task is waiting in a call to RTKSend for the receiver task.

TS_BLOCKED_RECEIVE The task is waiting in a call to RTKReceive to receive data.

TS_TIMED_SEND The task is waiting in a call to RTKSendTimed for the receiver task.

TS_TIMED_RECEIVE The task is waiting in a call to RTKReceiveTimed to receive data.

TS_DEADLOCKED The task is blocked in a send operation (message passing) and the receiver task
has terminated in the meantime.

Part II RTKernel-32 169

Chapter 2 Module RTKernel-32

TS_ILLEGAL The handle passed does not reference an existing task. Every other
RTKernel-32 operation expecting a task handle as a parameter will abort the
program with an error message if an invalid handle is passed to it. You can use
RTKGetTaskState to verify handles.

TS_TERMINATED The task has terminated itself by calling RTKTerminateTask with its own handle
or by reaching the end of its task function. The task cannot run any more but it
still exists because its memory has not yet been deallocated.

Function RTKGetTaskPrio
Function RTKGetTaskPrio returns the current execution priority of a task:

unsigned RTKGetTaskPrio(RTKTaskHandle Handle);

Parameter Handle references the task whose priority to enquire.

Function RTKGetTaskStack

Function RTKGetTaskStack returns the remaining free stack space of a task:
unsigned RTKGetTaskStack(RTKTaskHandle Handle);

Parameter Handle references the task whose stack to enquire. To enquire the stack of the current task,
RTKGetTaskStack(RTKCurrentTaskHandle()) can be used. Please note that sufficient stack space for
interrupts must be available at all times.

Depending on the system driver, RTKernel-32 may not be able to determine the stack limits of the main
task. In this case, the value FFFFFFFFh is returned for it. The actual free stack space can never have
this value.

Function RTKGetMinStack
Function RTKGetMinStack returns the least number of bytes that has been free on a task’s stack since it
was created:

unsigned RTKGetMinStack(RTKTaskHandle Handle);

Parameter Handle references the task whose stack to enquire.

RTKernel-32 initializes the stack memory of a task with the ASCII code of the letter ’S’. RTKGetMin-
Stack searches the stack from bottom to top for a byte not having value ’S’ to determine how far the
stack has been used.

Depending on the system driver, RTKernel-32 may not be able to determine the stack limits of the main
task. In this case, the value FFFFFFFFh is returned for it. The actual free stack space can never have
this value.

Function RTKTaskInfo

RTKTaskInfo can write a list of all currently existing tasks to a string:
void RTKTaskInfo(char * Buffer, unsigned BufferSize, unsigned ListFlags);

Parameter Buffer points to the string to store the list in. BufferSize specifies the size of the buffer.
RTKTaskInfo will write no more than BufferSize characters to *Buffer. Parameter ListFlags is a sum of
individual list flags. Each list flag will produce a specific column in the task list.

Some of the list flags are only available in RTKernel-32’s Debug Version. If they are used in the
Standard Version, only a dash is displayed in the corresponding columns.

RTKTaskInfo is indispensable during the program development phase. You should always provide for
interactively displaying a task list containing at least the tasks’ names and states. Please try the
commands ’TASKS1’ and ’TASKS2’ in program RTDemo for examples.

The discrete list flags are:

LF_TASK_HANDLE Heading: Handle. The task’s handle in hexadecimal notation.

LF_TASK_NAME Heading: Name. The name of the task passed to RTKCreateThread.

170 On Time RTOS-32

Enquiring Tasks

LF_BASE_PRIO Heading: BPrio. The task’s base priority defined by RTKCreateThread. The
base priority can be modified at run-time using RTKSetPriority.

LF_TASK_PRIO Heading: Prio. The task’s execution priority. Due to priority inheritance, the
execution priority of a task can temporarily be higher than the base priority.

LF_TASK_STATE Heading: State. The task’s state.

LF_REL_DELAY Heading: R.Del. For tasks in a timed kernel operation, this is the number of
ticks the task must wait until the timeout occurs.

LF_ABS_DELAY Heading: A.Del. For tasks in a timed kernel operation, this is the absolute time
when the timeout expires.

LF_FREE_STACK Heading: FStck. The current free stack of the task. If RTKernel-32 cannot
determine the stack limits, only a dash is displayed (also refer to section
Function RTKGetTaskStack).

LF_MIN_STACK Heading: MStck (MinFreeStack). Number of bytes in the task’s stack space
that have never been used by the task. If RTKernel-32 cannot determine the
stack limits, only a dash is displayed (also refer to section Function RTKGet-
MinStack).

LF_COPROCESSOR Heading: 80387. Shows whether RTKernel-32 maintains a floating point
context for the task.

LF_TASK_SWITCHES Heading: Scheds. Number of task switches to the respective task.

LF_CPU_TIME Heading: CTime. CPU time usage of the respective task in seconds. This
column is only available in the Debug Version when flag RF_TCPUTIME is set
in RTKConfig.Flags.

LF_REL_CPU_TIME Heading: CT%. Percentage of available CPU time allocated to the respective
task. This column is only available in the Debug Version when flag RF_TCPU-
TIME is set in RTKConfig.Flags.

LF_WAITING_AT_POS Heading: CodePos. Address where the respective task will resume when
activated by the kernel. If the task was interrupted by an interrupt, this address
cannot be determined in most cases and only a dash is displayed. If the
program uses a source code position driver and has loaded a symbol table,
the name and line number of the respective source file are displayed instead
of a hex address. For more information, please refer to Function RTKLoad-
Symbols. This column is only available in the Debug Version.

LF_WAITING_AT_OBJ Heading: WaitingAt. The object the task is waiting at. Depending on the task’s
state, this can be another task, a semaphore, a mailbox, or no object.

LF_RESOURCES Heading: Resources. Displays a list of all resources (resource or mutex sema-
phores) currently occupied by the respective task. This information can be
very useful in discovering deadlocks; however, this requires that resource
management is indeed implemented using resource or mutex semaphores
(which is strongly recommended).

LF_LIST_ALL LF_LIST_ALL is the sum of all available list flags.

CPU time usage and the number of task switches are cumulated since program startup or the last call to
RTKClearStatistic.

The width of the list’s up to 16 columns is determined by the respective column headings. These are
stored in array RTKListTitles and may be modified by the application at run-time to obtain a different list
layout. If, for example, you find column LF_CPU_TIME too narrow, you can create a column of width 10
and a right-justified heading using this assignment:

RTKListTitles[11] = " CPU Time";

Part II RTKernel-32 171

Chapter 2 Module RTKernel-32

Function RTKClearStatistic
Function RTKClearStatistic clears the task switch counters and CPU time usage statistics for all tasks
and interrupts:

void RTKClearStatistic(void);

Function RTKLoadSymbols
With RTKernel-32’s Debug Version, function RTKTaskInfo and error messages can display tasks’ code
positions at source level after a symbol table has been loaded using function RTKLoadSymbols:

int RTKLoadSymbols(const char * FileName);

The type of file accepted depends on the source code position driver being used. Currently, the only
driver supplied with RTKernel-32 is SRCTDS. It requires a TDS or EXE file with Borland Debugger
symbol tables, the same debug symbol table format supported by RTTarget-32’s debugger RTD32.

The return value indicates the success of the operation. The following values can be returned:

0 Symbol table loaded successfully
1 File containing symbol table could not be opened
2 Invalid symbol table file type
3 Not enough memory for symbol table
4 No line numbering information found
6 Display of code positions not supported

Time
For a real-time system, time is of great importance. RTKernel-32 maintains an interrupt-driven clock
which can be set and read. Furthermore, a task can block itself for a certain time span in order to make
CPU time available to other tasks.

Time is expressed in timer ticks. RTKernel-32 uses type RTKTime to store times and type RTKDuration
to store time intervals. Both Time and Duration have type signed long and thus can span a range of 232

ticks.

RTKernel-32 gets its timer interrupts from the clock device driver. The clock driver is only required to
generate periodic interrupts. RTKernel-32 does not (and need not) know how much real time (i.e., time
expressed in seconds) elapses between two consecutive timer ticks. For information on translating timer
ticks to real time, please refer to Chapter 4, Module Clock.

Since RTKernel-32’s clock is limited to a resolution of 32 bits, an overflow will occur after 231 timer ticks.
For example, if the timer interrupt interval is set to 1 millisecond, the first overflow will occur after about
25 days, followed by periodic overflows every 50 days. Such an overflow is no problem for RTKernel-32;
the behavior of tasks is not affected by clock overflows. RTKernel-32 increments the clock from
2147483647 to -2147483648. Application programs storing times in variables of type RTKTime or
RTKDuration are compatible with RTKernel-32’s behavior. However, times stored in variables that
overflow differently (e.g., floats or doubles), must be corrected by the application when RTKernel-32’s
clock overflows.

Function RTKSetTime

Function RTKSetTime can be used to set RTKernel-32’s internal clock:
void RTKSetTime(RTKTime NewTime);

Parameter NewTime is the new value for RTKernel-32’s internal clock. Negative values are allowed.
RTKernelInit calls RTKSetTime(0).

The behavior of tasks waiting in an RTKDelay, RTKDelayUntil, or a timed operation is not affected by
RTKSetTime; i.e., the point in real-time when the timeout occurs stays the same.

172 On Time RTOS-32

Semaphores

Function RTKGetTime
Function RTKGetTime can be used to read RTKernel-32’s clock.

RTKTime RTKGetTime(void);

The return value is the current time of RTKernel-32’s internal clock. If RTKSetTime has not been called,
RTKGetTime returns the number of timer ticks since program start (if no overflow has occurred).

Function RTKDelay
RTKDelay blocks the calling task for the specified time span and allows other tasks to run.

void RTKDelay(RTKDuration Ticks);

Parameter Ticks specifies the number of timer interrupts the task must be blocked. Please note that the
actual time interval of suspension will lie in the range [(Ticks-1) .. Ticks], depending on how long ago the
last timer interrupt occurred.

If RTKDelay is called with Ticks <= 0, RTKernel-32 checks whether other tasks with the same or a
higher priority are ready. If a ready task with higher priority is found (this can only happen during cooper-
ative scheduling), it is activated. Otherwise, if tasks with the same priority are ready, the task not having
run longest is activated. Thus, RTKDelay(0) can be used to implement round-robin scheduling, also
known as cooperative time slicing. Time slicing need not be enabled for this purpose.

Function RTKDelayUntil

Tasks that want to continue running at a certain time can use RTKDelayUntil:
void RTKDelayUntil(RTKTime Ticks);

Parameter Ticks specifies the absolute time for the task to continue. RTKDelay, on the other hand,
interprets its parameter as a time interval during which the task should not run. RTKDelayUntil can be
used to implement cyclic tasks that run in a fixed time frame (see Chapter 7, Cyclic Tasks (Timer)).

Function RTKTimeSlice
The term time slicing denotes forced task switches after a fixed time interval if other tasks with the same
priority as the active task are ready. Function RTKTimeSlice activates this algorithm:

void RTKTimeSlice(RTKDuration Ticks);

Ticks defines the maximum time interval a task is allowed to run before another task is activated. If
Ticks <= 0, time slicing is disabled (RTKernel-32’s default).

Time slicing only takes effect when several tasks having the same priority are ready and no tasks having
a higher priority can run. If, for example, three tasks of priority 7 are ready and another of priority 8, only
the task of priority 8 will run. As soon as this task blocks itself, however, the other three are activated in
turn after Ticks timer ticks.

It is not required to activate preemptions for time slicing. During cooperative scheduling, time slice task
switches are not triggered by the timer interrupt handler. Instead, they are performed in the next kernel
call, if required.

Semaphores
Semaphores are a popular mechanism for synchronizing tasks. A semaphore can be thought of as an
event counter which can never become negative. A semaphore can be used by any number of tasks
using the functions described in this section. A program can use any number of semaphores.

Function RTKSignal stores an event in a semaphore; RTKWait retrieves an event from the semaphore if
one is available; otherwise, it waits until an event is signalled. RTKernel-32 distinguishes five types of
semaphores: counting, binary, event, resource, and mutex semaphores. A semaphore’s type is set
when the semaphore is created.

Part II RTKernel-32 173

Chapter 2 Module RTKernel-32

Counting semaphores can store up to 232-1 events. They are suitable for general synchronization
purposes and comply with the definitions given by Dijkstra16 or Ben-Ari17.

Binary semaphores cannot count, they can only accept the values 0 and 1. Function RTKSignal will
always set a binary semaphore to value 1, even if it already has a value of 1; RTKWait always sets its
value to 0.

Event semaphores are similar to binary semaphores. However, executing RTKWait will not decrement
the semaphore’s count value. Thus, a single call to RTKSignal can release any number of tasks waiting
at the event semaphore. To force an event semaphore back to zero, you must explicitly call function
RTKResetEvent or RTKPulse, which are only available for event semaphores. Function RTKSignal will
always set an event semaphore to value 1. RTKWait does not change the event semaphore value.

Resource semaphores are especially suited for resource management (also refer to Chapter 7, Mutual
Exclusion). A resource semaphore guarantees the priority of a task occupying a resource to be at least
the maximum of the priorities of all other tasks also requiring the respective resource. This technique is
known as priority inheritance. A task requesting a resource using RTKWait hands down its priority to the
task occupying the resource. This makes sure that a high priority task is never uneccessarily blocked by
a task of lower priority.

Priority inheritance may be thought of as pseudo-priorities of resource semaphores. Assume that a task
wants to occupy a resource using RTKWait, but is blocked because the resource is already occupied. In
this case, the task passes its priority to the resource semaphore, which in turn passes its priority to the
task currently occupying the resource. Priority inheritance only takes place, of course, if it leads to an
increase of the respective priority. A task’s priority can only be raised by priority inheritance; it can never
become lower than its base priority.

Another property of resource semaphores facilitates the safe termination and suspension of tasks. A
task can only be suspended or terminated immediately if it does not occupy any resources. Otherwise, it
continues to run until it has released all resources and subsequently suspends or terminates itself. This
mechanism serves to avoid deadlocks.

Compared to other semaphore types, two important restrictions apply for resource semaphores: a
resource must always be released (using RTKSignal) by the task that has acquired it using RTKWait. A
task can occupy any number of resources simultaneously. However, it must release the resources
exactly in the reverse sequence as they have been acquired. Example:

RTKWait(R1);
RTKWait(R2);
...
RTKSignal(R2);
RTKSignal(R1);

If the sequence of RTKSignal calls were exchanged, RTKernel-32’s Debug Version would abort the
program with an error message. Since the Debug Version can check for compliance with the rules for
resource semaphores, errors like those described in Chapter 8, Deadlock cannot occur. This is another
important advantage of resource semaphores.

Due to these restrictions, resource semaphores are not suited for use by interrupt handlers.

A variation of resource semaphores are mutex semaphores. The only difference is that a task is allowed
to acquire a resource it already owns. Example:

RTKWait(R);
RTKWait(R);
...
RTKSignal(R);
RTKSignal(R);

16 E. W. Dijkstra. Co-operating Sequential Processes. In F. Genuys (ed.) Programming Languages, Academic
Press, New York, 1968

17 M. Ben-Ari. Principles of Concurrent and Distributed Programming. Prentice Hall International, Hemel Hemstead,
1990

174 On Time RTOS-32

Semaphores

If R were a resource semaphore, the second call to RTKWait would cause an error (a task cannot
acquire a resource it already owns). However, for a mutex semaphore, such a construct is legal and the
resource would not be released until the same number of RTKSignal calls as RTKWait calls have
occurred.

The disadvantage of mutex semaphores compared to resource semaphores is that unmatched
RTKWait/RTKSignal pairs are not detected. If a call to RTKSignal is missing, the resource would never
be released and no error is reported, even when the task continues to call RTKWait and RTKSignal on
the same mutex.

RTKernel-32 uses resource semaphores to implement its Automatic Library Protection.

The following example shows how to use a semaphore for general synchronization. Assume Task A
should be activated when Task B has reached a certain point (Task B is the main program):

#include <stdio.h>
#include <rtk32h>

RTKSemaphore S;

void RTKAPI TaskA(void * P)
{
 printf("Task A: waiting on semaphore S\n");
 RTKWait(S);
 printf("Task A: continued\n");
}

int main(void)
{
 printf("\n");
 RTKernelInit(3);
 S = RTKCreateSemaphore(ST_COUNTING, 0, "Semaphore S");
 printf("Main : creating task A\n");
 RTKCreateThread(TaskA, 4, 0, 0, NULL, "Task A");
 printf("Main : setting semaphore S\n");
 RTKSignal(S);
 printf("Main : done.\n");
 return 0;
}

The semaphore is initialized with 0 events. Task A has a higher priority and thus is started immediately
after RTKCreateThread. Its second statement is RTKWait(S). Since there are no events stored, Task A
is blocked and the main task runs until the semaphore is signalled. When the main task executes the
statement RTKSignal(S), Task A is activated immediately and retrieves the event. Both tasks then run to
completion and the program terminates.

Using semaphores to implement mutual exclusion is discussed in Chapter 7, Mutual Exclusion.

The discrete functions for semaphores shall now be introduced.

Function RTKCreateSemaphore
RTKCreateSemaphore creates and initializes a semaphore:

RTKSemaphore RTKCreateSemaphore(RTKSemaType Type,
 unsigned InitialValue,
 const char * Name);

Parameter Type is the desired semaphore type; the values ST_COUNTING, ST_BINARY, ST_EVENT,
ST_RESOURCE, and ST_MUTEX are valid. InitialValue must be valid for the chosen semaphore type.
For counting semaphores, this is 0 .. 232-1, for binary and event semaphores 0 or 1, and for resour-
ce/mutex semaphores it must be 1. Parameter Name is a string of up to 15 characters length, which can
be displayed by functions RTKTaskInfo, RTKSemaInfo, and by error messages.

RTKCreateSemaphore allocates the semaphore. The return value is a reference to the new semaphore.

RTKCreateSemaphore is a macro and expands to
RTKOpenSemaphore(Type, InitialValue, 0, Name)

Part II RTKernel-32 175

Chapter 2 Module RTKernel-32

Function RTKOpenSemaphore
Function RTKOpenSemaphore creates or locates an existing semaphore:

RTKSemaphore RTKOpenSemaphore(RTKSemaType Type,
 unsigned InitialValue,
 unsigned Flags,
 const char * Name);

Parameter Flags specifies whether and how the function should search for an existing semaphore. It can
take the following values:

0 A new semaphore is created unconditionally.

SF_SEARCH RTKOpenSemaphore attempts to locate a semaphore of the same Type and
Name that was also created with SF_SEARCH specified. Unnamed sema-
phores are not considered and name comparison is case sensitive. If found, a
reference to this existing semaphore is returned and no new semaphore is
created. In this case, Parameter InitialValue is ignored.

SF_FAIL_NOT_FOUND This flag may be specified in addition to SF_SEARCH. It prevents RTKOpen-
Semaphore from allocating a new semaphore if the search failed. Value
RTK_NO_SEMAPHORE is returned in this case.

Parameters Type, InitialValue, and Name have the same meaning as for RTKCreateSemaphore (see
above).

Function RTKDeleteSemaphore

RTKDeleteSemaphore deallocates and invalidates an existing semaphore:
void RTKDeleteSemaphore(RTKSemaphore * S);

Parameter S must point to a valid semaphore. No task may be queued to access the semaphore. After
successful deletion, RTKernel-32 assigns value RTK_NO_SEMAPHORE to *S.

The attempt to access a semaphore after its deletion will produce a fatal error under the Debug Version.
In the Standard Version, the results are unpredictable.

Function RTKSemaInfo

RTKSemaInfo writes a list of all currently existing semaphores to a string buffer:
void RTKSemaInfo(char * Buffer, unsigned BufferLen);

Parameter Buffer is a pointer to the string to receive the list. BufferLen specifies the size of the buffer. It
should have at least 120+n*60 bytes, where n is the number of currently existing semaphores.

RTKSemaInfo will display the semaphore’s names, types, values, and a list of all tasks waiting at the
respective semaphore. For resource and mutex semaphores, the name of the owning task (if any) is
also given.

RTKSemaInfo is intended primarily for debugging purposes.

Function RTKSemaValue
Using function RTKSemaValue, the number of events stored in a semaphore can be enquired. It never
leads to a task switch.

unsigned RTKSemaValue(RTKSemaphore S);

Parameter S references the semaphore to enquire. The number of events is returned.

Function RTKResourceOwner

Function RTKResourceOwner can be used to enquire which task currently occupies a resource or
mutex semaphore:

RTKTaskHandle RTKResourceOwner(RTKSemaphore S);

176 On Time RTOS-32

Semaphores

Parameter S references the resource or mutex semaphore to enquire. If the semaphore is free, the
function returns the value RTK_NO_TASK; otherwise, the task handle of the task occupying the
resource is returned.

This function can only be used for resource and mutex semaphores.

Function RTKSignal

Function RTKSignal stores an event in a semaphore.
void RTKSignal(RTKSemaphore S);

S references the semaphore to store the event. If one or more tasks are waiting at the semaphore, the
task with the highest priority is made Ready. If its priority is higher than that of the calling task, it is
activated immediately. If the semaphore has type ST_EVENT, all waiting tasks are released.

If no task is waiting at the semaphore, the event is stored. A counting semaphore can store up to
232-1 events. The application should make sure that this limit is not exceeded. Binary and event sema-
phores ignore additional events if they already contain one.

Attempting to set a resource or mutex semaphore to a value > 1 using RTKSignal is considered an
error. In this case, the Debug Version will issue an error message and abort the program; in the
Standard Version, the results are unpredictable.

If S is a resource or mutex semaphore, the priority of the active task is re-evaluated following the rules of
priority inheritance.

Function RTKPulse
Function RTKPulse releases all tasks waiting at an event semaphore and immediately resets the
semaphore.

void RTKPulse(RTKSemaphore S);

All tasks currently waiting at S are made ready. If one or more of these have a higher priority than the
calling task, a task switch occurs.

If flag RF_PULSWIN32 is set in RTKConfig.Flags (which is not the case by default), the semaphore is
set to 0 if one or more tasks are actually released by this call. If no tasks are released, the semaphore is
set to 1. If flag RF_PULSWIN32 is not set in RTKConfig.Flags, RTKernel-32 always sets the value to 0.

If S does not reference an event semaphore, a fatal error is generated by the Debug Version.

Function RTKWait
Function RTKWait retrieves an event from a semaphore:

void RTKWait(RTKSemaphore S);

S references the semaphore from which to retrieve the event. If no event is available, the calling task is
blocked. It can only be reactivated by a different task calling RTKSignal for the respective semaphore.

Any number of tasks can wait for events at a semaphore. The tasks are made ready in sequence of their
priorities.

If S is an occupied resource or mutex semaphore, the priority of the occupying task is set to the priority
of the current task, if this is higher. After the call to RTKWait, the active task occupies or owns the
resource or mutex semaphore. It cannot be suspended or terminated until it has released all its
resources.

Except for event semaphores, RTKWait decrements the semaphore’s value on completion of the
operation.

Function RTKWaitCond
RTKWaitCond (wait conditional) retrieves an event from a semaphore under the condition that one is
immediately available. RTKWaitCond never leads to a blocking task switch.

RTKBool RTKWaitCond(RTKSemaphore S);

Part II RTKernel-32 177

Chapter 2 Module RTKernel-32

S references the semaphore from which to retrieve the event. If the return value is TRUE, a signal was
retrieved, otherwise not.

Except for event semaphores, RTKWaitCond has decremented the semaphore’s value if it returns
TRUE.

Function RTKWaitTimed

Using function RTKWaitTimed, a timeout for the occurrence of an event can be specified.
RTKBool RTKWaitTimed(RTKSemaphore S, RTKDuration Timeout);

S is the semaphore to wait at. Timeout is the maximum time (in timer ticks) to wait for the occurrence of
an event. If the return value is TRUE, an event was retrieved; otherwise, no event was available and the
timeout has expired.

If S is an occupied resource or mutex semaphore, the execution priority of the occupying task is re-eva-
luated according to the rules of priority inheritance. After successful completion of RTKWaitTimed, the
active task occupies the resource or mutex semaphore. It cannot be suspended or terminated until it has
released all its resources.

Except for event semaphores, RTKWaitTimed has decremented the semaphore’s value if it returns
TRUE.

Function RTKResetEvent

RTKResetEvent sets the value of an event semaphore to 0. Subsequent calls to RTKWait or RTKWait-
Timed will block:

void RTKResetEvent(RTKSemaphore S);

To set an event semaphore to 1, use RTKSignal. To merely release all tasks waiting at the event
semaphore without setting the semaphore, use RTKPulse.

Mailboxes
The previous section covered semaphores which can be employed to synchronize tasks, thus providing
a mechanism allowing orderly inter-task communication using global data.

However, communication via global data is hard to keep track of and error-prone, since a task might
"forget" the required semaphore operation before accessing the data. Moreover, no protocol has yet
been introduced for a controlled exchange of data.

Mailboxes serve to close this gap. A mailbox is a data buffer that can store a fixed number of messages.
As implemented by RTKernel-32, messages can have any size and the size of mailboxes can be freely
configured.

Tasks can store messages in a mailbox. If the mailbox is full, the task is blocked until space becomes
available. Of course, tasks can also retrieve messages from mailboxes. In this case, the task is blocked
if no message is available in the mailbox. Any number of tasks can use the same mailbox for storing and
retrieving messages.

Messages can be appended to a mailbox’s message queue using functions RTKPut, RTKPutCond, and
RTKPutTimed (see below). Moreover, messages can be inserted at the start of a message queue using
functions RTKPutFront, RTKPutFrontCond, and RTKPutFrontTimed.

If messages are stored/retrieved in a mailbox using pairs of RTKPut.../RTKGet... function calls, the
mailbox will behave as a FIFO buffer (first in, first out), i.e., messages are retrieved from a mailbox in the
same sequence as they have been stored. However, if pairs of RTKPutFront.../RTKGet... function calls
are used, the mailbox will behave as a LIFO buffer (last in, first out). For maximum flexibility, the
RTKPut... and RTKPutFront... functions may be mixed freely, even for the same mailbox.

The following sections discuss how to use mailboxes with RTKernel-32. As an example, we can extend
the little semaphore demo program for mailboxes. In addition to a signal, data can now be sent to
another task:

178 On Time RTOS-32

Mailboxes

#include <stdio.h>
#include <rtk32.h>

RTKMailbox Box;

void RTKAPI TaskA(void * P)
{
 int i;

 printf("Task A: waiting at mailbox\n");
 RTKGet(Box, &i);
 printf("Task A: have received number %i\n", i);
}

void main(void)
{
 int i;

 printf("\n");
 RTKernelInit(3);
 Box = RTKCreateMailbox(sizeof(int), 1, "Test Box");
 printf("Main : creating task A\n");
 RTKCreateThread(TaskA, 4, 0, 0, NULL, "Task A");
 printf("Main : please enter a number: ");
 fflush(stdin);
 scanf("%i", &i);
 RTKPut(Box, &i);
 printf("Main : done.\n");
}

Function RTKCreateMailbox
Function RTKCreateMailbox creates and initializes a mailbox:

RTKMailbox RTKCreateMailbox(unsigned DataLen,
 unsigned Slots,
 const char * Name);

Parameter DataLen is the length of the mailboxes’ messages in bytes. Slots is the maximum number of
messages the mailbox can store. Parameter Name points to the name of the mailbox. The name can be
displayed by RTKTaskInfo, RTKMailboxInfo, and error messages.

RTKCreateMailbox allocates and initializes the mailbox. The return value is a reference to the new
mailbox.

Function RTKDeleteMailbox

Function RTKDeleteMailbox releases the storage used by a mailbox:
void RTKDeleteMailbox(RTKMailbox * Box);

RTKernel-32 checks whether a task is waiting at the mailbox. In this case, the program is aborted with
an error message. The application must make sure that deleted mailboxes are not used any more.
RTKernel-32 assigns the value RTK_NO_MAILBOX to *Box.

Function RTKClearMailbox
Function RTKClearMailbox clears the contents of a mailbox:

void RTKClearMailbox(RTKMailbox Box);

All data stored in the mailbox is discarded. If the mailbox was full and a task was waiting to write to the
mailbox, the task is made ready by RTKClearMailbox.

Function RTKMessages

Function RTKMessages returns the number of messages currently stored in a mailbox.
unsigned RTKMessages(RTKMailbox Box);

Part II RTKernel-32 179

Chapter 2 Module RTKernel-32

Box specifies the mailbox to enquire. The return value will always lie between 0 and the value of
parameter Slots passed to RTKCreateMailbox when the mailbox was created.

Function RTKPut
RTKPut stores a message in a mailbox.

void RTKPut(RTKMailbox Box, void * Data);

Parameter Box is the mailbox to store the message in. *Data is stored in the mailbox.

If the mailbox is full, the calling task is blocked until another task (or an interrupt handler) retrieves a
message. If, however, the mailbox is empty and another task is waiting for a message at the mailbox,
the waiting task is made ready. If it has a higher priority, it is activated immediately.

Function RTKPutFront
RTKPutFront corresponds to RTKPut, but inserts the message at the start of the mailbox queue rather
than at the end:

void RTKPutFront(RTKMailbox Box, void * Data);

Function RTKGet
RTKGet retrieves a message from a mailbox.

void RTKGet(RTKMailbox Box, void * Data);

Parameter Box is the mailbox from which to retrieve the message. Data points to the variable to store
the message in.

If the mailbox is empty, the calling task is blocked until another task (or an interrupt handler) stores a
message. However, if the mailbox is full and another task is waiting to store a message in the mailbox,
the waiting task is made ready. If it has a higher priority, it is activated immediately.

Function RTKPutCond
RTKPutCond stores a message in a mailbox under the condition that space is available in the mailbox.
RTKPutCond never leads to a blocking task switch. If the mailbox is full, this is indicated by the return
value and no data is transferred.

RTKBool RTKPutCond(RTKMailbox Box, void * Data);

Parameter Box is the mailbox to store the message in. *Data is stored in the mailbox.

If the return value is TRUE, the message has been successfully stored; otherwise, there was no space
available in the mailbox.

Function RTKPutFrontCond
RTKPutFrontCond corresponds to RTKPutCond, but inserts the message at the start of the mailbox
queue rather than at the end:

void RTKPutFrontCond(RTKMailbox Box, void * Data);

Function RTKGetCond
RTKGetCond retrieves a message from a mailbox under the condition that one is available immediately.
RTKGetCond never leads to a blocking task switch. If the mailbox is empty, this is indicated by the
return value and no data is transferred.

RTKBool RTKGetCond(RTKMailbox Box, void * Data);

Parameter Box is the mailbox from which to retrieve the message. Data points to the variable to store
the message in.

If the return value is TRUE, the message has been successfully retrieved; otherwise, there was no
message available in the mailbox.

180 On Time RTOS-32

Message Passing

Function RTKPutTimed
RTKPutTimed stores a message in a mailbox if space becomes available within a certain time span.

RTKBool RTKPutTimed(RTKMailbox Box,
 void * Data,
 RTKDuration Timeout);

Parameter Box is the mailbox in which to store the message. *Data is stored in the mailbox. Timeout is
the timeout for waiting until space becomes available in the mailbox (in timer ticks).

If the return value is TRUE, the message has been successfully stored; otherwise, there was no space
available in the mailbox and the timeout has expired.

Function RTKPutFrontTimed
RTKPutFrontTimed corresponds to RTKPutTimed, but inserts the message at the start of the mailbox
queue rather than at the end:

RTKBool RTKPutFrontTimed(RTKMailbox Box,
 void * Data,
 RTKDuration Timeout);

Function RTKGetTimed
RTKGetTimed retrieves a message from a mailbox if a message becomes available within a certain time
span.

RTKBool RTKGetTimed(RTKMailbox Box,
 void * Data,
 RTKDuration Timeout);

Parameter Box is the mailbox from which to retrieve the message. Data points to the variable to store
the message in. Timeout is the timeout for waiting until a message becomes available in the mailbox (in
timer ticks).

If the return value is TRUE, the message has been successfully retrieved; otherwise, there was no
message available in the mailbox and the timeout has expired.

Function RTKNextCond
Function RTKNextCond enquires the next message of a mailbox under the condition that at least one
message is available. But unlike RTKGetCond, the message is not retrieved. RTKNextCond never leads
to a task switch.

RTKBool RTKNextCond(RTKMailbox Box, void * Data);

Parameter Box is the mailbox from which to enquire the message. Data points to the variable to store
the message in.

If the return value is TRUE, at least one message is available in the mailbox and *Data contains a copy
of the message; otherwise, there was no message available in the mailbox.

Message Passing
In addition to mailboxes, RTKernel-32 offers message passing as a mechanism for inter-task communi-
cation. In message passing, no data objects like semaphores or mailboxes are required for intermediate
data storage; data is copied directly between tasks. Message passing may be thought of as a mailbox of
size 0.

A fundamental difference to mailboxes is that the sending task explicitly addresses the receiving task. A
receiving task, on the other hand, can accept data from any other task. With mailboxes, any task can
use any mailbox; a sending task cannot determine who is to receive the data, and a receiving task does
not know who sent the data.

Part II RTKernel-32 181

Chapter 2 Module RTKernel-32

Another difference is the absence of a data buffer; both the sending and the receiving task must be
ready for the transfer before data can be copied. Thus, if two tasks want to exchange data using
message passing, the first task is blocked when it reaches its RTKSend or RTKReceive until the second
task in turn reaches its respective RTKReceive or RTKSend. The data transfer then takes place and
both tasks can continue. Mailboxes do not provide such a tight coupling, e.g., a task can immediately
continue running after a Put operation, even if there was no task ready to receive the data.

Message passing can also be used solely for synchronization. In this case, the receiving task specifies a
data length of 0 and the pointers to the data may assume the value NULL, since RTKernel-32 does not
perform a data transfer.

The tight coupling between tasks and the lack of data buffering normally disqualifies this mechanism for
use by interrupt handlers; however, it can also be used here.

The little mailbox demo program can now be modified for message passing. Instead of storing the data
in a mailbox, it is passed directly to another task:

#include <stdio.h>
#include "RTK32.h"

void RTKAPI TaskA(void * p)
{
 int i;

 printf("Task A: waiting for data\n");
 RTKReceive(&i, sizeof(int));
 printf("Task A: have received number %i\n", i);
}

void main(void)
{
 int i;
 RTKTaskHandle HandleA;

 printf("\n");
 RTKernelInit(3);
 printf("Main : creating Task A\n");
 HandleA = RTKCreateThread(TaskA, 4, 0, 0, NULL, "Task A");
 printf("Main : please enter a number: ");
 fflush(stdin);
 scanf("%i", &i);
 RTKSend(HandleA, &i);
 printf("Main : done.\n");
}

Please note that, with mailboxes, the mailbox concerned must always be passed as a parameter. In
message passing, on the other hand, the sending task specifies the receiver as a parameter. The
receiving task does not specify the source of data; it does not know who sent the data.

Function RTKSend

RTKSend sends data to another task:
void RTKSend(RTKTaskHandle Receiver, void * Data);

Parameter Receiver is the handle of the task to receive the data. Data points to the data to send.

If the receiving task is waiting in an RTKReceive or RTKReceiveTimed, the data transfer takes place
immediately and the task with higher priority continues to run. Otherwise, the sending task is blocked
until the receiving task is ready to accept the data.

Function RTKReceive

RTKReceive receives data from any other task.
void RTKReceive(void * Data, unsigned DataLen);

Parameter Data points to the variable to store the received data in. DataLen is the length of the
expected data.

182 On Time RTOS-32

Interrupt Handling

If a task sends data using RTKSend or RTKSendTimed to a receiving task blocked in RTKReceive, the
data transfer takes place immediately and the task with higher priority continues to run. Otherwise, the
receiving task is blocked until another task sends data.

Function RTKSendCond
RTKSendCond sends data to another task under the condition that the receiving task is immediately
ready to accept data; otherwise, the return value indicates failure and no data is transferred. RTKSend-
Cond never leads to a blocking task switch.

RTKBool RTKSendCond(RTKTaskHandle Receiver, void * Data);

Parameter Receiver is the handle of the receiving task. Data points to the data to send.

If the return value is TRUE, the data transfer has been successfully completed; otherwise, the receiving
task was not ready to accept data.

Function RTKReceiveCond

RTKReceiveCond receives data from any task under the condition that a task is immediately ready to
send; otherwise, the return value indicates failure and no data is transferred. RTKReceiveCond never
leads to a blocking task switch.

RTKBool RTKReceiveCond(void * Data, unsigned DataLen);

Parameter Data points to the variable to store the received data in. DataLen is the length of the
expected data.

If the return value is TRUE, the data transfer has been successfully completed; otherwise, no task was
ready for immediate data transfer.

Function RTKSendTimed
RTKSendTimed sends data to another task if the receiving task becomes ready to accept data within the
timeout; otherwise, the return value indicates failure and no data is transferred.

RTKBool RTKSendTimed(RTKTaskHandle Receiver,
 void * Data,
 RTKDuration Timeout);

Parameter Receiver is the handle of the receiving task. Data points to the data to send. Timeout is the
timeout for waiting until the receiving task becomes ready to accept data (in timer ticks).

If the return value is TRUE, the data transfer has been successfully completed; otherwise, the receiving
task was not ready to accept data and the timeout has expired.

Function RTKReceiveTimed

RTKReceiveTimed receives data from any other task if a task becomes ready to send data within the
timeout; otherwise, the return value indicates failure and no data is transferred.

RTKBool RTKReceiveTimed(void * Data,
 unsigned DataLen,
 RTKDuration Timeout);

Parameter Data points to the variable to store the received data in. DataLen is the length of the
expected data. Timeout specifies the timeout for waiting until a task becomes ready to send data (in
timer ticks).

If the return value is TRUE, the data transfer has been successfully completed; otherwise, no task was
ready to send data and the timeout has expired.

Interrupt Handling
In order to simplify the processing of interrupts, RTKernel-32 provides a number of supporting routines
for interrupt handlers.

Part II RTKernel-32 183

Chapter 2 Module RTKernel-32

The word interrupt is used for three different types of events: hardware interrupts, software interrupts
(also known as traps), and error interrupts or exceptions. In this manual, the word interrupt always
means a hardware interrupt.

Hardware interrupts are identified by their IRQ (Interrupt ReQuest number). IRQs must not be confused
with interrupt vectors. Each IRQ is assigned a vector; the mapping is performed by the interrupt
controller. For example, IRQ 0 is assigned vector 0x08 under MS-DOS, but vector 0x40 under
RTTarget-32. RTKernel-32 does not know about interrupt vectors; it deals exclusively with IRQs. The
mapping of IRQs to vectors is performed by the interrupt driver used. RTKernel-32 can handle up to 32
different IRQs.

RTKernel-32 installs its own low-level interrupt handlers for all IRQs with a bit set in RTKConfig.Hooke-
dIRQs at initialization time and any other IRQs used at run-time. When an interrupt is triggered, the low-
level handlers (located in RTKernel-32’s CPU driver) perform the following actions:

• all registers that might be modified by compiler-generated code are saved on the stack. If required,
addressability is established (i.e., segment registers are loaded);

• all further task switches are disabled;

• the stack is set to the stack area reserved for the respective IRQ;

• the corresponding high-level handler is called;

• the original stack is restored;

• task switching is reactivated;

• the registers are restored.

This mechanism guarantees that high-level handlers run with their own stack while the scheduler is
disabled.

RTKernel-32 switches to its own interrupt stacks to avoid tasks’ stack overflows.

In case an interrupt occurs recursively, RTKernel-32 uses a reserved panic stack, since an interrupt
stack must not be used twice at the same time. If the panic stack is also occupied, the stack is not
switched.

This manual’s discussions of interrupt handling issues usually refer to the application’s high-level
handlers. Please refer to Chapter 7, Interrupt Handling for details on implementing high-level interrupt
handlers.

Function RTKSetIRQHandler
RTKSetIRQHandler is used to install a high-level interrupt handler:

void RTKSetIRQHandler(int IRQ; RTKIRQHandler Handler);

IRQ specifies the desired interrupt; Handler is a pointer to an interrupt handler, which should be a
normal C function without any parameters. Please refer to Chapter 7, Interrupt Handling for details on
writing interrupt handlers.

Interrupt handlers should not be installed using a method other than RTKSetIRQHandler. If you must
support third-party software that cannot be modified, make sure the respective handler is installed
before RTKernelInit is called and that the respective bit in RTKConfig.HookedIRQs is set. Please note
that interrupt handlers installed bypassing RTKernel-32 do not use their own interrupt stack and may be
interrupted by preemptive task switches.

Function RTKGetIRQHandler

RTKGetIRQHandler is used to enquire the current high-level handler of an IRQ:
RTKIRQHandler RTKGetIRQHandler(int IRQ);

IRQ specifies the desired interrupt; the return value is a pointer to the respective handler. If the applica-
tion has not set a high-level handler for the given IRQ, NULL is returned.

184 On Time RTOS-32

Interrupt Handling

Function RTKSaveIRQHandlerFar
RTKSaveIRQHandlerFar saves the currently installed interrupt handler for a given IRQ:

void RTKSaveIRQHandlerFar(int IRQ,
 RTKIRQDescriptor * Handler);

The RTKIRQDescriptor structure pointed to by parameter Handler contains complete information about
the handler. It can be a handler previously installed or a high-level handler of the application. Use this
call to inquire a handler you would like to chain to using RTKCallIRQHandlerFar or restore using
RTKRestoreIRQHandlerFar.

Function RTKRestoreIRQHandlerFar
RTKRestoreIRQHandlerFar can restore an interrupt handler previously saved using RTKSaveIRQ-
HandlerFar:

void RTKRestoreIRQHandlerFar(int IRQ,
const RTKIRQDescriptor * Handler);

Example: To insert your own handler into an existing interrupt chain, you should use the following code:
#define IRQ ?? // desired IRQ
RTKIRQDescriptor OrgHandler;
void MyHandler(void) // application handler
{
 ... // the handler’s processing
 RTKCallIRQHandlerFar(&OrgHandler); // call the old handler
 if required

void Install(void) // install MyHandler
{
 RTKSaveIRQHandlerFar(IRQ, &OrqHandler);
 RTKSetIRQHandler(MyHandler);
}

void CleanUp(void) // deinstall MyHandler
{
 RTKRestoreIRQHandlerFar(IRQ, &OrgHandler);
}

Please note that restoring interrupt handlers is not always required at program exit. RTKernel-32
restores all modified interrupt vectors when the program terminates.

Function RTKCallIRQHandlerFar
Using function RTKCallIRQHandlerFar, an interrupt handler read with RTKSaveIRQHandlerFar can be
called:

RTKBool RTKCallIntFar(const RTKIRQDescriptor * Handler);

Calling such a handler is not always possible (e.g., when the target handler runs at a diffent privilege
level). The return value indicates whether the handler was actually called.

Function RTKSetIRQStack
Using RTKSetIRQStack, the available stack space for an interrupt handler can be enlarged.

void RTKSetIRQStack(int IRQ, unsigned StackSize);

Parameter IRQ specifies the interrupt to which the new stack should be assigned. StackSize is the size
of the new stack in bytes.

RTKernel-32 usually assigns RTKConfig.DefaultIntStackSize (default: 512) for each IRQ. This call can
change the default value for a particular IRQ. If the new stack is larger than the current panic stack, the
panic stack is also reallocated with StackSize bytes.

Part II RTKernel-32 185

Chapter 2 Module RTKernel-32

Function RTKIRQInfo
RTKIRQInfo writes interrupt statistics to a string variable:

void RTKIRQInfo(char * Buffer, unsigned BufferLen);

Parameter Buffer points to the string variable to store the returned list in. BufferLen is the length of the
string pointed to by Buffer. The Buffer should have at least about 80 + (40 * # of IRQs) bytes.

Example:
IRQ Calls FreeStack Doubles Time
--
0 1194 188 0 0.103566
1 137 158 2 0.021934
3 6663 156 0 0.734534

Panic 2 158 0 0.004392

One line of information is issued for each IRQ hooked by RTKernel-32 on which interrupts have
occurred since program start. The IRQ number, the number of interrupts that have occurred, unused
interrupt stack, and the number of recursive interrupts (normally 0) are returned. The accumulated CPU
time consumption of each IRQ is only returned by RTKernel-32’s Debug Version if flag RF_ICPUTIME is
set in RTConfig.Flags (’-’ otherwise). If recursions have occurred (as on the keyboard interrupt in the
example), statistics for the panic stack are also given. Recursions on the panic stack (column "Doubles"
in line "Panic") mean danger and suggest an error in the interrupt handler (see Chapter 7, Interrupt
Handling) or an interrupt overload.

Function RTKIRQTopPriority
Using function RTKIRQTopPriority, the interrupt controller’s interrupt priorities can be reprogrammed.
This call is only supported on systems with two Intel 8059A or compatible interrupt controllers.

void RTKIRQTopPriority(int Master, int Slave);

Parameter Master specifies the IRQ to have the highest priority for the master interrupt controller. Corre-
spondingly, parameter Slave specifies the IRQ to have the highest priority for the slave interrupt
controller.

Normally, IRQ 0 (Timer) has the highest priority, IRQ 1 (keyboard) the second highest, etc. The interrupt
controller supports only the cyclic rotation of the priorities. Using RTKIRQTopPriority, you can determine
which IRQ should have the highest priority for the respective interrupt controller. The other priorites then
follow from the cyclic shift. Please note that the slave interrupt controller is connected to the master via
IRQ 2. Thus, all slave IRQs are handled by the master with the priority of IRQ 2. The default corre-
sponds to the call

RTKIRQTopPriority(0, 8);

186 On Time RTOS-32

Interrupt Handling

Below, the table on the left shows the respective interrupt priorities (low interrupt priorities mean high
urgency). The table on the right shows, as an example, the priorities after calling RTKIRQTopPriority(3,
10):

IRQ Priority IRQ Priority
0 0 3 0
1 1 4 1
2 Slave 5 2
3 3 6 3
4 4 7 4
5 5 0 5
6 6 1 6
7 7 2 Slave
8 2.0 10 7.0
9 2.1 11 7.1
10 2.2 12 7.2
11 2.3 13 7.3
12 2.4 14 7.4
13 2.5 15 7.5
14 2.6 8 7.6
15 2.7 9 7.7

RTKIRQTopPriority(0, 8) RTKIRQTopPriority(3, 10)

Function RTKEnableIRQ

This function opens the interrupt controller’s interrupt mask.
void RTKEnableIRQ(int IRQ);

Only after RTKEnableIRQ has been called, interrupts of the specified IRQ are passed on to the CPU.

Function RTKDisableIRQ
This function closes the interrupt controller’s interrupt mask.

void RTKDisableIRQ(int IRQ);

After calling RTKDisableIRQ, interrupts of the specified IRQ are no longer passed on to the CPU. This is
the default for unused IRQs.

Function RTKIRQEnd

This function disables interrupts and informs the interrupt controller that processing of an interrupt is
completed, reenabling lower-priority interrupts:

void RTKIRQEnd(int IRQ);

Every interrupt handler must call RTKIRQEnd before it terminates.

Function RTKDisableInterrupts
This function disables interrupts at the CPU level:

void RTKDisableInterrupts(void);

Using RTKDisableInterrupts, a task can make sure that it is not disrupted by interrupts. It should be
noted, however, that interrupt response time suffers when interrupts are disabled. Unlike preemptive
task switches, cooperative task switches can take place even while interrupts are disabled.

Part II RTKernel-32 187

Chapter 2 Module RTKernel-32

Function RTKEnableInterrupts
This function enables interrupts at the CPU level:

void RTKEnableInterrupts(void);

Using RTKEnableInterrupts, interrupts can be re-enabled after previously having been disabled using
RTKDisableInterrupts or through interrupt processing.

Real-Time Memory Management
In C/C++, memory management is normally performed using malloc, free, realloc, new, etc. The run-
time system’s heap offers great flexibility and efficiency, but it cannot fulfil real-time requirements. The
run-time requirements are non-deterministic and all heap operations are non-reentrant. The latter
problem is easily solved using RTKernel-32’s Automatic Library Protection feature or multithreading run-
time libraries; however, this necessitates blocking task switches in the heap manager, which makes the
heap unusable for interrupt handlers.

RTKernel-32 offers memory management with real-time capabilities through Memory Pools. A Memory
Pool is an isolated heap with data buffers of equal size. Any number of memory pools can exist simulta-
neously. A pool is initialized once and allocated a certain number of buffers. Thereafter, buffers can be
allocated and deallocated from the pool under real-time conditions using the functions RTKGetBuffer
and RTKPutBuffer. Both functions are completely reentrant (even for one and the same pool), can be
used in both tasks and interrupt handlers and have very small execution times (about 2 microseconds
on a 486/33).

Function RTKAllocMemPool

Function RTKAllocMemPool initializes a Memory Pool:
void RTKAllocMemPool(RTKMemoryPool * Pool, unsigned BlockSize, unsigned Blocks);

Parameter Pool points to the pool handle of the pool to initialize. The pool is allocated with Blocks data
buffers of size BlockSize. The buffers are allocated using RTKAlloc, which in turn uses RTKernel-32’s
memory driver. Therefore, RTKAllocMemPool will generally not fulfil real-time requirements. Its time
behavior is non-deterministic and it must not be called in interrupt handlers.

Function RTKGetBuffer

Function RTKGetBuffer retrieves a buffer from a Memory Pool:
void * RTKGetBuffer(RTKMemoryPool * Pool);

Parameter Pool points to the pool handle of the pool from which to retrieve the buffer. A pointer to the
buffer is returned. If this was the last available buffer in the pool, *Pool is assigned the value
RTK_EMPTY_POOL. If the Pool is empty, the return value is NULL.

Function RTKFreeBuffer
Function RTKFreeBuffer passes a buffer to a Memory Pool:

void * RTKFreeBuffer(RTKMemoryPool * Pool, void * Buffer);

Parameter Pool points to the pool handle of the pool to which to pass the buffer. In general, the buffer
will have been retrieved previously from the pool; however, it can also have been allocated by a different
method (e.g., malloc, RTKAlloc, or allocated as a static variable).

It must be ensured that the same buffer is not passed to a pool twice by RTKFreeBuffer, because this
would destroy the Memory Pool. This condition is not recognized by RTKFreeBuffer and the program will
crash in most cases.

The Kernel Tracer
The Kernel Tracer can be used to analyze the exact sequence of events within the kernel. About 32
different event types are written to a ring buffer by the kernel. Another 10 event types are reserved for
the application; thus, you can also use the Tracer to analyze your application code.

188 On Time RTOS-32

The Kernel Tracer

A trace event consists of an event identification (type RTKTraceEvent, an enumeration type declared in
header file RTTRACE.H), and, in many cases, some supplementary information. There is, for example,
the trace event tStateCurrent. It occurs whenever a task enters the state Current (i.e., a task switch
takes place). As supplementary information for this event type, the task handle of the task being
activated is recorded in the trace buffer. The supplementary information of a trace event can be a task,
semaphore, mailbox, an IRQ, a pointer, or a number.

Please refer to file RTTRACE.H for details on the trace events supported and the exact data structures
used by the tracer. The variable RTKTraceBuffer contains a pointer to the trace buffer and can be
inspected using a debugger.

The trace buffer is supported by RTKernel-32’s Debug and Standard Versions. However, the tracer will
record kernel events in the trace buffer only in the Debug Version; in the Standard Version, the tracer
only records user events. The default trace buffer size is 64 entries in the Debug Version and 0 entries
in the Standard Version. The functions for handling the trace buffer are detailed below.

Function RTKSetTraceBufferSize
Function RTKSetTraceBufferSize sets the size of the trace buffer.

void RTKSetTraceBufferSize(unsigned Size);

RTKSetTraceBufferSize sets the number of events the trace buffer can store. RTKernelInit calls
RTKSetTraceBufferSize(64) in the Debug Version, RTKSetTraceBufferSize(0) in the Standard Version.
In complex applications, a larger buffer may be required. Each entry in the trace buffer uses 8 bytes of
memory.

Function RTKEnableTrace
Function RTKEnableTrace enables tracing a specific event type.

void RTKEnableTrace(RTKTraceEvent E);

Parameter E is the event type to trace. The default is that all events are traced.

Function RTKTraceAll

Function RTKTraceAll enables tracing all event types.
void RTKTraceAll(void);

This is the Kernel Tracer’s default in the Debug Version.

Function RTKDisableTrace
Function RTKDisableTrace disables tracing a specific event type.

void RTKDisableTrace(RTKTraceEvent E);

Parameter E is the event type for which to disable tracing. Subsequently, this event type will not be
traced any more.

Function RTKStopTracing
Function RTKStopTracing disables the Kernel Tracer.

void RTKStopTracing(void);

This is the Kernel Tracer’s default in the Standard Version.

Function RTKClearTraceBuffer

Function RTKClearTraceBuffer sets all entries in the trace buffer to type tNoEvent.
void RTKClearTraceBuffer(void);

Part II RTKernel-32 189

Chapter 2 Module RTKernel-32

Function RTKUserTrace
In addition to kernel events, user events can be recorded in the trace buffer.

void RTKUserTrace(RTKTraceEvent E, int Parameter);

RTKUserTrace writes a user event to the trace buffer. Events tUserEvent_1 to tUserEvent_10 are
available. Parameter Parameter can be any number, which is displayed by RTKDumpTrace. If a text
other than, for example, "User Event 3" is desired for the output from RTKDumpTrace, it may be
modified in array RTKTraceName. Example:

#include "RTK32.H"
#define MyEvent tUserEvent_3
void main(void)
{
 RTKTraceName[MyEvent] = "My event";
 ...
 RTKUserTrace(MyEvent, 1234);
 ...

Please refer to file RTTRACE.H for the declarations of RTKTraceEvent, RTKTraceName, etc.

Function RTKTraceHeader
Function RTKTraceHeader copies a heading for the trace dump to a string:

char * RTKTraceHeader(char * Buffer);

Parameter Buffer should point to a string of at least 100 characters length. The return value points
behind the end of the heading. It may be passed to RTKDumpTrace to dump the trace buffer.

Function RTKDumpTrace
RTKDumpTrace formats a trace entry as a text line and copies it to a string:

char * RTKDumpTrace(char * Buffer, int Entry);

Parameter Buffer should point to a string of at least 80 characters length. The return value points behind
the end of the string. Thus, it can be passed to RTKDumpTrace again to dump additional trace entries.
Parameter Entry specifies which entry to dump. "0" is the latest entry, "1" is the previous entry, etc. The
Tracer should be disabled by a call to RTKStopTracing prior to dumping the buffer.

Although the trace buffer only contains two pieces of information per entry (the event and a parameter),
RTKDumpTrace displays three columns next to the event index. The first column contains the current
task. DumpTrace generates this column by searching for ’tStateCurrent’ entries in the buffer and "mem-
orizing" which task is the current one. Therefore, this column is only filled starting with the first ’tState-
Current’ event in the trace buffer.

To dump the last 10 trace buffer entries, the following code can be used:
char Buffer[2048];
char * B = Buffer;
int i;
B = RTKTraceHeader(B);
for (i=9; i >=0; i--)
 B = RTKDumpTrace(B, i);
printf(B);

Care must be taken to dimension the Buffer large enough to store the generated data. It should be at
least 100 + N * 80 bytes in size, where N is the number of trace entries required. Alternatively, each text
line generated can be written to a file to free the buffer. Please refer to demo program RTDemo for
examples of this technique (command ’TRACE’).

The following output was generated by program RTDemo while data was being received on COM2. It
reflects the reception of two characters (with the second one still in the mailbox), a keypress, and a user
event.

190 On Time RTOS-32

Miscellaneous RTKernel-32 Operations

Index Current Task Event Object

 183 CPU Monitor Interrupt Start IRQ: 3
 184 CPU Monitor Mailbox In Mailbox: Receive COM2
 185 CPU Monitor State: Ready Task: COM Receiver
 186 CPU Monitor Interrupt End IRQ: 3
 187 CPU Monitor State: Ready Task: CPU Monitor
 188 CPU Monitor State: Current Task: COM Receiver
 189 COM Receiver Mailbox Out Mailbox: Receive COM2
 190 COM Receiver State: TimedGet Mailbox: Receive COM2
 191 COM Receiver State: Current Task: CPU Monitor
 192 CPU Monitor Interrupt Start IRQ: 1
 193 CPU Monitor Semaphore Inc Semaphore: Keyboard
 194 CPU Monitor State: Ready Task: Main Task
 195 CPU Monitor Interrupt End IRQ: 1
 196 CPU Monitor State: Ready Task: CPU Monitor
 197 CPU Monitor State: Current Task: Main Task
 198 Main Task Semaphore Dec Semaphore: Keyboard
 199 Main Task Interrupt Start IRQ: 3
 200 Main Task Mailbox In Mailbox: Receive COM2
 201 Main Task State: Ready Task: COM Receiver
 202 Main Task Interrupt End IRQ: 3
 203 Main Task User Event 3 Number: 1234

Miscellaneous RTKernel-32 Operations
Miscellaneous RTKernel-32 functions that have not yet been introduced are discussed in this section.

Function RTKDebugVersion

If an application wants to enquire whether it is using the RTKernel-32 Debug Version, this function can
be used. In the Debug Version, it will return TRUE, otherwise FALSE.

RTKBool RTKDebugVersion(void);

During the program development phase, the Debug Version of RTKernel-32 should be used by all
means. Please refer to Chapter 7, RTKernel-32’s Debug Version for details about the Debug Version.

Function RTKStackCheck
RTKernel-32 offers its own stack-check mechanism. Unlike compiler-generated stack checks, function
RTKStackCheck can also be used in interrupt handlers.

void RTKStackCheck(void);

The Debug Version of RTKernel-32 will call RTKStackCheck in every RTKernel-32 operation if flag
RF_STACKCHECKS is set in RTKConfig.Flags. The program is aborted with an error message if less
than 64 bytes are left on the stack. These 64 bytes are required by RTKernel-32 to issue the error
message and abort the program. Error-free termination of the program cannot be expected due to the
lack of stack space.

It should be noted that RTKernel-32 can only recognize stack overflows that occur in a kernel call. Stack
overflows in the application code or the Standard Version may go unnoticed.

Function RTKCanPreempt
Using this function, the program can enquire whether the current environment supports preemptive
multitasking:

RTKBool RTKCanPreempt(void);

If this function returns FALSE, a call to RTKPreemptionsON will produce a fatal error.

Part II RTKernel-32 191

Chapter 2 Module RTKernel-32

Function RTKPreemptionsON
RTKernel-32 supports both cooperative and preemptive multitasking. Function RTKPreemptionsON
enables preemptive scheduling:

void RTKPreemptionsON(void);

After initialization of RTKernel-32, preemptions are enabled automatically only if RF_PREEMPTIVE is
set in RTKConfig.Flags. When preemptions are enabled, RTKernel-32’s Automatic Library Protection is
also enabled (if installed).

Please refer to Chapter 1, Cooperative and Preemptive Multitasking and Chapter 7, Preemptive or
Cooperative Multitasking? for a detailed discussion of preemptive and cooperative scheduling.

RTKPreemptionsON is only supported if the interrupt driver supports task switches inside interrupt
handlers. Use function RTKCanPreempt to check whether preemptions are supported.

Function RTKPreemptionsOFF
This function disables preemptive scheduling:

void RTKPreemptionsOFF(void);

RTKernel-32’s Automatic Library Protection is not deactivated.

Function RTKScheduler

To make task switches possible during cooperative scheduling, all tasks must regularly perform kernel
calls. Function RTKScheduler has the sole purpose of performing task switches that may have become
necessary:

void RTKScheduler(void);

RTKScheduler checks whether a task with a higher priority than the currently active task has become
Ready; if so, a task switch to this task is performed.

Optionally, RTKDelay(0) can be called. This, however, will also trigger task switches to tasks of the
same priority (see Chapter 2, Function RTKDelay and Chapter 7, Avoid Time Slicing).

RTKScheduler is usually not required in preemptive scheduling mode, but it does no harm. RTKSche-
duler is very fast and it ensures that a piece of code runs smoothly with cooperative and preemptive
scheduling.

Function RTKSetMessageHandler

Function RTKSetMessageHandler allows the installation of an alternate handler to display fatal error
messages:

typedef void (RTKAPI * RTKMessageHandler)(const char * Message);

void RTKSetMessageHandler(RTKMessageHandler Handle);

By default, RTKernel-32 uses a function supplied by the system driver to display fatal error messages.
Function RTKSetMessageHandler can be used to install a different handler. For example, this may
become necessary when the program has switched to graphics mode, which the system driver cannot
handle.

Function RTKSetTaskSwitchHook

RTKernel-32 can call a user-defined function in every task switch. Such a task switch hook is installed
using function RTKSetTaskSwitchHook:

typedef void (RTKAPI * RTKTaskSwitchHook)(RTKTaskHandle OldTask,
 RTKTaskHandle NewTask);

void RTKSetTaskSwitchHook(RTKTaskSwitchHook Hook,
 RTKTaskSwitchHook * OldHook);

Parameter Hook is a function with two task handles as parameters, respectively referencing the task
being suspended and the task being activated. Parameter OldHook should point to a variable to receive
a pointer to the previously installed hook.

192 On Time RTOS-32

Miscellaneous RTKernel-32 Operations

For an application task switch hook, some severe restrictions apply. Specifically, it must be considered
that:

• Interrupts are disabled when the hook is called. Interrupts must never be enabled inside the hook.

• The stack context is undefined. There might be very little stack space available.

• Only the following RTKernel-32 functions may be used:

RTKGetUserData
RTKGetTaskState
RTKGetTaskPrio
RTKGetTime
RTKGetBuffer
RTKFreeBuffer
RTKUserTrace

• Before returning, the hook must call the previously installed task switch hook.

If any of these restrictions is violated, the program will very probably crash. Possible error messages
may be misleading.

RTKGetTaskState(OldTask) returns the state of the task after the task switch. RTKGetTaskState(New-
Task) is undefined (should be TS_CURRENT, of course). If Win32 emulation is used, all TLS-related
functions will access OldTask’s data.

Using a task switch hook is discouraged. In particular, it should not be attempted to solve reentrance
problems by using a hook; resource semaphores are much better suited for this purpose. It should also
be noted that a task switch hook can dramatically degrade RTKernel-32’s performance.

The following example shows how the number of task switches can be counted for each task using a
task switch hook:

#include <stdlib.h>
#include <stdio.h>
#include <rtk32.h>

int UserDataIndex;
RTKTaskSwitchHook OldHook;

void RTKAPI MyThread(void * p)
{
 while (1)
 RTKDelay((RTKDuration)p);
}

void RTKAPI TheHook(RTKTaskHandle Old, RTKTaskHandle New)
{
 int Count;

 Count = (int) RTKGetUserData(New, UserDataIndex);
 Count++;
 RTKSetUserData(New, UserDataIndex, (void*) Count);
 OldHook(Old, New);
}

int main(void)
{
 RTKTaskHandle H1, H2;

 RTKernelInit(3);
 UserDataIndex = RTKAllocUserData();
 RTKSetTaskSwitchHook(TheHook, &OldHook);
 H1 = RTKCreateThread(MyThread, 2, 1024, 0, (void*)1, "ThreadA");
 H2 = RTKCreateThread(MyThread, 2, 1024, 0, (void*)3, "ThreadB");
 RTKDelay(20);
 printf("Task switches for ThreadA: %i, ThreadB: %i\n",
 RTKGetUserData(H1, UserDataIndex),

Part II RTKernel-32 193

Chapter 2 Module RTKernel-32

 RTKGetUserData(H2, UserDataIndex));
 return 0;
}

Function RTKSetTaskStartStopHook
Function RTKSetTaskStartStopHook allows the installation of a function to be called on every task
creation and termination:

typedef void (RTKAPI * RTKTaskStartStopHook)(RTKTaskHandle Task, int Reason);

void RTKSetTaskStartStopHook(RTKTaskStartStopHook Hook,
 RTKTaskStartStopHook * OldHook);

Parameter Hook is a function with the handle of the respective task and an integer as parameters.
Parameter OldHook should point to a variable to receive a pointer to the previously installed hook.

The Reason parameter to the hook function indicates whether the hook was called due to a task
creation (Reason == 0) or termination (Reason == 1). The following rules should be observed in task
start/stop hooks:

• At task creation, the hook is called after the system driver’s hook.

• At task creation, the hook is guaranteed to be called in the context of the task being created. The
hook is executed immediately before the task function code.

• At task termination, the hook is called before the system driver’s hook.

• At task termination, the hook is not guaranteed to be called in the context of the terminating task; it
could be called by another task which has called RTKTerminateTask.

• The hook is not called for the creation of the main task. However, the hook can be called for termi-
nation if the main task is terminated.

• The hook is not called at program exit.

• Before returning, the hook must call the previously installed hook.

Function RTKFatalError
Application programs can make use of RTKernel-32’s error handling mechanism using this function:

void RTKFatalError(const char * Message);

RTKFatalError will display the program location where RTKFatalError was called. If a source code
position driver is used and a symbol table has been loaded, the position is displayed as source file name
and line number. Otherwise, it is given in hex. The currently executing task or interrupt name and the
message parameter are displayed. The currently active message handler is used for output. Finally, the
fatal error exit handler of the system driver is called.

Function RTKAlloc
RTKAlloc is a high-level interface to RTKernel-32’s memory allocation driver:

void * RTKAlloc(unsigned size, const char * Name);

Parameter size specifies the size in bytes of the memory block to allocate. Name is a pointer to a string
with a descriptive name of the object to allocate. If the function succeeds, a pointer to the allocated block
is returned. Otherwise, the program is aborted and the name of the object to be allocated is displayed
using RTKernel-32’s error handling mechanism (see RTKFatalError).

Function RTKDeallocTerminatedTasks

A task that terminates itself (e.g., by reaching the end of its task function) cannot deallocate its own
data. Therefore, many unused memory blocks can accumulate if many tasks terminate themselves. To
release these memory blocks, function RTKDeallocTerminatedTasks is provided:

void RTKDeallocTerminatedTasks(void);

Normally, this function need not be called. RTKCreateThread will always deallocate all terminated tasks
before a new task is created.

194 On Time RTOS-32

Miscellaneous RTKernel-32 Operations

Tasks that are terminated but have not yet been deallocated are in the state TS_TERMINATED and will
be displayed by RTKTaskInfo.

Functions RTIn, RTInW, RTInD, RTOut, RTOutW, RTOutD
Some 32-bit compilers do not supply functions for port I/O. Therefore, RTKernel-32 offers functions for
this purpose:

BYTE RTIn (unsigned int addr);
WORD RTInW (unsigned int addr);
DWORD RTInD (unsigned int addr);
void RTOut (unsigned int addr, BYTE val);
void RTOutW(unsigned int addr, WORD val);
void RTOutD(unsigned int addr, DWORD val);

Part II RTKernel-32 195

Chapter 3 Alternate APIs for RTKernel-32

Chapter 3
Alternate APIs for RTKernel-32

RTKernel-32’s native Application Program Interface (API) was described in Chapter 2. For compatibility
with other multitasking systems, RTKernel-32 provides APIs compatible with RTKernel-C for DOS and
16-bit embedded systems and the Win32 thread API. You can use these alternate APIs if you already
have application software based on these APIs, or if you want to develop software to run under several
different systems.

RTKernel-C 4.5 for DOS Compatible API
RTKernel-C is a real-time multitasking system for DOS and 16-bit embedded systems, also available
from On Time. Almost all of its features are also supported by RTKernel-32. Exceptions are DOS-spe-
cific features (e.g., automatic DOS protection, TSR programs, interrupt tasks, etc.).

Programs using the RTKernel-C API must include header file RTKERNEL.H instead of RTK32.H.
RTKERNEL.H in turn includes RTK32.H and RTKDOS.H. RTKDOS.H contains preprocessor macros
that map all differing names of constants, types, and functions to the corresponding names of
RTKernel-32. There is no thunking layer required for RTKernel-C emulation. Thus, there is no perform-
ance or code size penalty for using the RTKernel-C API.

RTKernel-32 contains many new features not available in RTKernel-C. These new features can be
accessed by directly using RTKernel-32’s native API. RTKernel-C emulation does not restrict the set of
available features in any way. When RTKERNEL.H is included, both APIs (RTKernel-C and
RTKernel-32) are available and can be mixed within the same program.

The following RTKernel-C API functions are not available under RTKernel-32:

• RTKDOSProtectionON / RTKDOSProtectionOFF

• RTKExec

• RTKDiskIntsON / RTKDiskIntsOFF / RTKSetDiskTimeout

• RTKCPU

• RTKUses8087

• RTKSwap32BitRegs

• Interrupt 2Fh Interface

The following functions of RTKernel-C are available under RTKernel-32, but are not covered by
RTKDOS.H. If your program uses any of these, minor source code modifications are required:

• RTKGetIRQHandlerFar / RTKSetIRQHandlerFar / RTKCallIntFar

• RTKSetTaskSwitchHook

The following supplemental modules supplied with RTKernel-C are not available for RTKernel-32:

• RTTimer / RTClock / PCTimer (see timer device drivers and modules FineTime/Clock instead)

• KillKey

• RTVision

• Spooler

• DOSMem

• RTIPX

• IPC

• SmartDrv

• RTKDPMI

196 On Time RTOS-32

Win32 Thread Compatible API

By using conditional compilation, the same source file can be used with both RTKernel-C and
RTKernel-32. Under RTKernel-32, the symbol RTK32_VER is defined.

Win32 Thread Compatible API
In addition to its native and RTKernel-C’s API, RTKernel-32 also offers a Win32-compatible interface.
This allows porting programs originally designed for Windows NT to run under RTKernel-32. The Win32
thread API is made available by including windows.h in the source code.

The documentation in this chapter does not completely describe all Win32 functions emulated by
RTKernel-32. Rather, only differences from the original Win32 functions are detailed. Parameters or
features of a function not mentioned here have the same functionality as under Win32. For a complete
description, please refer to Microsoft’s Win32 API documentation, which is included with all C/C++
compilers supported by RTKernel-32.

For all functions expecting a character string, only the ASCII versions are supplied. RTKernel-32 does
not support Win32 emulation for Unicode programs. Any security attribute parameters are ignored by
RTKernel-32; application programs may specify NULL (this is also supported by Win32).

Please note that Win32 emulation is only available if RTKernel-32 is used with RTTarget-32, On Time’s
32-bit cross development system.

Win32 Priorities
Under Win32, all thread priorities are relative to the process priority. Under RTKernel-32, there is no
process priority; instead, the value RTKConfig.MainPriority is used. Therefore, applications using the
Win32 API should make sure that the main task uses this priority. The simplest method to guarantee this
is to use RTKernel-32’s auto initialization feature, which is enabled by default (see Chapter 2,
RTKernel-32 Configuration for details). If you prefer to explicitly call RTKernelInit, you should supply
RTKConfig.MainPriority as the parameter.

Win32 Handles
Handles are an important concept of the Win32 API. RTKernel-32 uses RTTarget-32’s handle manager
to implement handles for threads, semaphores, events, and mutex objects. The number of available
Win32 handles is limited but can be changed (please refer to Part I or this manual for details). It is very
important that all handles of objects with limited lifetime are closed to avoid errors caused by an out-of-
handle situation. RTKernel-32 does not define functions CloseHandle and DuplicateHandle; however,
RTTarget-32’s corresponding functions can be used, even for handles created with RTKernel-32’s
Win32 emulation.

Win32 handles (type HANDLE) must not be confused with RTKernel-32’s task handles (type RTKTask-
Handle). Win32 handles indirectly reference objects, while RTKernel-32 handles reference them directly.
Consequently, Win32 handles can be duplicated with function DuplicateHandle; the associated object is
destroyed only after all handles have been closed. In contrast, RTKernel-32 task handles (like
mailboxes or semaphores) cannot be duplicated; they can only be copied, which does not create a new
handle. Any call to RTKTerminateTask (or RTKDeleteSemaphore / RTKDeleteMailbox) will immediately
destroy the associated object. In particular, this is also true for multiple references to the same
semaphore obtained from RTKOpenSemaphore.

Win32 also knows Thread IDs. These are unique (there is exactly one Thread ID for each thread) and
cannot be duplicated. Under RTKernel-32, Win32 Thread IDs are identical to RTKernel-32 task handles.

Win32 and RTKernel-32 Error Handling
RTKernel-32’s Win32 emulation is implemented by a set of Win32-compatible functions which reformat
the given parameters and then call equivalent RTKernel-32 functions. One area difficult to translate is
the different error-handling philosophy of the two systems. When a Win32 function fails, a return value
indicating error is returned and the application must check for any errors by calls to GetLastError() after
each single Win32 call. This method can severely increase code size and reduce readability.
RTKernel-32, on the other hand, will not pass fatal errors to the application, but rather abort the applica-
tion. This method is adequate since program bugs cannot be corrected dynamically at run time anyway.

Part II RTKernel-32 197

Chapter 3 Alternate APIs for RTKernel-32

Rather, it is desirable to get a clear error message with all relevant information (address of call, names
of tasks, semaphores, or mailboxes involved, etc.). Software debugging is significantly simplified in this
way.

RTKernel-32’s Win32 emulation makes every effort to check all parameters at run-time to emulate
Win32’s error handling. SetLastError() is called whenever possible. However, there may be cases where
not all application bugs are caught (e.g., when the application has corrupted RTKernel-32’s internal data
structures). In these rare instances, an RTKernel-32 error message could be issued when Win32 would
indicate the error with a return code instead.

Mixing RTKernel-32 and Win32 APIs
The simultaneous use of both RTKernel-32’s native and Win32 API is possible and quite typical, since
the Win32 thread API lacks many features required by real-time systems (e.g., interrupt processing,
real-time memory management, etc.). However, care must be taken not to confuse Win32 thread
handles and RTKernel-32 task handles.

Every task running under RTKernel-32 has exactly one RTKernel-32 task handle. However, only those
tasks started by Win32’s CreateThread function have one or more Win32 handles. If you want to use the
compiler’s multithread run-time libraries, all threads using the run-time systems should be started using
the run-time systems’ function for this purpose (e.g., _beginthread).

Function RTKWin32ToRTKHandle

RTKernel-32 supplies this function to translate a Win32 handle to an RTKernel-32 task handle:
RTKTaskHandle RTKWin32ToRTKHandle(HANDLE H);

If H is a valid Win32 handle referencing an existing task, the function will return the desired RTKernel-32
task handle. Otherwise, the returned value is RTK_NO_TASK.

Function RTKToWin32Handle

RTKernel-32 supplies this function to translate an RTKernel-32 task handle to a Win32 handle:
HANDLE RTKToWin32Handle(RTKTaskHandle H);

If H references an existing task which was created by Win32’s CreateThread function and the handle
returned by CreateThread has not been closed, this function returns the original Win32 handle of the
referenced task. Otherwise, the returned value is INVALID_HANDLE_VALUE.

Function GetCurrentThreadId
This function simply returns the RTKernel-32 task handle of the current task. The function always
succeeds, even if the current task was not created using Win32 functions.

Function CreateThread
CreateThread allocates a thread object and associates a Win32 handle with it. The thread is created by
calling RTKCreateThread. The name of the task is set to "Win32 Thread". Floating point context main-
tenance for the new thread is controlled by RTKConfig.Flags. The priority is set to RTKConfig.Main-
Priority. If this is 0, RTKConfig.DefaultPriority is used. If this value is also 0, the new thread is created
with the priority of the creating thread. *ThreadId receives the RTKernel-32 task handle. In addition, an
event semaphore is associated with the thread object to allow waiting for task termination.

If parameter dwStackSize is 0, RTKConfig.DefaultTaskStackSize is used.

The thread object created by this function exists until the last handle to the thread is closed using Close-
Handle. This can happen before or after the thread terminates. In particular, if you plan to wait for thread
completion with WaitForSingleObject, you must not close the handle before the call to WaitForSingle-
Object returns.

Usually you should not call CreateThread directly. Instead, run-time system routines provided for thread
creation (like _beginthread) should be used.

198 On Time RTOS-32

Win32 Thread Compatible API

All high-level thread creation functions of the C/C++ run-time systems call CreateThread. Please note
that some of these will automatically close the returned Win32 handle, while others do not. If you need a
handle with a longer life span, use DuplicateHandle to get a second handle. Please also note that some
run-time system functions do not return the Win32 handle, but the thread ID.

Function ExitThread

This function terminates the current task, even if it was not created using CreateThread. If a Win32
handle is associated with the thread, it is not closed. If a task is waiting for the termination of the current
task, it is released by this call.

Threads created with C/C++ run-time systems functions such as _beginthread should not use this
function; _endthread should be used instead.

Function TerminateThread
If the given handle references an existing thread, the thread is terminated. Different from running under
Win32, the thread continues to run until all resource and mutex semaphores have been released. The
stack of the task is deallocated. Terminating the last thread of a program does not terminate the
program (RTKernel-32’s Idle Task would continue to run). The Win32 handle is not closed (this behavior
is identical to Win32’s). If one or more tasks are waiting for the termination of the task, they are released
by this call.

Threads created with C/C++ run-time system functions such as _beginthread should not use this
function; _endthread should be used instead.

Function GetExitCodeThread

This function behaves just like under Win32.

Function GetCurrentThread

This function returns the Win32 handle created by the call to CreateThread to create the current task. If
the task was not created by CreateThread, INVALID_HANDLE_VALUE is returned. Unlike under Win32,
the return value is not a pseudo handle but a real handle.

Function Sleep
This function uses module Clock to translate the parameter dwMilliseconds to RTKernel-32 timer ticks
and calls RTKDelay. The accuracy of this operation is determined by the current timer interrupt
frequency.

Function GetTickCount
This function calls RTKGetTime and translates the result to milliseconds using module Clock. The resol-
ution of this operation is determined by the current timer interrupt frequency.

Function SuspendThread

This function suspends the specified thread. RTKernel-32 does not maintain a suspend count.
Therefore, SuspendThread will always return 0 (or 0xFFFFFFFF in the case of an error).

Function ResumeThread

This function resumes the specified thread. RTKernel-32 does not maintain a suspend count. Therefore,
ResumeThread always resumes the thread and will always return 1 (or 0xFFFFFFFF in the case of an
error).

Function SetThreadPriority
SetThreadPriority sets the priority of the given thread relative to a Base. The Base is the value RTKCon-
fig.MainPriority, RTKConfig.DefaultPriority, or the current task’s priority (the first non-zero value is used).
The priority is changed as follows:

Part II RTKernel-32 199

Chapter 3 Alternate APIs for RTKernel-32

Parameter nPriority Priority
THREAD_PRIORITY_IDLE Base - 3
THREAD_PRIORITY_LOWEST Base - 2
THREAD_PRIORITY_BELOW_NORMAL Base - 1
THREAD_PRIORITY_NORMAL Base
THREAD_PRIORITY_ABOVE_NORMAL Base + 1
THREAD_PRIORITY_HIGHEST Base + 2
THREAD_PRIORITY_TIME_CRITICAL Base + 3

If the resulting priority is below RTK_MIN_PRIO, RTK_MIN_PRIO is used instead. If the resulting priority
is above RTK_MAX_PRIO, RTK_MAX_PRIO is used instead.

RTConfig.MainPriority defaults to 5. This makes the range of priorities 2 to 8 available to Win32 threads.

Function GetThreadPriority

GetThreadPriority uses the same Win32 <-> RTKernel-32 priority mapping as SetThreadPriority. The
same Base as for SetThreadPriority is used. If a priority difference relative to the base greater than 3 is
encountered, THREAD_PRIORITY_TIME_CRITICAL or THREAD_PRIORITY_IDLE is returned.

Function InitializeCriticalSection
InitializeCriticalSection creates an RTKernel-32 binary or mutex semaphore (see Chapter 2, section
RTKernel-32 Configuration) named "Win32 CS" and associates it with the critical section object passed
as the parameter.

Function EnterCriticalSection
EnterCriticalSection performs RTKWait on the RTKernel-32 semaphore associated with the given critical
section.

Function LeaveCriticalSection
LeaveCriticalSection performs RTKSignal on the RTKernel-32 semaphore associated with the given
critical section.

Function DeleteCriticalSection

DeleteCriticalSection performs RTKDeleteSemaphore on the RTKernel-32 semaphore associated with
the given critical section.

Function CreateEvent
CreateEvent calls RTKOpenSemaphore to create or find a matching semaphore. If parameter
bManualReset is TRUE, the semaphore has type ST_EVENT; otherwise, it has type ST_BINARY.
CreateEvent also allocates a Win32 handle for the semaphore, which is returned to the caller.

Function CreateMutex
CreateMutex calls RTKOpenSemaphore to create or find a matching semaphore of type ST_BINARY or
ST_MUTEX (see Chapter 2, section RTKernel-32 Configuration). CreateMutex also allocates a Win32
handle for the semaphore which is returned to the caller.

Function CreateSemaphore
CreateSemaphore calls RTKOpenSemaphore to create or find a matching semaphore of type
ST_COUNTING. CreateSemaphore also allocates a Win32 handle for the semaphore which is returned
to the caller.

Parameter lMaximumCount is ignored. RTKernel-32 counting semaphores can count up to 232-1.

200 On Time RTOS-32

Win32 Thread Compatible API

Function OpenEvent
OpenEvent calls RTKOpenSemaphore to find a matching semaphore of type ST_EVENT or
ST_BINARY. If one is found, OpenEvent also allocates an additional Win32 handle for the existing
semaphore, which is returned to the caller.

The parameter fdwAccess is ignored (EVENT_ALL_ACCESS is assumed).

Function OpenMutex
OpenMutex calls RTKOpenSemaphore to find a matching semaphore of type of type ST_BINARY or
ST_MUTEX (see Chapter 2, section RTKernel-32 Configuration). If one is found, OpenMutex also
allocates an additional Win32 handle for the existing semaphore, which is returned to the caller.

The parameter fdwAccess is ignored (MUTEX_ALL_ACCESS is assumed).

Function OpenSemaphore

OpenSemaphore calls RTKOpenSemaphore to find a matching semaphore of type ST_COUNTING. If
one is found, OpenSemaphore also allocates an additional Win32 handle for the existing semaphore,
which is returned to the caller.

The parameter fdwAccess is ignored (SEMAPHORE_ALL_ACCESS is assumed).

Function SetEvent
SetEvent calls RTKSignal for the specified event semaphore.

Function ResetEvent
ResetEvent functions just like under Win32.

Function PulseEvent
If the given handle references a manual reset event object, PulseEvent calls RTKPulse. The behavior of
PulseEvent is completely Win32 compatible if the flag RF_PULSWIN32 is set in RTKConfig.Flags (by
default, it is not set). Otherwise, the event semaphore is always left in an unset state by this call (also
see Chapter 2, Function RTKPulse).

If the hEvent parameter specifies an auto-reset event, RTKSignal is called.

Function ReleaseMutex
This function calls RTKSignal on the given mutex semaphore.

Function ReleaseSemaphore
This function calls RTKSignal cReleaseCount times on the given counting semaphore. The value
assigned to *lpPreviousCount is not reliable if other tasks are also using the semaphore at the time of
this call.

Function WaitForSingleObject

WaitForSingleObject accepts thread, event, mutex, and semaphore handles. If a thread handle is
passed, the wait operation will be performed on the event object created for the thread by CreateThread.

If the dwTimeout parameter is set to INFINITE, RTKWait is called for the respective object. If it is zero,
RTKWaitCond is used. For all other values, the value is converted to timer ticks and RTKWaitTimed is
called.

Part II RTKernel-32 201

Chapter 4 Supplemental Modules

Chapter 4
Supplemental Modules

This chapter introduces the supplemental modules delivered with RTKernel-32 in source code. They
offer various services that may be helpful in a real-time multitasking environment. These modules are
delivered in source code for good reasons. For once, they offer some examples of using RTKernel-32
that you can study to improve your understanding of RTKernel-32. Secondly, it is expected that these
modules will not be suited for all purposes in unmodified form.

Module FineTime
Module FineTime is a high-level interface to RTKernel-32’s high resolution timer device driver. It allows
measuring time intervals and converting high resolution times to real time (seconds, milliseconds, and
microseconds). High resolution times are stored as 64-bit unsigned integer values. The resolution of
time measurements depends on the timer device driver linked. For example, for the PC timer driver, the
resolution is 0.838 microseconds. For the Pentium driver, the resolution depends on the clock rate of the
CPU, but is typically much higher.

The application interface to module FineTime is contained and documented in include file FINETIME.H.

Function FTSetResolution

This function defines conversion constants required to convert fine times to seconds and vice versa:
void FTSetResolution (unsigned UnitsPerSecond, unsigned Divisor);

Times will be converted using the formula
FineTime = Seconds * UnitsPerSecond / Divisor;

Divisor should be less than 4295 to allow conversions to microseconds.

In most cases, the timer device driver will make a call to this function to supply the appropriate default
conversion values. However, some drivers do not know the clock rate of the hardware they rely on
(example: the Pentium driver). In these cases, the application must call FTSetResolution after RTKernel-
Init to be able to convert fine times to seconds.

The PC Timer driver calls FTSetResolution(14318180, 12) at program startup. The Pentium driver calls
FTSetResolution(120000000, 1), assuming a CPU speed of 120MHz. You can use FTCalibrate to
calculate appropriate conversion constants based on the clock driver (see function FTCalibrate).

Function FTCalibrate

Function FTCalibrate can calibrate the high resolution timer using the clock driver:

unsigned FTCalibrate(RTKDuration Ticks);

Parameter Ticks specifies the calibration period in ticks. FTCalibrate calls FTSetResolution internally
and returns the timer frequency or 0 if the calibration failed.

Fine Time Arithmetic Functions

Module FineTime contains some functions to simplify arithmetic with 64-bit high resolution times:
typedef unsigned int UINT;

UINT FTIntMultDiv(UINT Factor1, UINT Factor2, UINT Divisor);
void FTSubtract (RTKFineTime * Result, RTKFineTime * T1, RTKFineTime * T2);
void FTAdd (RTKFineTime * Result, RTKFineTime * T1, RTKFineTime * T2);
UINT FTMultiply (RTKFineTime * Result, RTKFineTime * T, UINT Factor);
UINT FTDivide (RTKFineTime * T, UINT Divisor);

FTIntMultDiv returns Factor1 * Factor2 / Divisor. The intermediate result of the multiplication is main-
tained as a 64-bit value.

FTSubtract calculates (*Result) = (*T1) - (*T2).

202 On Time RTOS-32

Module Clock

FTAdd calculates (*Result) = (*T1) + (*T2).

FTMultiply calculates (*Result) = (*T) * Factor.

FTDivide calculates (*T) / Divisor (rounded down).

Functions FTIntMultDiv and FTDivide can trigger an exception if the divisor is zero or the result would
exceed 32 bits. None of the functions detect overflows; the most significant bits which do not fit into the
result are discarded. This behavior corresponds to the C/C++ operators for unsigned integers such as +,
-, *, /, etc.

Function FTReadTime

This function reads the current value of the high resolution timer:
void FTReadTime(RTKFineTime * T);

*T is assigned the current high resolution time.

Time Interval Measurements
The following functions calculate the time elapsed since a call to FTReadTime and convert the result to
seconds, milliseconds, or microseconds:

unsigned FTElapsedSeconds (const RTKFineTime * T);
unsigned FTElapsedMilliSecs(const RTKFineTime * T);
unsigned FTElapsedMicroSecs(const RTKFineTime * T);

The parameters (*T) must have been initialized with a call to FTReadTime. These functions return the
time elapsed since the respective call to FTReadTime. Any number of independent time intervals can be
measured in this way.

The return values of all three functions are 32-bit unsigned integers. The results are always rounded
down. Therefore, the range of these functions is limited. For example, FTElapsedMicroseconds is limited
to about 72 minutes, FTElapsedMilliSecs to about 50 days, and FTElapsedSeconds to 136 years. When
these limits are exceeded, the function results are undefined.

Time Conversions
The following functions can convert 64-bit high resolution times to seconds, milliseconds, microseconds,
and vice versa:

unsigned FTTimeToMicroSecs (const RTKFineTime * T);
unsigned FTTimeToMilliSecs (const RTKFineTime * T);
unsigned FTTimeToSeconds (const RTKFineTime * T);

void FTMicroSecsToTime(RTKFineTime * T, unsigned Micros);
void FTMilliSecsToTime(RTKFineTime * T, unsigned Millis);
void FTSecondsToTime (RTKFineTime * T, unsigned Secs);

All return values are rounded down. Again, the return values of the first three functions limit the available
range to about 72 minutes, 50 days, and 136 years, respectively.

Module Clock
Clock is the high-level interface to RTKernel-32’s timer interrupt device driver. It supplies functions to
convert timer ticks (RTKernel-32’s type RTKDuration) to real time (seconds, etc.) and vice versa. In
addition, it allows modifying the timer interrupt rate (if supported by the underlying driver).

Module clock is primarily concerned with timer ticks. However, it also knows timer units. Timer units
define the granularity with which the timer interrupt intervals can be set. For example, the PC timer
driver uses the PC’s 8253 timer chip, which counts in intervals of 0.838 microseconds. Timer interrupt
intervals can be specified as multiples of 0.838 microseconds. Thus, for this driver, the timer unit is
0.838 microseconds.

The application interface to module Clock is given in include file CLOCK.H. The available functions are
described below.

Part II RTKernel-32 203

Chapter 4 Supplemental Modules

Function CLKSetResolution
This function defines conversion constants required to convert clock timer units to seconds and vice
versa:

void CLKSetResolution (unsigned UnitsPerSecond, unsigned Divisor);

Times will be converted using the formula
Timer Unit = Seconds * UnitsPerSecond / Divisor;

Divisor should be less than 4295 to allow conversions to microseconds.

In most cases, the clock device driver will call this function to supply the appropriate default conversion
values.

Function CLKSetTimerIntVal

This function changes the frequency of the timer interrupt:
void CLKSetTimerIntVal(unsigned Micros);

Parameter Micros should be supplied as microseconds. Module clock will convert it to timer units and
pass that value on to the timer interrupt driver. The actual value used will depend on the capabilities of
the driver. The driver will round the value to the nearest value it can support.

Alternatively, applications can also call the low-level routines _rtkCLKSetTimerInterval and _rtkCLKCur-
rentTimerInterval for a higher degree of control over the timer interrupt interval. However, this approach
would not be portable between different timer interrupt drivers.

It is recommended to immediately execute an RTKDelay(1) statement after changing the timer interrupt
frequency. Some timer drivers are not able to deliver accurate results in the time between changing the
timer frequency and the first timer interrupt.

Time Conversions

Module clock provides the following functions to convert timer ticks to seconds, milliseconds, microse-
conds, and vice versa:

unsigned CLKTicksToMicroSecs(RTKDuration T);
unsigned CLKTicksToMilliSecs(RTKDuration T);
unsigned CLKTicksToSeconds (RTKDuration T);

RTKDuration CLKMicroSecsToTicks(unsigned Micros);
RTKDuration CLKMilliSecsToTicks(unsigned Millis);
RTKDuration CLKSecondsToTicks (unsigned Secs);

All parameters and function results are limited to 32 bits. The function results are undefined if they would
exceed this limit. In addition, all functions converting to RTKDuration can trigger an exception 0 if the
result would exceed 32 bits.

All conversion functions round down.

Module Timer
Module Timer is a high-level floating point interface to the timer device drivers. The advantage of using
Timer is that better rounding can yield more accurate results and overflow situations are handled more
gracefully than by modules FineTime and Clock. The disadvantage is that Timer requires floating point.
Thus, all tasks that want to use Timer must have their own floating point context and the program must
run in an environment that supports floating point (either with a math coprocessor or with an emulator).
The primary data type of module Timer is seconds (type TISeconds, double).

The application interface to module Timer is given in include file TIMER.H. Its functions are described
below.

204 On Time RTOS-32

Module RTCom

Function TimerInit
Function TimerInit must be called once by the application before any of the functions defined by Timer
can be used:

void TimerInit(void);

Function TIElapsedTime
This function calculates the time relative to a given time value:

TISeconds TIElapsedTime(const RTKFineTime * T);

Parameter (*T) must have been set by a call to FTReadTime. TIElapsedTime subtracts an overhead
value from the measured time. Thus, a construct such as:

TISeconds Result;
RTKFineTime T;

FTReadTime(&T);
Result = TIElapsedTime(&T);

will yield zero or a very small value. Please note that the time returned may be negative due to caching
or other time-distorting effects.

Function TIElapsedAndMark

TIElapsedAndMark returns the elapsed time since FTReadTime and resets the Parameter (*T) to the
current time:

TISeconds TIElapsedAndMark(RTKFineTime * T);

This function is useful to measure a set of consecutive time intervals. No overhead is subtracted from
the returned value.

Function TISetTimerInterval
This function changes the timer interrupt interval:

void RTKAPI TISetTimerInterval(TISeconds Seconds);

Parameter Seconds is rounded to the nearest value supported by the underlying timer interrupt driver.
To enquire the actual value, use TITicksToSeconds(1).

It is recommended to immediately execute an RTKDelay(1) statement after changing the timer interrupt
frequency. Some timer drivers are not able to deliver accurate results in the time between changing the
timer frequency and the first timer interrupt.

Time Conversions

Module Timer provides the following functions for conversions between floating point seconds and
RTKernel-32 timer ticks:

TISeconds TIFineTimeToSeconds(const RTKFineTime * T);
TISeconds TITicksToSeconds (RTKDuration T);
RTKDuration TISecondsToTicks (TISeconds T);

The results are rounded to the nearest representable value. The result of TISecondsToTicks is
undefined if it would exceed 32 bits.

These time conversion routines only work correctly if TimerInit has been called and all changes to the
timer interrupt interval have been performed using function TISetTimerInterval.

Module RTCom
Module RTCom offers completely interrupt-driven communication through serial ports. Some of
RTCom’s features:

• transmission at any baud rate supported by the hardware

• simultaneous support of up to 38 ports

Part II RTKernel-32 205

Chapter 4 Supplemental Modules

• support of DigiBoard and Hostess boards

• configurable I/O addresses and IRQs

• protocols XOn/XOff, RTS/CTS, and DSR/DTR

• receive and send buffers of arbitrary size

• full error detection for each received byte

• full support of the 16550 UART’s FIFO buffer

The interface for RTCom is given in include file RTCOM.H.

RTCom supports both polled and interrupt-driven communication. In general, interrupt-driven communi-
cation should be used for better performance. In interrupt-driven mode, data is buffered up to a user-de-
fined limit before data is lost. In polling mode, no data is buffered. If a 16550A UART chip is used by a
serial port, its internal 16-byte buffer is used.

If interrupt-driven communication is desired on a "standard" port (i.e., a port not on a DigiBoard, Hostess
card, or other interrupt-sharing card), the following steps should be taken:

• If the port does not use a standard I/O port address as defined for the IBM PC, call COMSetIO-
Base. If it does not use a standard IRQ as defined for the IBM PC, call COMSetIRQ also.

• Initialize the port using function COMPortInit.

• If you need a protocol, call COMSetProtocol.

• Call COMEnableInterrupt. All incoming data is put into mailbox COMReceiveBuffer[x], where x is
the corresponding port. The mailboxes contain records of type COMData containing the actual data
received in the low byte and an error status byte (as defined by the Line Status Register) in the
high byte.

• Tasks that want to receive data should perform RTKGet, RTKGetCond, or RTKGetTimed on the
corresponding mailboxes. Tasks that want to send should use COMSendChar. COMSendChar
writes the data to a send buffer which is emptied by an interrupt handler.

Function COMEnableInterrupt allocates both receive and send buffers with the same size. If you need
different sizes, call COMAllocateBuffers first; COMEnableInterrupt will not allocate buffers again.

If polled communication is desired, the following steps should be taken:

• If the port does not use a standard I/O port address as defined for the IBM PC, call COMSetIO-
Base.

• Initialize the port using COMPortInit.

• To receive, call COMReceiveCharPolled.

• To send data, use COMSendCharPolled.

Protocols
By default, RTCom uses no protocol to prevent overflow errors. In this mode, it is assumed that all
communication participants are ready to accept data. If a receive buffer of RTCom overflows, the error
COM_BUFFER_FULL is reported.

In interrupt-driven mode, RTCom also supports protocols XOn/XOff, RTS/CTS, and DTR/DSR. These
protocols can prevent buffer overflows. A receiver checks after each byte received whether the receive
buffer has filled up to a dangerous level. If so, the sender is informed to stop sending. As soon as the
receive buffer has been emptied to a safe level, the sender is allowed to continue sending.

The XOn/XOff protocol uses special ASCII control characters to send the necessary information to the
sender. It can only be used if the actual data stream never contains XOn/XOff characters. Protocols
RTS/CTS and DTR/DSR use handshake lines. However, they require that the corresponding lines are
actually connected in the cable used.

206 On Time RTOS-32

Module RTCom

RTCom supports these protocols in Passive and Active modes. In Passive mode, RTCom will under-
stand and adhere to XOn/XOff characters or CTS or DSR signals, respectively. In this way, a buffer
overflow error can be prevented on the remote device. The local receive buffer can still overflow if the
receiving task does not collect the data fast enough. In Active mode, RTCom will also protect its own
receive buffer. If a buffer fills to more than 70% of its size, an XOff is sent to the remote device (or signal
RTS or DTR is reset). In this case, the remote device should stop sending. A protocol task in RTCom
will then periodically check whether the buffer is filled to less than 30% of its size. If so, the remote
device is allowed to continue sending (by sending an XOn to it, or by setting the RTS or DTR signal).

Hardware Configuration
RTCom expects the following IRQ settings for COM1 to COM4:

COM1 -> IRQ4
COM2 -> IRQ3
COM3 -> IRQ4
COM4 -> IRQ3

Please make sure that your serial I/O board actually supports interrupt sharing. If it does not, you cannot
use COM1 and COM3 or COM2 and COM4 simultaneously in interrupt-driven mode. COMSetIRQ may
be used to define different IRQs for ports COM1 .. COM6. Interrupt sharing can be defined for any IRQ,
but only for port pairs COM1/COM3 and COM2/COM4. Best performance is achieved when every port
has its own IRQ.

DigiBoard Cards (PC/4, PC/8, PC/16)

Before you can use one or more DigiBoard cards, you have to inform RTCom about the card type, the
status register address, the interrupt request to be used, and which port number you would like to assign
to the first port on the board. Please note that the card(s) must be configured to use only one interrupt
request. If you have several cards installed, they should all use the same address for the status register.

For example, if you have set the status register to 0x140, the IRQ to 7, and you would like the ports on
your card to start at COM5, you should include the following statement in your program before the card
can be used:

COMSetBoardType(COM_BOARD_DIGIBOARD, 0x140, 7, 4);

Subsequently, the I/O address of each port must be individually defined using COMSetIOBase. If you
have a card with four ports and you have left the I/O addresses at factory settings, the following state-
ments would be required:

COMSetIOBase(4, 0x100);
COMSetIOBase(5, 0x108);
COMSetIOBase(6, 0x110);
COMSetIOBase(7, 0x118);

After this initialization, ports 4 through 7 can be used as explained above. Both interrupt-driven and
polling modes are supported.

Hostess Cards (4, 8, or 16 Ports)

Before you can use a Hostess card, you have to inform RTCom about the card type, its base address,
the interrupt request to be used, and which port number you would like to assign to the first port on the
board. Cards with four or eight ports are identified by card type COM_BOARD_HOSTESS. Cards with
16 ports have card type COM_BOARD_HOSTESS_16. For example, if your board with four ports is
installed at address 0x280 and uses IRQ 7, and you already have COM1 and COM2 in your computer,
then you should include the following statement in your program before the card can be used:

COMSetBoardType(COM_BOARD_HOSTESS, 0x280, 7, 2);

Then, the I/O address of each port must be defined individually using COMSetIOBase. Using the
example above, the following statements would be required:

COMSetIOBase(2, 0x280);
COMSetIOBase(3, 0x288);
COMSetIOBase(4, 0x290);
COMSetIOBase(5, 0x298);

Part II RTKernel-32 207

Chapter 4 Supplemental Modules

After this initialization, ports 2 through 5 (COM3 .. COM6) can be used as explained above. Both
interrupt-driven and polling modes are supported.

Other Interrupt Sharing Cards (2 to 32 Ports)

DigiBoard and Hostess cards have a special status register used to identify the port that has generated
an interrupt. If your I/O card does not have such a register, you can use the COM_BOARD_GENERIC
type. It checks all ports on the card at every interrupt. Before you can use a generic card, you have to
inform RTCom about the card type, the interrupt request to be used, which port number you would like
to assign to the first port on the board, and how many ports the board has. For example, if your board
with four ports uses IRQ 7 and you already have COM1 and COM2 in your computer, then you should
include the following statement in your program before the card can be used:

COMSetBoardType(COM_BOARD_GENERIC, 4, 7, 2);

Then, the I/O address of each port must be defined individually using COMSetIOBase. Assuming the
first port uses I/O address 0x280, the following statements would be required:

COMSetIOBase(2, 0x280);
COMSetIOBase(3, 0x288);
COMSetIOBase(4, 0x290);
COMSetIOBase(5, 0x298);

After this initialization, ports 2 through 5 can be used as described above. Both interrupt-driven and
polling modes are supported.

Please note that DigiBoards and Hostess cards show better performance than generic cards thanks to
their hardware support for interrupt sharing.

Function COMSetBoardType
COMSetBoardType can define the properties of an interrupt sharing serial I/O board:

void COMSetBoardType(int Type, unsigned Address, int IRQ, int FirstPort);

If you intend to use a generic, Hostess, or DigiBoard card, its parameters must be defined using this
function. Parameter Type may assume one of the values COM_BOARD_GENERIC, COM_BOARD_DI-
GIBOARD, COM_BOARD_HOSTESS, or COM_BOARD_HOSTESS_16. Parameter Address specifies
the I/O address of the board’s status or vector register. For the COM_BOARD_GENERIC type,
parameter Address is interpreted as the number of ports on the card. IRQ specifies the interrupt the card
will use to signal events. Parameter FirstPort is the port number you want to assign to the board’s first
port. If, for example, you want to address the ports on a board with four ports as COM5, COM6, COM7,
and COM8, FirstPort should be set to COM5 (value 4).

For additional instructions on how to use COM boards with RTCom, please refer to section Hardware
Configuration in this chapter.

Function COMSetIOBase
COMSetIOBase sets the port base address for a port:

void COMSetIOBase(int Port, unsigned int IOBase);

Any port not using standard I/O port addresses must be defined using this function. This is always
necessary for port numbers greater than 3 (COM4).

Function COMSetIRQ
COMSetIRQ defines the interrupt triggered by a port:

void COMSetIRQ(int Port, int IRQ);

If no IRQ is specified in this call, RTCom assumes IRQ 4 for COM1 and COM3 and IRQ 3 for COM2 and
COM4. You can share IRQs for port pairs COM1/COM3 and/or COM2/COM4. Best performance is
achieved when each port uses its own IRQ. Only ports 0 .. 5 (COM1 .. COM6) are supported by this call.
There are no default values for COM5 and COM6.

208 On Time RTOS-32

Module RTCom

Function COMPortInit
COMPortInit initalizes a port:

void COMPortInit(int Port, long Baud, int Parity, int StopBits, int WordLength);

COMPortInit sets the port parameters and disables interrupts for the port. If a 16550A UART is detected,
its FIFO is automatically enabled at trigger level 8.

Parameter Port must be in the range 0 to COM_MAX_PORTS-1 (37). Supported baud rates range from
50 to 115200. Parity must be set to PARITY_NONE, PARITY_ODD, PARITY_EVEN, PARITY_MARK,
or PARITY_SPACE. StopBits may be set to 1 or 2. WordLength must be in the range 5 to 8.

Please note that RTCom assumes the UART uses a clock input of 1.8432MHz (the value commonly
used on PCs). If a different input clock frequency is used by the target hardware, the baud rate specified
for COMPortInit must be adjusted according to the following formula:

B = (1,843,200 / Clock Frequency) * Baudrate

where B is the value to be supplied for COMPortInit and Baudrate is the effective baud rate to be used.

Example: The target computer has a 386EX CPU running at 25Mhz and you want to use COM2 (the
second internal serial port of the 386EX) at 57600 baud. The input frequency for the serial ports is CLK2
(50Mhz in this example) divided by 4, giving 12.5 MHz. The value required for COMPortInit is:

(1.8432 / 12.5) * 57600 = 8493

Function COMHasFIFO
COMHasFIFO can detect UARTs equipped with an internal FIFO buffer:

RTKBool COMHasFIFO(int Port);

The function returns TRUE for all 16550A or compatible UARTs.

Function COMEnableFIFO
COMEnableFIFO can enable or disable the internal buffer of 16550A or compatible UARTs:

void COMEnableFIFO(int Port, int Trigger);

If the port uses a 16550A UART, this function can be used to set the interrupt trigger level. The trigger
level specifies after how many received bytes an interrupt is generated. If no bytes are received during a
time span sufficient to transmit four bytes, the UART will generate a time-out interrupt for all trigger
levels. Thus, no data will stay in the FIFO buffer forever. By default, RTCom sets the trigger level to 8 if
it detects a 16550A. You may change this value to 1, 4, 8, or 14. A value of 0 disables the FIFO buffer.
Low values for the trigger level may result in a faster response of tasks waiting for data; however, overall
system performance will suffer due to many interrupts. With high values (e.g., 8 or 14), you get less
interrupts resulting in a higher system throughput. At 14, overrun errors may occur at very high baud
rates. For most applications, trigger level 8 is a good compromise.

Function COMSetProtocol
COMSetProtocol can set the desired protocol for a particular port:

void COMSetProtocol(int Port, int Prot, UINT ProtTaskPrio, RTKDuration PollCycle);

Parameter Prot may have one of the following values: COM_PROT_NONE, COM_PROT_XON_XOFF,
COM_PROT_RTS_CTS, COM_PROT_DTR_DSR. If parameter ProtTaskPrio is equal to COM_PAS-
SIVE, a passive protocol is assumed and PollCycle is ignored. Otherwise, a protocol task is created with
priority ProtTaskPrio. This task will run in PollCycle intervals and check whether a protocol action is
required on any port. Only one such protocol task is created for all ports. The last values given for Prot-
TaskPrio and PollCycle apply.

If this function is never called for a specific port, no protocol is assumed. Protocols are only supported
for interrupt-driven communication.

Part II RTKernel-32 209

Chapter 4 Supplemental Modules

Function COMAllocateBuffers
COMAllocateBuffers allocates send and receive buffers for a port:
void COMAllocateBuffers(int P, UINT ReceiveBufferSize, UINT SendBufferSize);

If the buffers have been allocated already, this call has no effect. The call to this function is not
mandatory; function COMEnableInterrupt will call

COMAllocateBuffers(P, BufferSize, BufferSize)

to ensure that buffers are available.

Function COMEnableInterrupt
COMEnableInterrupt enables interrupt-driven communication for a particular port:

void COMEnableInterrupt(int Port, unsigned BufferSize);

COMEnableInterrupt enables interrupts for sending/receiving and allocates send and receive mailboxes
with BufferSize slots each if no buffers have been allocated yet. If you need different sizes for receive
and send buffers, call COMAllocateBuffers first. If the port uses a 16550A UART, the interrupt trigger
level defaults to 8 characters.

Function COMDisableInterrupt
COMDisableInterrupt disables interrupts previously enabled with COMEnableInterrupt.

void COMDisableInterrupt(int Port);

The send and receive buffers are not cleared or deleted.

Function COMSendChar
COMSendChar sends a character asynchronously using interrupts:

void COMSendChar(int Port, BYTE Data);

Parameter Data is placed in the send buffer to be transmitted by the interrupt handler as soon as the
transmit register becomes empty. Note that this function will typically return before the data is actually
transmitted.

Function COMSendCharTimed
COMSendCharTimed sends data with a timeout:

RTKBool COMSendCharTimed(int Port, BYTE Data, RTKDuration Timeout);

Same as COMSendChar, but this function returns FALSE if the data could not be placed in the send
buffer within the time given in parameter Timeout. Please note that the data is only placed in the send
buffer and is not guaranteed to have been sent even when this function returns TRUE.

Function COMSendBlock

COMSendBlock sends a block of data to a COM port:
void COMSendBlock(int Port, void * Data, UINT Length);

This function is equivalent to:
for(i=0; i<Length; i++)
 COMSendChar(P, Data[i]);

but is faster.

Function COMSendBlockTimed
COMSendBlock sends a block of data to a COM port with a timeout:

UINT COMSendBlockTimed(int Port, void * Data, UINT Length, RTKDuration Timeout);

COMSendBlockTimed is similar to COMSendBlock, but the latter function returns the number of bytes
placed in the send buffer without getting a timeout. If the data was transferred to the send buffer
completely, Length is returned. The timeout applies to the complete data block.

210 On Time RTOS-32

Module RTCom

Function COMWaitSendBufferEmpty
COMWaitSendBufferEmpty waits for a send buffer to become empty:

RTKBool COMWaitSendBufferEmpty(int Port, RTKDuration Timeout);

This function waits until the send buffer of Port is empty, that is, all pending data has been sent to the
UART. COMWaitSendBufferEmpty does not use polling; instead, the calling task is blocked until the
send buffer is empty. If the function returns TRUE, the send buffer is empty. Otherwise, data may still be
in the send buffer and the timeout has expired. Please note that the last byte may still be in the send
shift register. To be sure all data has been sent out, check bit COM_TX_SHIFT_EMPTY in the Line
Status register after a call to COMWaitSendBufferEmpty. Example:

if (!COMWaitSendBufferEmpty(P, 100))
 printf("Send buffer not empty after 100 timer ticks!");
else
 while (!(COMLineStatus(P) & COM_TX_SHIFT_EMPTY))
 RTKScheduler();

Function COMSetModemStatusHook
COMSetModemStatusHook installs an application function to be called on every modem status line
change:

void COMSetModemStatusHook(int Port, void (* RTKAPI Hook)(int Port, BYTE Status));

Such a modem status hook may be used to trap the change of modem status signals, such as Data
Carrier or Ring Indicator. Apart from the port number, the hook is called with the new modem status
value. The hook is called in the context of an interrupt handler. COMEnableInterrupt must have been
called for the hook to take effect.

Function COMReceiveCharPolled
This function receives one byte using polling:

COMData COMReceiveCharPolled(int Port);

The received character and any error bits are returned. Do not use this function together with function
COMLineStatus. COMLineStatus will delete any errors that may have occurred.

Function COMSendCharPolled

COMSendCharPolled sends a byte using polling:
void COMSendCharPolled(int Port, BYTE Data);

The function polls the port until the transmit register is empty. Subsequently, the Data character is trans-
mitted.

Function COMLineStatus
COMLineStatus enquires the line status register of a port:

BYTE COMLineStatus(int Port);

The contents of the Line Status Register is returned. The return value is bit-oriented; the following bits
can be set:

COM_DATA_READY A data byte has been received.

COM_OVERRUN An overrun error has occurred.

COM_PARITY A parity error has been detected.

COM_FRAME A frame error has been detected.

COM_BREAK A break condition has been detected.

COM_TXB_EMPTY The transmit hold register is empty.

COM_TX_SHIFT_EMPTY The transmit shift register is empty.

Part II RTKernel-32 211

Chapter 4 Supplemental Modules

All error bits (COM_OVERRUN, COM_PARITY, COM_FRAME, and COM_BREAK) are cleared after
they have been read once. Since RTCom’s interrupt handler also reads the line status register, these
can never be read with COMLineStatus if interrupt-driven communication is used.

Function COMModemStatus
COMModemStatus reads a port’s Modem Status Register:

BYTE COMModemStatus(int Port);

The following bits are defined:

COM_DCTS Signal CTS has changed.

COM_DDSR Signal DSR has changed.

COM_DRI Signal RI has changed.

COM_DDCD Signal DCD has changed.

COM_CTS Clear To Send.

COM_DSR Data Set Ready.

COM_RI Ring Indicator.

COM_DCD Data Carrier Detect.

Function COMModemControl
Function COMModemControl writes a value to the Modem Control Register:

void COMModemControl(int Port, int SetToOneZero, int NewValue);

If parameter SetToOneZero is one, the value is ored into the register; if it is zero, it is not-anded. The
following bits are defined:

COM_DTR Set Data Terminal Ready.

COM_RTS Set Request To Send.

COM_OUT1 Set OUT 1.

COM_OUT2 Set OUT 2.

COM_LOOPBACK Set Loop-Back Mode.

Function COMError

COMError can translate an RTCom error code to readable text:
char * COMError(COMData Data);

COMError returns a pointer to a string corresponding to the most severe error set in parameter Data.

Module RTKeybrd
RTKeybrd contains functions KBGetCh, KBKeyPressed, and KBPutChar (to insert keystrokes into the
keyboard buffer by software). RTKeybrd releases the CPU for other tasks while waiting for keyboard
input.

Multitasking programs requiring keyboard input should utilize RTKeybrd in order to make CPU time
available to other tasks that would otherwise be wasted waiting for keyboard input.

RTKeybrd hooks into RTTarget-32’s user input event manager and registers RTTarget-32’s keyboard
interrupt handler with RTKernel-32’s interrupt system. All functions waiting for user input (e.g.,
RTGetCh(), Win32 console I/O functions or C/C++ run-time systems functions) will block the calling task,
freeing CPU time for other tasks. A keyboard interrupt will then reactivate the respective task instan-
taneously.

212 On Time RTOS-32

Module RTTextIO

RTKeybrd declares a binary semaphore which is set by every keyboard interrupt. Applications can wait
on this semaphore (e.g., to be able to wait for keyboard input with a timeout). Please note that setting
semaphore KBKeyAvailable does not guarantee that a key is available in the keyboard buffer. It only
means that some kind of keyboard event has occurred (e.g., a key was released).

The functions of module RTKeybrd are declared in header file RTKEYBRD.H.

Function KBInit
KBInit initializes module RTKeybrd:

void KBInit(void);

KBInit creates semaphore KBKeyAvail and installs all required hooks for RTTarget-32’s user input event
management.

Function KBKeyPressed
KBKeyPressed checks whether a key is available in the keyboard buffer.

RTKBool KBKeyPressed(void);

If characters are available in the keyboard buffer, TRUE is returned and KBGetCh would succeed
immediately.

KBKeyPressed corresponds to the kbhit function supplied by most C/C++ compilers.

Function KBGetCh
KBGetCh waits for and retrieves keyboard input:

int KBGetCh(void);

As long as no keyboard input is available, the calling task is blocked. The return value is the ASCII value
of the key pressed. If the key was an extended key without an associated ASCII value, 0 is returned and
a second call to KBGetCh() retrieves the key’s keyboard scan code.

KBGetCh corresponds to the getch function supplied by most C/C++ compilers. However, getch() can
also be used.

Function KBPutCh
KBPutCh places a character in the keyboard buffer:

void KBPutCh(char C, char ScanCode);

Parameter C is the ASCII value of the key. For normal keys, ScanCode is ignored and may be zero. For
extended keys without ASCII representation, parameter C should be zero and ScanCode is the
keyboard scan code of that key.

Module RTTextIO
Module RTTextIO provides a simple windowing facility to share the screen among several tasks. Each
task can reserve a window on the screen and perform text I/O in this window. Each window can have a
title, a frame, and different colors for foreground and background.

Each window owns a structure created and initialized by function WOpenTextWindow or WNewWindow.
This structure emulates the functions of a text file. RTTextIO provides functions corresponding to fprintf,
fputs, fgets, etc., for I/O in the window.

A task that wants to write to the screen should perform the following steps:

• If you are not using a color graphics display, call WSetVideoRAMAddress to define screen and
video controller parameters.

• If user input is required, call WSetUserInput().

Part II RTKernel-32 213

Chapter 4 Supplemental Modules

• Execute WNewWindow or WOpenWindow to obtain a pointer to a WWindow structure. Make sure
the window does not overlap any windows defined by other tasks. If WOpenWindows is used and a
frame is desired, an extra line and two extra columns must be reserved above, below, and to the
right and left of each window.

• Use WPutC, WPutS, WGetS, and Wprintf to access the window. If two tasks try to read simulta-
neously, an orderly distribution of the characters to the tasks cannot be expected.

• Use WGotoXY to position the (virtual) output cursor anywhere in the window. Please note that the
upper left-hand corner is at (0,0). Since the display adapter supports only one physical cursor, the
physical cursor is used only to mark the next character input position. However, each window has
its own logical output cursor.

• If you want the physical cursor to appear at the logical cursor position of a window, call WSet-
Cursor. RTTextIO will normally display the physical cursor only when user input is expected.

• If you want RTTextIO to expand function keys on the command line, use function WDefine-
FunctionKey to associate a key with a string. The string should not be longer than 15 characters.
WDefineFunctionKey may be used to reassign any key that generates a zero followed by a scan
code using KBGetCh.

If you want to use a non-standard video mode (e.g., to have more rows and columns on the screen), use
function WSetScreenSize to inform RTTextIO. Up to 132 columns and 75 rows are supported.

The functions of module RTTextIO are declared in header file RTTEXTIO.H.

Function WSetVideoRAMAddress
WSetVideoRAMAddress defines the addresses of the video RAM and the video controller:

void WSetVideoRAMAddress(unsigned short Segment,
 unsigned int Offset,
 unsigned short CRTController);

Parameter Segment is a selector used for screen access. If it is zero (default), the default data segment
selector is used. The default offset is 0xB8000. For monochrome displays, you must use this function to
set the address to physical address 0xB0000 at program initialization. CRTController defaults to
W_CRT_COLOR. For monochrome displays, you must set it to W_CRT_MONO. If zero is used,
RTTextIO will not address the controller for cursor movement.

Function WSetScreenSize

WSetScreenSize defines the size of the physical screen:
void WSetScreenSize(int Cols, int Rows);

RTTxetIO assumes the screen to have 80 columns and 25 rows. Calling this function is only required for
other screen sizes. Up to 132 columns and 75 rows are supported.

Function WSetUserInput
If any task needs user input, you must install an input routine with this function:

void WSetUserInput(WUserInputFunction GetInput);

Parameter GetInput has no parameters and returns an integer. It should return an ASCII value or a 0
followed by a scan code for extended keys. Most applications will only use function KBGetCh to read
from the keyboard.

The following example shows how to read input from serial port COM2 instead of the keyboard:
int RTKAPI UserKey(void)
{
 COMData Data;
 RTKGet(COMReceiveBuffer[COM2], &Data);
 COMSendChar(COM2, Data);
 if (Data == ’\r’)

214 On Time RTOS-32

Module RTTextIO

 COMSendChar(COM2, ’\n’);
 return Data;
}

int main(void)
{
 COMPortInit(COM2, 9600, PARITY_NONE, 1, 8);
 COMEnableInterrupt(COM2, 100);
 WSetUserInput(UserKey);
 ...

Function WDefineFunctionKey

WDefineFunctionKey can be used to instruct RTTextIO to expand function keys to a string:
void WDefineFunctionKey(char ScanCode, const char * S);

When the user input function returns zero, the following value is interpreted as a scan code. If this scan
code matches a scan code specified in a previous call to WDefineFunctionKey, the corresponding string
pointed to by S is used as the input instead.

Function WClearScreen
WClearScreen clears the entire screen with the desired color:

void WClearScreen(int Attr);

A blank character is written to the entire screen with attribute Attr. Usually, the attribute should be set
to 0x7 for white foreground and black background.

Function WNewWindow
Function WNewWindow creates a new window on the screen and returns a pointer to the associated
windows structure:

WWindow * WNewWindow(int FirstCol, int FirstRow,
 int LastCol, int LastRow,
 int BufferSize, int Attr,
 const char * Title);

WNewWindow calls WOpenWindow and WFrame and clears the window.

Function WOpenWindow

WOpenWindow creates a new window on the screen, but does not draw a frame and does not clear the
new window:

WWindow * WOpenWindow(int FirstCol, int FirstRow,
 int LastCol, int LastRow,
 int BufferSize);

Parameter BufferSize defines the size of a buffer which RTTextIO allocates to store formatted strings in
function Wprintf. If you don’t need Wprintf, you can set Buffersize to 0 to save memory. The coordinates
of the new window are relative to the upper left hand corner of the screen starting at (0,0).

Function WCloseWindow
WCloseWindow deallocates a window created by WOpenWindow or WNewWindow:

void WCloseWindow(WWindow * W);

Function WFrame

WFrame draws a frame around a window created by WOpenWindow.
void WFrame(WWindow * W, const char * Title);

You must reserve one character above and below and two characters on the left and right sides of the
window for the frame. Adjacent frames are connected. The title is placed in the frame at the top of the
window.

Part II RTKernel-32 215

Chapter 4 Supplemental Modules

Function WGotoXY
WGotoXY positions the logical (invisible) output cursor:

void WGotoXY(WWindow * W, int Col, int Row);

Parameters Col and Row are relative to the window’s upper left-hand corner.

Function WCursorXY

WCursorXY positions the visible cursor to the given absolute screen position:
void WCursorXY(int Col, int Row);

Parameters Col and Row are relative to the screen’s upper left-hand corner.

Function WCursorOFF
WCursorOFF hides the physical cursor:

void WCursorOFF(void);

Function WCursorON

WCursorON displays the physical cursor:
void WCursorON(void);

Function WSetCursor
WSetCursor positions the physical cursor to the current position of the logical output cursor of the given
window:

void WSetCursor(WWindow * W);

Function WSetColor
WSetColor defines a new screen attribute to be used for the given window:

void WSetColor(WWindow * W, int color);

Parameter color is the attribute to be written to the screen in subsequent output.

Function WPutC

WPutC writes a character to a window:
int WPutC(WWindow * W, int c);

Characters CR, LF, BS, and TAB will be interpreted as control characters. FF (form feed) will clear the
window. All other characters are written to the video RAM and the logical output cursor position is
advanced.

Function WPutS
WPutS writes a null-terminated ASCII string to a window:

int WPutS(WWindow * W, const char * s);

Function WGetS
WGetS reads a string into the given buffer:

char *WGetS(WWindow * W, char * s, int maxstrlen);

You must call WSetUserInput to define an input routine before this function can be used. The input read
is placed in buffer *s until character CR is encountered. The trailing CR is not stored in *s. Parameter
maxstrlen defines the length of the buffer pointed to by s. WGetS will discard any input after
(maxstrlen-1) characters have been read.

216 On Time RTOS-32

Module CPUMoni

Function Wprintf
Wprintf works just like printf, but the formatted output is displayed in the given window:

int Wprintf(WWindow * W, const char * format, ...);

The formatted string is first placed into the string buffer associated with the window. The size of this
buffer is specified by the BufferSize parameter to WOpenWindow or WNewWindow.

Module CPUMoni
Module CPUMoni can be used to determine the current CPU load of a multitasking program. CPU load
is defined as the portion of CPU time used by tasks having priorities greater than 0 or 1.

CPUMoni supports two different methods for calculating the average CPU load over a given time
interval. The method used is determined by the Method parameter to CPUMonitorStart and the current
configuration of RTKernel-32. The methods are:

CPU_IDLE_TASK: CPUMoni will determine the amount of CPU time allocated to RTKernel-32’s Idle
Task. The CPU load returned by CPURelativeLoad is calculated from the total real time and the CPU
time used by the Idle Task since the last call to CPURelativeLoad. This method will yield slightly different
results depending on flag RF_ICPUTIME in RTKConfig.Flags. If this flag is not set, the time consumed
by interrupt handlers is assumed to be used by the task being interrupted.

CPU_COUNTER_TASK: With this method, a task with priority 1 that counts in an endless loop is
created. CPUMonitorStart will measure how fast this task can count when it runs exclusively. Subse-
quent calls to CPURelativeLoad will evaluate how far the counting task has counted and calculate the
amount of CPU time that was available to this task from the count rate. The CPU_COUNTER_TASK
method only works if all other tasks (apart from RTKernel-32’s Idle Task) have a priority greater than 1.

In general, the CPU_IDLE_TASK method is more accurate, since it is independent of cache and other
CPU speed-distorting effects.

Function CPUMonitorStart
CPUMonitorStart must be called once at program initialization to start the CPU monitor:

int CPUMonitorStart(int Method);

Parameter Method can have value CPU_IDLE_TASK or CPU_COUNTER_TASK. If CPU_IDLE_TASK
is specified, CPUMonitorStart will check whether RTKernel-32 measures the CPU time consumed by the
Idle Task. If this is not the case, method CPU_COUNTER_TASK is used. The return value shows which
method (CPU_IDLE_TASK or CPU_COUNTER_TASK) is actually being used.

Function CPURelativeLoad

CPURelativeLoad calculates the relative CPU load since the call to CPUMonitorStart or the last call to
CPURelativeLoad:

unsigned CPURelativeLoad(unsigned Factor);

The function return value is in the range of 0 .. Factor. 0 means that no CPU time was available; Factor
means that all CPU time was available. If Factor is set to 100, the return value is in percent.

The return value is rounded down to the next lower integer value.

Part II RTKernel-32 217

Chapter 5 RTKernel-32 Drivers

Chapter 5
RTKernel-32 Drivers

RTKernel-32 is designed to be portable. It is completely written in ANSI C. All target system and
hardware dependencies are encapsulated in a set of drivers described in this chapter. Various drivers
are delivered with RTKernel-32 in full source code. Only the source code of the portable kernel and the
Intel 386 CPU driver must be purchased separately, if required. Thus, it is possible to port RTKernel-32
to other platforms by supplying an adequate set of drivers.

The complete interfaces of the drivers are given in the respective header files (one for each driver). The
following description of each driver details the header file describing the respective driver, which drivers
are available, and for which platforms they are suitable. Section Overview of all Drivers gives an
overview of all available drivers. Each driver is delivered as a library file to be linked to RTKernel-32
applications. Alternatively, the prebuilt driver library DRVRT32.LIB can be used for RTKernel-32
programs running under RTTarget-32 with the default drivers.

System Interface
The system driver contains some target system or run-time system dependencies of RTKernel-32.
Specifically, the following functions are concerned:

• default error message handler

• fatal error handler

• idle handler (called by the Idle Task)

• query main task stack limits

• task initialization hook

• task termination hook

The complete interface of the system driver is documented in header file RTKSYS.H.

Driver SYSSTD

This driver is a generic system driver. The error message handler prints a string to stdout using function
fputs. The fatal error handler only calls exit. The idle handler executes HLT if running at CPL 0 with flag
DF_IDLE_HALT set in RTKConfig.Driverflag and otherwise returns immediately. DF_IDLE_HALT is not
set by default. All other functions are dummy (i.e., do nothing and return).

This driver may be used as a template for custom system drivers. SYSSTD does not set up Win32 TEBs
for the tasks and thus does not completely support Win32 emulation or TLS data segments (all tasks
would share the same TLS data segment of the main task).

Requirements: C/C++ run-time system, file I/O for stdout.

Driver SYSRT32
SYSRT32 is intended for RTTarget-32. The message handler calls RTTarget-32’s function RTDisplay-
String and the fatal error handler calls exit. The main task stack query function is fully implemented. The
init/done task hooks will appropriately set up TEBs and TLS data using the local descriptor table.
Therefore, this driver is suitable for Win32 emulation and supports TLS data segments and the TLS
Win32 API functions. However, since each task requires a selector, this driver limits the number of tasks
existing at any given time to 8192 (including the Main and Idle Tasks).

Requirements: RTTarget-32 1.1 or higher, C/C++ run-time system.

218 On Time RTOS-32

Interrupt Handling

Interrupt Handling
The Interrupt driver is used to implement RTKernel-32’s interrupt handling API. Specifically, it must
provide functions to:

• enable and disable interrupts

• install and restore interrupt handlers

• chain interrupt handlers

• program the interrupt controller(s) (optional)

In addition, this driver is queried by RTKernel-32 for preemptive task switch support.

Actually, some of these functions are RTKernel-32 API functions, but are also used internally (e.g.,
RTKDisableInterupts). The interrupt controller access functions RTKIRQEnd, RTKIRQTopPriority,
RTKEnableIRQ, and RTKIRQDisableIRQ are implemented here, but are not used by the kernel itself.
However, other drivers do rely on these functions.

The interrupt driver’s API is defined in header file RTKIRQ.H.

Driver IRQRT32
IRQRT32 uses RTTarget-32’s API for interrupt handling. It uses RTTarget-32’s default interrupt
request-to-interrupt vector mapping (IRQ0 .. 15 map to vectors 40h to 4Fh) and supports 16 IRQs.

Since RTTarget-32 supports running programs at CPL 0 or 3, this driver will replace any interrupt
handler it finds at startup with a different privilege level than the current privilege level. This should
usually not be a problem because RTTarget-32’s boot code only installs dummy interrupt handlers.

Requirements: RTTarget-32 1.1 or higher, 8059A interrupt controller at address 20h, optionally second
interrupt controller at A0h.

Kernel Clock
The clock driver supplies the kernel’s interrupt-driven time base. RTKernel-32 does not know about real
time in the sense of seconds, minutes, etc. All of its time services use a timer tick as their unit of time.
RTKernel-32 is not aware of the actual time period between two timer ticks.

The Clock driver supplies functions for:

• timer interval programming

• installation of the RTKernel-32 timer callback.

The clock driver’s interface is documented in file RTKCLK.H.

Driver CLKPC

This driver uses the 8253 timer chip, channel 0, to implement the clock interrupt. The maximum timer
interrupt interval is 55 ms; the interval can be set at a resolution of 0.838 microseconds. The timer
interrupt handler installed when RTKernelInit is called will continue to be called with the minimum
18.2 Hertz frequency if flag DF_TIMER_CHAIN is set in RTKConfig.DriverFlags, even when the timer
interrupt rate is changed. By default, DF_TIMER_CHAIN is not set.

This driver calls RTKIRQTopPriority(1,8) at initialization to ensure that the timer interrupt is processed
with the lowest interrupt priority. Applications requiring a different interrupt priority distribution should call
RTKIRQTopPriority() again after RTKernelInit().

Requirements: 8253 timer chip at address 40h, timer generates IRQ 0. Incompatible with drivers
CLKHRTPC and HRTPC.

Driver CLKHRTPC

This driver is actually a combined driver for the Clock and the High Resolution Timer. This driver must
be combined since both times are implemented using the same hardware: the 8253 timer chip,
channel 0.

Part II RTKernel-32 219

Chapter 5 RTKernel-32 Drivers

This driver calls RTKIRQTopPriority(1,8) at initialization to ensure that the timer interrupt is processed
with the lowest interrupt priority. Applications requiring a different interrupt priority distribution should call
RTKIRQTopPriority() again after RTKernelInit().

Requirements: 8253 timer chip at address 40h, interrupt controller 8059A at address 20h, timer
generates IRQ 0. Incompatible with drivers CLKPC and HRTPC.

High Resolution Timer
The high resolution timer is an optional driver for RTKernel-32. If it is available, RTKernel-32’s Debug
Version can supply CPU time statistics for tasks and interrupt handlers. In addition, modules FineTime
and Timer can be used for high resolution time measurements by the application. The driver must
supply a function for reading a 64-bit integer time value.

The high resolution driver’s interface is documented in file RTKHRT.H.

Driver HRTNULL
This is a dummy high resolution timer driver. The function to read the current high resolution time always
returns zero. Use this driver if you don’t need high resolution times or no suitable hardware is available.

Requirements: none.

Driver HRTPC
Driver HRTPC uses the 8253 timer chip, channel 0, to read high resolution times. It assumes that the
timer chip’s reload value is set to 216 and is running at 1.193 Mhz (the PC’s default). Times can be
measured with a resolution of 0.838 microseconds.

Requirements: 8253 timer chip at address 40h, interrupt controller 8059A at address 20h, timer
generates IRQ 0. Incompatible with drivers CLKHRTPC and CLKPC.

Driver CLKHRTPC

This driver is actually a combined driver for the Clock and the High Resolution Timer. This driver must
be combined since both times are implemented using the same hardware: the 8253 timer chip,
channel 0. This driver cannot guarantee accurate results between the time the timer interrupt frequency
is changed and the first timer interrupt after the change. Also, times are only accurate as long as long as
no recursive timer interrupts occur. Thus, the timer interrupt rate should not be set extremely high. The
actual achievable interrupt rate will vary depending on the speed of the CPU used.

Requirements: 8253 timer chip at address 40h, interrupt controller 8059A at address 20h, timer
generates IRQ 0. Incompatible with drivers CLKPC and HRTPC.

Driver HRTPENT
Applications that will always run on Intel Pentium or higher CPUs can use this driver for high resolution
time values. Pentium and higher CPUs contain a 64-bit counter register which is incremented in every
clock cycle. The resolution of the Pentium timer is far superior to the 8253 and reading the timer register
is much faster. The only disadvantage is that the timer will run at different speeds, depending on the
CPU’s clock rate. You will have to calibrate the driver either manually by calling module FineTime’s
function FTSetTimeConverter or with function FTCalibrate. The driver assumes a default clock rate of
120Mhz.

Requirements: Intel Pentium or higher CPU. Incompatible with clock driver CLKHRTPC (use CLKPC
instead).

Driver HRTSC520

Driver HRTSC520 uses the Software Timer of the AMD Élan SC520 CPU to deliver times with
1 microsecond resolution. By default, the driver assumes a system clock of 33.333MHz. If you use a
33.0MHz clock, be sure to include

MOVESB SWTMRCFG 1

220 On Time RTOS-32

Floating Point

in the Sc520ini.cfg file. This driver is incompatible with the default driver CLKHRTPC.LIB, which is also
included in DRVRT32.LIB. To use it, link libraries HRTSC520.LIB, CLKPC.LIB, and DRVRT32.LIB in this
order.

Note that the Software Timer of the Élan SC520 only covers a time period of about 65 seconds. Applica-
tions which need to measure time periods longer than 65 seconds must ensure that FTReadTime is
called during the measurement at least every 65 seconds to allow the timer driver to update its internal
time value in RAM. This is best achieved by including a call to FTReadTime in a low priority time cyclic
task which has a cycle time of less than 65 seconds.

Floating Point
RTKernel-32 supports maintaining a floating point context for each task. This driver supplies information
about the floating point implementation and functions to save and restore the floating point context.

The interface of the floating point driver is documented in file RTKFLT.H.

Driver FLTNULL

This is a dummy floating point driver. It informs RTKernel-32 that no floating point context is needed and
no context swapping is required. You should use this driver either if your program does not require any
floating point arithmetic or it will always use a completely reentrant floating point emulator. Please note
that the 387 or internal math coprocessors are not reentrant and are not compatible with this driver.

Requirements: floating point free application or reentrant emulator.

Driver FLT387
This driver can manage the floating point context for the i387 math coprocesor or any external or internal
math coprocessor compatible with it (e.g., 487, 486 internal, Pentium, etc.). In addition, it will also work
for a completely 387 compatible emulator. In particular, it must support calls to FSAVE/FRSTOR while
other FPU instructions are being executed, and it must be able to run with interrupts disabled.

Requirements: 387 compatible floating point hardware or emulator.

Driver FLTPII
This FPU driver uses the FXSAVE and FXRSTOR instructions introduced with the Intel Pentium II and
higher CPUs. On Pentium III and higher CPUs, this driver will also save and restore all 128-bit SSE
registers. This driver sets the OSFXSR bit in CR4 at program initialization. The FLTPII driver is slightly
faster than FLT387, but it needs about 500 bytes more memory per thread. If used on CPUs which do
not support the FXSAVE and FXRSTOR instructions (i.e. Pentium MMX or earlier or non-Intel),
exception 6 (Invalid Opcode) will occur.

Requirements: Pentium II or higher CPU, RTTarget-32 3.0.

Driver FLTEMUMT
FLTEMUMT behaves differently depending on the presence of floating point hardware or an emulator. If
floating point emulation is enabled, the driver will assume that a completely reentrant emulator is used
and will not perform floating point context swapping. However, if a coprocessor is installed and not
disabled, the driver behaves just like driver FLT387.

Requirements: 387 compatible floating point hardware or reentrant emulator, RTTarget-32 1.1 or higher.

Memory Management
Many of RTKernel-32’s objects are allocated dynamically at run-time. These objects’ memory is
allocated by the memory driver, which provides functions to allocate and free memory.

The memory driver’s interface is given in include file RTKMEM.H.

Part II RTKernel-32 221

Chapter 5 RTKernel-32 Drivers

Driver MEMCHEAP
This driver maps memory allocation and deallocation functions to standard ANSI C functions malloc and
free. The driver does not contain any reentrance protection. Therefore, malloc and free must be
protected by some other means (e.g., RTKernel-32’s Library Protection, the run-time system’s Win32
multithreaded libraries, etc.). This driver should be used if you don’t plan to use RTKernel-32’s Win32
emulation and do not call any RTKernel-32 functions before function main has been invoked.

Requirements: C/C++ run-time system, no RTKernel-32 calls before main has been called.

Driver MEMSTH
MEMSTH (STatic Heap) is implemented using a statically allocated uninitalized array in the program’s
data segment. The size of this heap is fixed and must be set at compile time. The default size is
2048 bytes. To change it, include the following statements in your program:

#define STHEAPSIZE (2*1024)

char STHeapData[STHEAPSIZE];
DWORD STHeapDataSize = STHEAPSIZE;

and adjust STHEAPSIZE to the desired value.

The static heap uses a semaphore to protect against recursive calls. The allocation strategy is "best fit"
and will frequently use memory more efficiently than malloc. Allocations are supported even before the
C/C++ run-time system is completely initialized.

To enquire the current state of the static heap, function MEMSTHeapInfo can be called:
typedef struct {
 DWORD TotalFree, // available memory
 TotalUsed, // total allocated memory
 FreeBlocks, // number of free blocks
 UsedBlocks, // number of allocated blocks
 LargestFree; // largest free block
} MEMSTHeapInfoRec;

void RTKAPI MEMSTHeapInfo(MEMSTHeapInfoRec * Info);

These declarations are also contained in header file STHEAP.H.

Requirements: none.

Driver MEMSTCH
This driver combines MEMCHEAP and MEMSTH. All allocation requests are first routed to MEMSTH. If
the allocation fails (e.g., because all available memory is already allocated), malloc is called.

This driver allows allocations (e.g., for Semaphores, critical sections, etc.) in the start-up phase of a
program, but the available memory is not limited to the static heap. For critical sections required by
multithreaded run-time systems, the default size of the static heap is sufficient.

Requirements: C/C++ run-time system.

Driver MEMW32
This driver uses Win32 heaps to satisfy allocation requests. Under RTTarget-32, the Win32 heaps are
protected with a critical section and are also used by RTTHeap, RTTarget-32’s alternate heap manager.
This is the default memory driver.

Requirements: Emulation of Win32 heap functions.

Source Code Positions
The Debug Version of RTKernel-32 can display source code position information for each task in its
function RTKTaskInfo or in its fatal error handler. The optional source code position driver is used to
retrieve this information.

The source code position driver’s interface is given in include file RTKSRC.H.

222 On Time RTOS-32

CPU

Driver SRCNULL
This is a dummmy source code position driver which does not return any source code information to
RTKernel-32. Use this driver if you don’t need source code position information or if no suitable symbol
table information is available.

Driver SRCTDS

The TDS (Turbo Debugger Symbols) driver can extract source code positions from symbol tables
generated by Borland compilers or RTTarget-32’s RTLoc. Function RTKLoadSymbols will accept .EXE
files and .TDS files to read the required information.

For Microsoft and Watcom compilers, the driver must know the starting address of the code segment.
This value must be assigned to global variable TDSCodeSegmentBase as in the following example:

extern char * TDSCodeSegmentBase;

#ifdef _MSC_VER
TDSCodeSegmentBase = (char*) Clock;
#endif

#ifdef __WATCOMC__
TDSCodeSegmentBase = (char*) Clock - 16;
#endif

In this example (taken from demo program RTKDEMO.C), it is assumed that Clock is the first function
linked and thus marks the start of the program’s code section.

Requirements: RTLoc option -g+, C/C++ run-time system, ANSI C file I/O.

CPU
RTKernel-32 requires a few low-level CPU-specific operations, which either cannot be implemented in
C/C++ or are unique to the CPU. Examples are access to CPU registers, low-level interrupt handler
stubs, etc.

Currently, RTKernel-32 is delivered with two such drivers for any CPU compatible with Intel 386 32-bit
protected mode. The source code of the CPU drivers is only available with the source code of
RTKernel-32.

Driver CPU386F
CPU386F is the flat address CPU driver. It assumes the program is running in a completely flat address
environment. In particular, interrupt handlers do not save, restore, or reload any segment registers.
While this driver delivers very good performance and low interrupt latencies, it can only be used if no
code interruptible by hardware interrupts modifies any of the segment registers DS, ES, FS, or SS. This
is the case for compiler-generated code and all assembler modules delivered with On Time RTOS-32. If
this rule is violated by any application code, sporadic and difficult to debug program crashes can be
expected.

Requirements: Intel 386 or compatible CPU (32-bit protected mode only), no segment register changes.

Driver CPU386
This driver does not enforce the flat address model. Registers DS, ES, and SS are saved, reloaded, and
restored by the low-level interrupt handlers. Performance is slightly inferior to CPU386F, but segment
register changing software is supported.

Part II RTKernel-32 223

Chapter 5 RTKernel-32 Drivers

Overview of all Drivers
The following tables list all drivers delivered with RTKernel-32 by their respective names and hard- and
software requirements:

Type Name Requirements Comments
System SYSSTD C run-time system No TLS support.

file I/O for stdout
SYSRT32 RTTarget-32 1.1 or higher TLS support, limits number of tasks to

C run-time system 8192.
Interrupt IRQRT32 RTTarget-32 1.1

8059A at 20h
Clock CLKPC 8253 at 40h Incompatible with drivers CLKHRTPC

timer generates IRQ 0 and HRTPC.
CLKHRTPC 8253 at 40h Combined Clock and high-resolution

8059A at 20h timer driver. Incompatible with all other
timer generates IRQ 0 high res. timer drivers.

Highres. HRTNULL none Does not implement any timer
Timer services.

HRTPC 8253 at 40h Incompatible with drivers CLKHRTPC
8059A at 20h and CLKPC.
timer generates IRQ0

CLKHRTPC 8253 at 40h Combined Clock and high-resolution
8059A at 20h timer driver. Incompatible with all other
timer generates IRQ0 clock drivers.

HRTPENT Pentium or Must be calibrated at run-time. Incom-
higher CPU patible with drivers CLKHRTPC.

HRTSC520 AMD Élan SC520 CPU Incompatible with drivers CLKHRTPC.
Floating FLTNULL No floating point or Does not swap floating point context.
Point reentrant emulator

FLT387 387 compatible floating
point hardware or
emulator

FLTPII Pentium II or high Intel CPU Saves/restores 387 and SSE registers.
FLTEMUMT 387 compatible floating

point hardware or
reentrant emulator
RTTarget-32 1.1

Memory MEMCHEAP C run-time system Does not support RTKernel-32 calls
before function main has been called.

MEMSTH none Supports additional function STHea-
pInfo.

MEMW32 Win32 Emulation for Win32 heaps Shares heap space with RTTHEAP.
MEMSTCH C run-time system

Source SRCNULL none Does not implement source code
Code position information.

SRCTDS file I/O, TDS file
CPU CPU386F No segment register changes

CPU386 Saves/restores segment registers in
low-level interrupt handlers

224 On Time RTOS-32

Preconfigured Driver Library DRVRT32.LIB

Preconfigured Driver Library DRVRT32.LIB
To successfully link an RTKernel-32 application, the main RTKernel-32 library RTK32S.LIB or
RTK32.LIB and a complete set of drivers is required. Since the number of libraries can become quite
large, RTKernel-32 comes with the preconfigured library DRVRT32.LIB, which incorporates the drivers
you will most likely use with RTKernel-32 and RTTarget-32. It contains the following drivers:

• SYSRT32

• IRQRT32

• CLKHRTPC

• FLTNULL

• MEMW32

• SRCTDS

• CPU386F

Thus, an RTKernel-32 program to run under RTTarget-32 needs to link only DRVRT32.LIB and
RTK32.LIB and the RTTarget-32 library RTT32.LIB. You can override the preconfigured drivers by
linking the required driver library before DRVRT32.LIB. For example, if you want to use floating point
driver FLTEMUMT instead of FLTNULL, specify library FLTEMUMT.LIB before DRVRT32.LIB on the
linker command line.

Part II RTKernel-32 225

Chapter 6 Demo Programs

Chapter 6
Demo Programs

All RTKernel-32 demo programs are configured the same way as the RTTarget-32 demo. Please refer
to Part I of this manual for instruction on how to run the demos.

Program Threads
Program Threads is a very simple program which can be used to verify that RTKernel-32 is correctly
configured and installed. The main thread creates a semaphore, a mailbox, and a second thread. The
main thread then sends a signal, a mailbox message, and a direct message to the new thread. This
program can be regarded as the minimal RTKernel-32 framework for applications using RTKernel-32’s
native API.

Program RTKDemo
Program RTKDemo is an interactive program showing some of the capabilities of RTKernel-32’s Debug
Version. RTKDemo creates several tasks and then waits for user input. Depending on the command
entered (press F10 for a list of all available commands), RTKDemo can display the result of the following
functions on the screen:

• RTKTaskInfo

• RTKMailboxInfo

• RTKSemaInfo

• RTKIRQInfo

• RTKDumpTrace

One of the threads created by RTKDemo is a high-priority cyclic task running exactly once every 10th of
a second.

Program RTKInt
Program RTKInt shows how a hardware interrupt handler can be installed under RTKernel-32. A simple
serial port receive handler is used. The handler reads the UART’s receive registers on every interrupt
and places the received byte in the receive buffer mailbox. A receive thread then retrieves the data and
can process it.

Program COMDemo
COMDemo demonstrates serial communications using module RTCom. It can send and receive strings
using a serial port. To use it, you must have another PC running a terminal program or a terminal
attached to COM2 of the target computer. COMDemo will send and receive data at 9600 baud, 8 data
bits, 1 stop bit, and no parity.

Program RTBench
RTBench is a benchmark program that measures the run-time performance of various RTKernel-32
operations. RTBench yields a number of run-times in microseconds. It shows that the overhead incurred
by RTKernel-32 is very low and that the scheduler’s operation is highly efficient.

Program RTBenchP
RTBenchP uses the same source code as RTBench, but a different set of drivers is linked, optimized for
Pentium class CPUs. This program does not use the 387 FPU emulator but links hardware floating point
support. In addition, the Pentium high resolution time driver is used.

226 On Time RTOS-32

Program RTBenchA

Program RTBenchA
RTBenchA uses the same source code as RTBench, but a different set of drivers is linked, optimized for
the AMD Élan SC520 CPU. This program does not use the 387 FPU emulator but links hardware
floating point support. In addition, the SC520 high resolution time driver is used.

Program W32Bench
W32Bench is a small benchmark to compare the speed of multithreading under Windows
95/98/NT/2000 and RTKernel-32. Unlike most other demo programs, W32Bench is linked with the
Standard Version (as opposed to the Debug Version) of RTKernel-32. Instead of linking the On Time
RTOS-32 libraries directly, it uses a custom system DLL, and uses only Win32 API function. In this way
the program can be executed under Win32 and under RTTarget-32.

W32Bench executes and measures the time for 200,000 task switches via semaphores using the Win32
API.

Part II RTKernel-32 227

Chapter 7 Advanced Topics

Chapter 7
Advanced Topics

This chapter introduces some advanced topics and discusses techniques of solving typical real-time
programming tasks.

RTKernel-32’s Debug Version
During the program development phase, the Debug Version of RTKernel-32 should be used by all
means. It contains additional code to recognize a number of error conditions. If an error occurs, the
program is aborted with an error message. Moreover, the Debug Version can determine at which source
code position a task is suspended. Also, it can calculate the CPU time usage of tasks and interrupts. To
locate persistent bugs, it features the real-time Kernel Tracer, which can also be used by the application.

Naturally, the Debug Version will not perform as fast as RTKernel-32’s Standard Version. The only
reason not to use the Debug Version during the testing phase could be the higher interrupt latency. To
change the version used, a program need not be recompiled; relinking is sufficient.

In the Debug Version, function RTKernelInit will display the message
RTKernel-32 Debug Version

to inform the programmer that the Debug Version is being used.

The Debug Version’s exit function will display the message
RTKernel-32 exit function

If this message is not displayed, execution of the exit function has been aborted, RTKernel-32 was
unable to restore the interrupt vectors, and the system may be in an unstable state.

During execution of an RTKernel-32 application, the Debug Version principally checks the following
conditions:

• It is checked whether every semaphore and mailbox used has been initialized and has not been
corrupted.

• It is checked whether every task handle passed to RTKernel-32 references an existing task (except
for function RTKGetTaskState).

• Every time RTKernel-32 is called, the stack of the active task or interrupt handler is checked for
overflow. This behavior can be suppressed by resetting flag RF_STACKCHECKS in RTKCon-
fig.Flags.

• In a blocking task switch, it is checked whether the task switch was triggered by an interrupt
handler.

• Internal RTKernel-32 data structures are checked for consistency.

All error messages are listed in Appendix D.

Reentrance of the C/C++ Run-Time Systems
Parts of the C/C++ run-time systems may be non-reentrant. If preemptive multitasking is used, potential
reentrance problems must be considered by the application.

The most critical non-reentrant part of the run-time system is the heap. With very few exceptions, all
RTKernel-32 programs will need the heap. Since the heap can be regarded as a global resource, it can
only be used simultaneously by several tasks if it is protected by a semaphore or critical section.

Other non-reentrant code parts may be the opening and closing of files and the use of variable errno or
other global variables. If you do not intend to open and close files simultaneously in several tasks with
preemptions enabled, you do not need to consider reentrace issues here.

228 On Time RTOS-32

Reentrance of the C/C++ Run-Time Systems

Reentrant operations can only be used simultaneously by several tasks if different data (parameters) is
processed. For example, all file read and write operations are reentrant, as long as no two tasks use the
same file and don’t attempt to write into the same buffer.

Non-reentrant parts of the run-time system can safely be used by one task in the program. If several
tasks access such resources, a mutual exclusion algorithm (see Chapter 7, Mutual Exclusion) should be
employed to make sure that no two tasks simultaneously perform the operation concerned. It must be
considered that not the code is non-reentrant, but rather, the global data. For example, in general,
graphics modules such as MetaWINDOW are completely non-reentrant, because virtually all routines
use a global cursor position (among many other global parameters, e.g., color, line style, etc.). Simulta-
neous use of graphics routines by several tasks would not crash the program; however, the results
wouldn’t look as expected. Therefore, it is necessary to implement a mutual exclusion protocol for all
routines of such a module.

RTKernel-32 offers different mechanisms for dealing with reentrance problems:

• Support for the multithreaded libraries

• Replacements for non-reentrant parts of the run-time system

• Automatic Library Protection

Which mechanism is best suited will depend on the particular application. A combination of the different
methods is also possible. For best compatibility, the use of the multithread run-time libraries is recom-
mended.

Multithreaded Libraries
Most 32-bit C/C++ compilers come with run-time libraries which address all reentrance issues. All
non-reentrant parts are protected using Win32 Critical Sections or similar mechanisms. Even accesses
to global variables such as errno are synchronized by duplicating errno for each thread.

The only disadvantage of the multithreaded libraries is their larger size and a small performance penalty,
even for parts where no reentrance problems are to be expected. In addition, all threads of the applica-
tion which might use the run-time system must be created with RTKRTLCreateThread or the functions of
the run-time system provided for this purpose (e.g., _beginthread). It should also be noted that such
threads might not support being terminated from a different thread or that such termination would cause
a memory leak. Please consult the documentation of the multithread support of your run-time system for
details.

Replacements for Non-Reentrant Parts of the Run-Time System

RTTarget-32 is delivered with a replacement for the C/C++ heap manager, which is protected using a
Win32 Critical Section. If you link RTTHEAP.LIB, all reentrance problems of the heap are solved.

Automatic Library Protection
RTKernel-32 offers Automatic Library Protection to protected non-reentrant libraries in the Intel/Microsoft
Relocatable Object File Format (OBJ)18. Using this feature, non-reentrant functions of arbitrary libraries
can be protected from simultaneous calls from several tasks. Source code modifications are never
required, neither in the libraries nor in programs using the libraries. Library Protection is fully implem-
ented at the level of OBJ and LIB files. Library Protection can be used for the compilers’ standard run-
time libraries, and also for any third-party libraries.

The mechanism is quite simple: each function that must be protected is renamed in the library. A new
function (the Protector) is created with the original name of the function to be protected. This new
function occupies a resource semaphore, calls the original function, and subsequently releases the
semaphore again. Thus, an application that uses the respective function automatically calls the
Protector.

18 RTKernel-32’s library protection currently does not support COFF libraries used by Microsoft Visual C++.

Part II RTKernel-32 229

Chapter 7 Advanced Topics

The utility program LIBPROT is responsible for renaming functions and creating Protectors. A Library
Protection Definition File specifies which functions should be protected by which resource semaphores.
These definition files are line-oriented text files. Each line contains the name of a semaphore to be used
for protection, followed by one or more function names that are protected by the respective semaphore.

Consider the following example that could be used to protect the functions malloc and free:
Heap _malloc _free

This creates a resource semaphore named "Heap". Each call to malloc and free will be protected by this
semaphore. Assuming that the definition file is named TEST.LP, and the library containing the functions
malloc and free is named TEST.LIB in directory C:\COMPILER\LIB, Library Protection can be installed in
RTKernel-32’s LIB directory using the following command line:

LIBPROT C:\COMPILER\LIB\TEST.LIB TEST.LP

LIBPROT creates a copy of library TEST.LIB in RTKernel-32’s LIB directory. The copy is searched for
functions named _malloc and _free. If found, they are renamed to __clib__malloc and __clib__free,
respectively. Also, two Protectors named _malloc and _free are created. Protector _malloc performs the
following (simplified) pseudo-code:

#include <rtk32.h>

extern RTKSemaphore _lp_Heap;

ResultType malloc(Parameters)
{
 if (RTKProtectLibrary)
 {
 ResultType Result;
 RTKWait(_lp_Heap);
 Result = _clib__malloc(Parameters);
 RTKSignal(_lp_Heap);
 return Result;
 }
 else
 return _clib__malloc(Parameters);
}

Semaphore _lp_Heap is created in a separate module and is named "Heap".

Library Protection must be activated using variable RTKProtectLibrary. RTKernel-32 sets RTKProtect-
Library to TRUE in function RTKPreemptionsON. The application may also enquire or modify
RTKProtectLibrary directly.

The semaphores used for Library Protection are created dynamically whenever the first call to a
protected function occurs. The number of currently used semaphores is stored in global variable
RTKLPSemas. Using this variable, an application can determine whether Library Protection has been
linked successfully.

Automatic Library Protection is well-suited in situations where a set of functions manipulate a global
resource which is always in a consistent state between function calls. It is not suited for systems
requiring transactions consisting of several function calls. For example, a graphics system that maintains
global color and cursor position may require three calls to draw a line with a particular color at a
particular position (SetColor, SetCursor, DrawLine). Since none of the three calls may be interrupted by
other graphics calls, Automatic Library Protection cannot help here. In this case, the application needs to
implement mutual exclusion using a semaphore.

Automatic Library Protection also cannot solve access problems to global variables such as errno, since
it can’t prevent errno from changing its value after a run-time system call has completed.

RTKernel-32 comes with Library Protection Definition Files BC32.LP for Borland C/C++ and
WATCOM.LP for Watcom C/C++. These files should be used for protecting the standard run-time
libraries if you do not intend to use the multithread libraries supplied with the compilers. The files are
extensively commented and contain a complete description of the definition file structure. Also, for each
function, they contain a description of the reasons why the respective function is non-reentrant. It is
recommended to study these files carefully to facilitate planning the functions’ usage.

230 On Time RTOS-32

How to Create Threads

Please note that BC32.LP and WATCOM.LP only cover ANSI C compatible parts of the run-time
libraries. Compiler-specific parts (such as C++ class libraries) are not covered and must be protected
manually or by adding your own commands to the Library Protection Definition Files.

It should be noted that functions inherently non-reentrant due to their specifications are also not
considered in the LP files. This comprises functions returning pointers to static variables (e.g., asctime).

On Time does not guarantee the LP files delivered with RTKernel-32 to be correct or complete.
RTKernel-32 users are encouraged to point out any errors or omissions.

Automatic Library Protection can be installed for Borland C/C++ in the Libbc directory with command:
LIBPROT.EXE C:\BORLANDC\LIB\CW32.LIB BC32.LP

Please supply the appropriate path of CW32.LIB. It must be ensured the linker will link file
LIBBC\CW32.LIB instead of C:\BORLANDC\LIB\CW32.LIB.

Automatic Library Protection can be installed for Watcom C/C++ in the Libwat directory contains with
command:

LIBPROT.EXE C:\WATCOM\LIB386\NT\CLIB3R.LIB WATCOM.LP

Please supply the actual path of CLIB3R.LIB. It must be ensured the linker will link file
LIBWAT\CLIB3R.LIB instead of C:\WATCOM\LIB386\NT\CLIB3R.LIB.

How to Create Threads
RTKernel-32 programs can choose among several different methods to create threads:

Level Function Comment
1 RTKCreateThread RTKernel-32’s native, low-level thread creation function.
2 CreateThread Win32 thread creation function; calls RTKCreateThread internally.
3 _beginthreadNT, C/C++ or Pascal run-time system library functions. These functions call

_beginthreadex, etc. Win32 function CreateThread internally.
4 RTKRTLCreateThread RTKernel-32’s thread creation function with run-time system support.

This function calls a run-time system thread creation function internally.

At each level, the preceding level is called.

Most applications should use level 4 or 3. Level 4 has the advantage that all RTKernel-32 parameters
such as the thread’s priority and flags are available. On the other hand, if portability between
RTKernel-32 and Win32 is desired, level 3 might be better suited. Both level 3 and 4 use the multithread
run-time system libraries, enabling such threads to call non-reentrant run-time system functions.

Threads created with level 1 and 2 cannot use C++ exceptions, and they must take their own precau-
tions when non-reentrant run-time system functions are called (e.g., with Automatic Library Protection).
Level 1 is well suited for simple tasks not requiring any non-reentrant run-time system services or excep-
tions. CreateThread does not support all RTKernel-32 thread parameters, but is Win32 compatible.

Interrupt Handling
One of the central tasks of real-time software is the processing of interrupts. As soon as several tasks
run in a program, it is virtually impossible to achieve good response times by polling (continuous enquiry
of an event). Continuous polling would prevent tasks with lower priorities from running and thus waste
precious CPU time.

Therefore, it should always be attempted to replace polling by interrupts. This leads to the best response
times and optimal use of the hardware available. RTKernel-32 uses the timer interrupt to activate tasks
waiting for a certain point in time. Modules RTKeybrd and RTCom provide interrupt support for the
keyboard and the serial ports. This chapter discusses how to implement a handler for any interrupt
source.

An interrupt handler may be thought of as a task running with a priority higher than all other tasks.
However, there are some important considerations to keep in mind.

Part II RTKernel-32 231

Chapter 7 Advanced Topics

Interrupt handlers usually have little stack space. Therefore, interrupt handlers should be very econ-
omical in their stack usage (e.g., refrain from using functions like sprintf by all means).

While an interrupt handler is active, no other interrupts with lower priorities can be processed. Therefore,
it is important to minimize the execution times of interrupt handlers, because otherwise the interrupt
response time for other interrupts might suffer. The handler should avoid any processing not immedi-
ately required and delegate it to a task.

Interrupt handlers under RTKernel-32 are never directly addressed by the hardware; instead, they are
called by the low-level handlers of the kernel (see Chapter 2, Interrupt Handling). This incurs an
overhead of only a few microseconds. While the handler is being executed, the scheduler is disabled;
thus, the handler need not consider being disrupted by a task switch (it can, however, be interrupted by
interrupts of higher priority). Since the scheduler is disabled, interrupt handlers must not force blocking
task switches.

Writing interrupt handlers is not particularly difficult as long as the rules given in the following section are
obeyed. Demo program RTKInt shows how hardware interrupts are handled with RTKernel-32. In
addition, the respective handlers of supplemental modules RTKeybrd and RTCom may serve as further
examples.

Structure of an Interrupt Handler
An interrupt handler should have the following structure:

• It should be declared as a void C function without parameters.

• While accepting the interrupt, the processor has masked all interrupts. To reenable interrupts of
higher priorities, the handler should call RTKEnableInterrupts() as its first statement.

• Subsequently, the hardware that has generated the interrupt should be serviced, if required. The
handler can communicate with other tasks using mechanisms that cannot lead to a blocking task
switch.

• Thereafter, interrupts should be disabled again and an End-Of-Interrupt command should be sent
to the interrupt controller. This is accomplished using statement:

RTKIRQEnd(IRQ);

An interrupt handler may:

• declare and use local variables,

• call other functions,

• call functions RTKSignal or RTKWaitCond to activate other tasks,

• call the conditional mailbox and message passing operations (RTKPutCond, RTKGetCond,
RTKSendCond, RTKReceiveCond) to exchange data with tasks.

An interrupt handler must not:

• use the coprocessor or emulator without saving/restoring its state,

• use more than 512 bytes of stack (the less, the better),

• cause a blocking task switch.

The reason for the last restriction is that an interrupt handler runs in the context of the task it has inter-
rupted. It follows that an interrupt handler that blocks itself (e.g., by calling RTKDelay or RTKWait at a
semaphore with no events) actually blocks the task it has interrupted, even though this task could very
well continue running. This results in a task with a low priority running, although another task with a
higher priority is ready; this situation will sooner or later crash the scheduler.

For this reason, only the functions RTKSignal and RTKWaitCond (for semaphores), RTKPutCond and
RTKGetCond (for mailboxes), and RTKSendCond and RTKReceiveCond (for message passing) can be
used by interrupt handlers. These operations can lead to an activating but not to a blocking task switch.

232 On Time RTOS-32

Avoid Polling

RTKernel-32’s Win32 emulation routines can also be used by interrupt handlers (although this is not
possible under Win32 itself). The following functions may be used: GetTickCount, SetEvent, Reset-
Event, PulseEvent, ReleaseSemaphore. It should be noted that a call to any of these functions can
change the value returned by GetLastError() of the interrupted task. To avoid interfering with error
handling, the error code should be saved and restored in the interrupt handler.

Avoid Polling
Polling is often used when a task has to wait for something. For this purpose, some condition is contin-
ually tested in a loop until the expected event is recognized. In sequential programs, this is the only way
to wait since the processor can’t simply be paused. On the other hand, in a multitasking environment,
this is a quite uncooperative behavior of a task, because precious CPU time that might otherwise be
used more efficiently by other tasks is wasted. While a task has nothing to do, it should not be in the
state Ready or Current.

If the polled event is generated by another task, polling can be replaced by inter-task communications in
all cases. The waiting task could, for example, block itself using RTKReceive. It can be reactivated when
another task has recognized the event and transmits a corresponding message to the waiting task using
RTKSend.

For hardware events, interrupts offer the desired functionality. A task can be blocked in order to be
reactivated by an interrupt as soon as the expected event occurs. All of the waiting time is available to
other tasks in this manner and response time is optimal. RTKernel-32 provides appropriate interrupt
handlers (Timer, keyboard in RTKeybrd, COMx in RTCom) for freqently used devices. For other
hardware you may be using, you should implement similar drivers if the hardware supports interrupts.
This results in the best performance of your system by far.

Unfortunately, many I/O boards do not support interrupts (e.g., some digital I/O boards). In this case,
polling cannot be avoided. However, polling should be as cooperative as possible, e.g., by providing
CPU time to other tasks in each polling cycle using RTKDelay.

Preemptive or Cooperative Multitasking?
RTKernel-32 allows you to choose between preemptive and cooperative multitasking. The proper choice
strongly depends, of course, on the requirements of your application. To make the right decision, it is
necessary to exactly understand the differences between preemptive and cooperative multitasking (see
Chapter 1, Cooperative and Preemptive Multitasking).

Advantages of Preemptive Scheduling
The main advantage of preemptive scheduling is real-time response on the task level. The task
response time - i.e., the time required to activate a task waiting for an interrupt - largely depends only on
the interrupt latency (the time span during which no other interrupts can be accepted). In cooperative
scheduling, the task response time is the longest time span that can elapse between two calls to the
kernel. Unfortunately, an upper limit for this time span cannot be defined in many cases. It is the
responsibility of the programmer to ensure that the time spans between calls to the kernel or the
scheduler are sufficiently small.

Advantages of Cooperative Scheduling
In cooperative scheduling, substantially fewer reentrance problems are encountered than in preemptive
scheduling, because tasks cannot be interrupted arbitrarily by other tasks, but only at positions permitted
by the programmer (i.e., in kernel calls). There are, for example, no reentrance problems with the heap
manager, because there are no calls to the kernel from within it.

It should be noted that even though real-time response is impeded on the task level, it is fully preserved
on the interrupt handler level. Interrupt handlers can continue to use semaphores and mailboxes in
cooperative scheduling. Therefore, interrupt-driven modules like RTCom can run independently of the
scheduling algorithm currently active. Also, these modules’ performance is identical in both cases.

Part II RTKernel-32 233

Chapter 7 Advanced Topics

While RTKernel-32’s Idle Task is running (or a task with a similar structure, e.g., the CPU Monitor
Counter task), tasks’ response times to interrupts are practically identical, with or without preemptive
scheduling.

For programs that don’t require a response time on the order of micro- or milliseconds at the task level,
cooperative scheduling is recommended.

Waiting for Several Events
Even if a task must react to different types of events, polling should be avoided, if possible. The best
strategy for this case is to split the task so that each task only has to wait for one event.

Alternatively, events can be bundled. Given that a task must react to two different data packets passed
to it through mailboxes, one - not particularly elegant - solution could be:

typedef struct { int a, b, c; } Rec1;
typedef struct { float a, b, c; } Rec2;

RTKMailbox Box1, Box2;

void RTKAPI PollTask(void * p)
{
 Rec1 S1;
 Rec2 S2;

 while (1)
 {
 if (RTKGetCond(Box1, &S1))
 /* process S1 */ ;
 if (RTKGetCond(Box2, &S2))
 /* process S2 */ ;
 }
}

Even if no data is ready for processing, this task would "gobble up" all CPU time.

A better solution would be to combine types Rec1 and Rec2, and use only one mailbox:
typedef enum { Rec_1, Rec_2 } DataKind;

typedef struct {
 DataKind Typ;
 union {
 Rec1 S1;
 Rec2 S2;
 } Data;
} MultiData;

RTKMailbox BigBox;

void RTKAPI MBWaitTask(void * p)
{
 MultiData S;

 while (1)
 {
 RTKGet(BigBox, &S);
 switch (S.Typ) {
 case Rec_1: /* process S.Data.S1 */ break;
 case Rec_2: /* process S.Data.S2 */ break;
 }
 }
}

In this example, no CPU time is wasted.

234 On Time RTOS-32

Avoid Large Data Types for Mailboxes and Message Passing

Avoid Large Data Types for Mailboxes and Message Passing
The length of the data packets for communication via mailboxes or message passing is not limited.
However, large data packets can result in performance problems, since the data is copied in every inter-
task communication. Instead of channelling the data itself through a mailbox, logical packet numbers or
pointers to the data can be used.

In the following example, ten data buffers are allocated. Unused buffers are contained in mailbox Pool.
ProducerTask retrieves buffers from Pool as required and passes them to ConsumerTask using mailbox
NewData. Since only pointers - not the buffers themselves - are copied to the mailbox, performance is
independent of the data packet size.

#define MaxBuffer 10

typedef struct {
 char x[5000];
 /* more fields... */
} BufferType;

RTKMailbox Pool, NewData;

void RTKAPI ProducerTask(void*p)
{
 BufferType * Ptr;

 while (1)
 {
 RTKGet(Pool, &Ptr); /* get new buffer */

 /* Ptr-> is filled with data */

 RTKPut(NewData, &Ptr); /* pass on buffer */
 }
}

void RTKAPI ConsumerTask(void * p)
{
 BufferType * Ptr;

 while (1)
 {
 RTKGet(NewData, &Ptr); /* wait for new data */

 /* process Ptr-> */

 RTKPut(Pool, &Ptr); /* release buffer */
 }
}

void main(void)
{
 int i;
 BufferType * Ptr;

 RTKernelInit(7);
 Pool = RTKCreateMailbox(sizeof(BufferType*), MaxBuffer, "Pool");
 NewData = RTKCreateMailbox(sizeof(BufferType*), MaxBuffer, "New");

 /* allocate and make available all buffers */
 for (i = 1; i <= MaxBuffer; i++)
 {
 Ptr = RTKAlloc(sizeof(BufferType), "a buffer");
 RTKPut(Pool, &Ptr);
 }

 /* ... */
}

The same technique can be used for message passing.

Part II RTKernel-32 235

Chapter 7 Advanced Topics

Mutual Exclusion
Assume that two or more tasks have to manipulate the same global data object. In order to assure
consistency of the data, care has to be taken that only one task accesses the data at any one time.

In this case, a semaphore can be utilized for coordination. The semaphore is initialized with one event.
This event thereafter represents the permission to access the data. Before a task modifies the data, it
calls RTKWait with the corresponding semaphore in order to get permission to access the data. When a
task is finished accessing the data, it must call RTKSignal to store the access permission in the
semaphore and thus enable other tasks to access the data. If all tasks adhere to this protocol, no more
than one task will ever change the data at any one time. This algorithm can be used with counting,
binary, resource, and mutex semaphores. Resource and mutex semaphores are especially suited for
this purpose, because of priority inheritance, safe Suspend/Terminate operations, and - for resource
semaphores - the Debug Version’s error checking.

Avoid Time Slicing
Time slicing is a technique that originated in time sharing systems. In Chapter 1, the differences
between time sharing systems and real-time systems were discussed briefly. Actually, time slicing only
makes sense if your tasks don’t have to meet real-time requirements, never have to wait for something,
and can run largely independently of each other. In this case, however, you could let the tasks run
sequentially and thus avoid the overhead incurred by RTKernel-32.

The fairness strived for by time sharing systems cannot be attained by RTKernel-32 anyhow. The
simplest definition of fairness would be that CPU time must be shared evenly among all tasks. (Systems
like Unix use a much more elaborate definition of fairness.) The scheduling rules of RTKernel-32 can
only achieve this if all tasks of a program have the same priority, can run completely independently of
each other, and never block themselves. If these conditions are not met, time slicing will only guarantee
that each task receives CPU time in the long run - when and how much is, in general, indeterminate.

In many applications, RTKDelay(0) can be a feasible alternative to time slicing. Using RTKDelay(0),
round-robin scheduling (tasks are activated in turn) can be implemented easily. Assume the following
problem shall be solved:

Two tasks must recognize an event using polling. The polling cycle must be as short as possible. A
simple solution would be to switch among tasks using time slicing. In this case, however, the polling
cycle would be 55 milliseconds in the worst case. The timer interrupt rate could be increased, thus
achieving a polling cycle of a few milliseconds. However, it would be much more elegant to call RTKDe-
lay(0) in each polling cycle. Each task involved could then process a polling cycle without being
disrupted and afterwards allow the next task to run. It would not even be required to activate preemp-
tions or time slicing. Assuming the polling itself requires only 10 microseconds, about 20,000 cycles per
second could be achieved on an 80386/20. By the way, this algorithm would also ensure fairness, even
if more than two tasks participated.

Cyclic Tasks (Timer)
Tasks that must run in a fixed time frame are frequently encountered in real-time applications. The
structure of such a task could be as follows:

void RTKAPI CyclicTask(void * p)
{
 #define Cycle 5
 RTKTime NextActivation;

 NextActivation = RTKGetTime();
 while (1)
 {
 NextActivation += Cycle;
 RTKDelayUntil(NextActivation);

 /* the task’s job is done here */

 }
}

236 On Time RTOS-32

Priorities

This task would run exactly once every 5 timer ticks, provided the task’s job takes no longer than 5 timer
ticks. The actual cycle time can be adjusted using constant Cycle and the timer interrupt interval.

If the cycle time of a task is not an exact multiple of the timer interrupt interval, the following task can be
used:

#include <timer.h>

void CyclicTask(void)
{
 #define Cycle 0.7 /* seconds */
 TISeconds NextActivation;

 NextActivation = TITicksToSeconds(RTKGetTime());
 while (True)
 {
 NextActivation += Cycle;
 RTKDelayUntil(TISecondsToTicks(NextActivation));

 /* the task’s job is done here */

 }
}

Since RTKernel-32 can only activate tasks waiting in an RTKDelay or RTKDelayUntil through a timer
interrupt, these tasks would, on the average, conform to their cycle exactly. The start of a cycle can
deviate from the desired point in time up to one tick. This round-off error arises from the conversion of a
float point number to an integer in function TISecondsToTicks of module Timer. However, the error does
not accumulate; it is the same in each cycle. It must be noted that rounding errors can occur when floats
are used to store large numbers representing RTKernel-32 times. Unlike the first example, an overflow
of RTKernel-32’s clock must also be considered (see Chapter 2, Time).

Priorities
Priorities have the sole purpose of guaranteeing good response times of time-critical tasks, even when
other, less critical tasks run or could run.

Priorities should not be used to synchronize tasks. It is never certain that no other task runs while the
task with the highest priority appears to be ready for running. If, for example, this task performs a heap
manager call such as malloc or free, it could be blocked by the kernel if some other task has not yet
completed its call.

Synchronization among tasks can only be achieved using explicit inter-task communication.

RTKernel-32 exhibits the best performance when the smallest possible range of the 64 priorities is used.
Since the Idle Task has a priority of 0, few and small priorities should be used (see Appendix A). In
general, 3 to 5 priorities will (and should) suffice.

Starting Objects’ Methods as Tasks
The code of a task must always be a function with zero or one parameters. This condition cannot be met
by methods of objects, because they always have the invisible parameter "this". If a method must be
used as a task anyhow, two strategies are possible:

Encapsulate the method by a normal function and start the function as a task:
#include <rtk32.h>

class MyObject {
 public:
 virtual void Task(void);
};

void RTKAPI RTKernelTask(void * p)
{
 MyObject Object1;
 Object1.Task();
}

Part II RTKernel-32 237

Chapter 7 Advanced Topics

void main(void)
{
 RTKernelInit(2);
 RTKRTLCreateThread(RTKernelTask, 7, 4096, 0, NULL, "Object-Task");
}

Alternatively, the task can be sent a pointer to the object to use:
#include <rtk32.h>

class MyObject {
 public:
 virtual void Task(void);
};

void RTKAPI RTKernelTask(void * Object)
{
 (MyObject*) Object->Task();
 delete (MyObject*) Object;
}

void main(void)
{
 RTKernelInit(2);
 H = RTKRTLCreateThread(RTKernelTask, 7, 4096, 0, new MyObject, "Object-Task");
}

The second alternative has the advantage that any number of tasks can be started with a single task
function; however, each task uses a different object. These tasks, in turn, can execute different code by
using derived objects which redefine the method Task.

Creating and Terminating Tasks
Creating and terminating tasks frequently should be avoided. On the one hand, this can lead to heavy
heap fragmentation, possibly making the creation of new tasks impossible. RTKCreateThread and
RTKTerminateTask are among RTKernel-32’s most involved operations. Their time requirements are
not deterministically predictable.

Moreover, blocked tasks do not incur a performance penalty. Therefore, it is recommended to create all
tasks of an application at program startup. If a task has nothing to do temporarily, it should wait in a
blocked task state until it is reactivated.

238 On Time RTOS-32

Program Termination

Chapter 8
Typical Error Sources

Every effort has been made to make using RTKernel-32 as safe and simple as possible. However,
RTKernel-32 cannot solve the general problems of parallel programming. Therefore, a few common
sources of error shall be pointed out in the following.

Program Termination
The most critical phases of a program are initialization and termination. Please be aware that all tasks
can run until RTKernel-32’s exit function has been completed.

A program is terminated by a call to function exit. A call to exit is generated automatically by the
compiler at the end of the main program. Therefore, the whole program terminates when the Main Task
reaches its end. Function exit then calls all exit functions in reverse order as they have been inserted
into the exit chain using atexit; meanwhile, task switches can still take place. Consequently, it can
happen that a module is used after its exit function has been executed.

Termination can be initiated by any task and is carried out in this task’s context (i.e., with its priority and
stack).

Caution must also be exercised when one task terminates another. The terminating task generally does
not know where the task to be terminated is suspended. Ideally, tasks should terminate themselves
when they are in a defined state, e.g., when they reach the end of their task function. In this case, they
are terminated automatically by RTKernel-32.

If a program is aborted using function abort, the computer must be rebooted to reinitialize the interrupt
vectors. RTKernel-32’s Debug Version reports the successful completion of its exit function.

Stack Errors
If the stack of a task overflows and the run-time system does not catch the error (because the routine
concerned has been compiled with stack checking off), an error usually occurs much later in some other
task whose data has been corrupted. Therefore, this type of error is very difficult to locate.

Consequently, it is recommended to dimension the stacks generously. For most - but not all - tasks,
8k bytes are sufficient. Use functions RTKIRQInfo and RTKTaskInfo with options LF_FREE_STACK and
LF_MIN_STACK extensively to monitor actual stack usage at run time.

Resource Management
Many errors in multitasking applications have to do with the erroneous (or neglected) management of
global resources. Global resources are global variables, files, the screen, the keyboard, etc.; all entities
that may be used by more than one task but exist in the system only in one instance. Whenever a task
accesses something accessible by other tasks, the programmer must consider what happens when
another task simultaneously performs an access.

The only safe method to manage data in a controlled manner is the explicit transfer of data from one
task (or interrupt handler) to another using mailboxes or message passing, as well as the protection of
global resources using semaphores. Resource semaphores are especially suited for this purpose,
because they can make sure the synchronization protocol is observed.

Even though RTKernel-32 can sequentialize function calls from different tasks using Automatic Library
Protection, the application must make sure that, for example, a file used by more than one task is
handled in a controlled manner.

Deadlock
The term deadlock denotes the mutual blocking of several tasks. The mutual exclusion algorithm entails
the danger of a deadlock.

Part II RTKernel-32 239

Chapter 8 Typical Error Sources

Assume that access to a global data object shall be protected using a semaphore. For this purpose, a
semaphore is initialized with 1 event. If the mutual exclusion protocol is used, two typical errors can
occur:

Case 1:
A task "forgets" the call to RTKSignal after accessing the data. All other tasks that want to access the
data are blocked as soon as they try to access the data. The erroneous task will block itself forever, too,
if it again tries to get at the data using a call to RTKWait.

Case 2:
The task calls RTKWait twice. Even if two calls to RTKSignal follow, the task has blocked itself and all
other tasks requiring access to the data forever.

In both cases, using resource semaphores and RTKernel-32’s Debug Version would lead to error
messages, since the rules for using resource semaphores are violated.

The only unambiguous deadlock situation RTKernel-32 can recognize arises when a task terminates
that is expected to receive data from an RTKSend operation by another task. The sending task will enter
the state TS_DEADLOCKED.

240 On Time RTOS-32

 Performance and Interrupt Response Times

Appendix A
Performance and Interrupt Response Times

In the design and implementation of RTKernel-32, great care has been taken to achieve excellent run-
time performance. Especially an increase of task switch times with an increasing number of tasks has
been avoided.

The time needed for a blocking switch increases proportionally with the difference of the old and the new
tasks’ priorities. Therefore, using far-apart priorities should be avoided. Since the Idle Task has
priority 0, the best performance is achieved using few and small priorities.

For mailbox and message passing operations, it should be considered that the execution time require-
ments depend on the size of the data objects copied.

Interrupt response time is defined as the time that elapses between the interrupt signal coming in at the
interrupt controller and the execution of the first statement in the corresponding interrupt handler. It
primarily depends on the maximum time during which interrupts are disabled and the time required to
process other interrupts. Since all RTKernel-32 operations that can lead to task switches are performed
with interrupts disabled, the interrupt response time directly depends on the run-time requirements of the
discrete RTKernel-32 operations. Interrupts also cannot be accepted while an interrupt is being
processed and interrupts have not yet been reenabled. This is also true for the timer interrupt handler of
RTKernel-32. Even though its run-time requirements are proportional to the number of tasks entering
state TS_READY during the current interrupt, interrupts are reenabled after each task that has been
processed, so that interrupt response time is only marginally impeded by the timer interrupt.

The demo program RTBench delivered with RTKernel-32 can be used to measure RTKernel-32’s
performance.

Part II RTKernel-32 241

Appendix B Task Switches in Cooperative Scheduling

Appendix B
Task Switches in Cooperative Scheduling

During cooperative scheduling, each task must explicitly allow the kernel to perform a task switch. If a
task fails to do so, it runs exclusively and other tasks will not be able to run.

If a task switch has become necessary during cooperative scheduling by a hardware interrupt, the
pending task switch is done later during a kernel call of the currently running task. All kernel functions
can be classified in three types: calls that will always perform pending task switches, calls that will only
perform task switches if they have caused a task state change, and calls that will never lead to a task
switch.

The following table lists all kernel functions of the first two types:

Guaranteed Task Switch Task Switch only after
a Task State Change

RTKCreateThread RTKDelayUntil
RTKDelay RTKGet
RTKDumpTrace RTKGetCond
RTKIRQInfo RTKGetTimed
RTKMailboxInfo RTKPut
RTKPulse RTKPutFront
RTKReceive RTKPutCond
RTKReceiveTimed RTKPutFrontCond
RTKScheduler RTKPutTimed
RTKSemaInfo RTKPutFrontTimed
RTKSend RTKReceiveCond
RTKSendTimed RTKResume
RTKSetPriority RTKSendCond
RTKSignal RTKSuspend
RTKTaskInfo RTKWait
RTKTerminateTask RTKWaitTimed

Other kernel calls do not lead to task switches during cooperative scheduling.

Naturally, all operations containing one of the above calls can lead to a task switch indirectly. In
particular, some of these are:

• Screen I/O using module RTTextIO
• COMSendChar, COMSendCharPolled, and COMReceiveCharPolled in module RTCom
• KBKeyPressed and KBGetCh in module RTKeybrd

During cooperative scheduling, you should make sure that each endless loop in your program contains
at least one call to the kernel, which allows it to perform pending task switches caused by interrupts.

242 On Time RTOS-32

 Writing Custom Kernel Drivers

Appendix C
Writing Custom Kernel Drivers

RTKernel-32 is delivered with drivers suitable for PC compatible or similar systems running under
RTTarget-32. Nevertheless, thanks to its driver structure, it is easily possible to run RTKernel-32 under
other systems. However, modifications to the existing drivers or new drivers might be required.

The documentation for all drivers in Chapter 5 details each driver’s hard- and software requirements. If
you cannot meet the requirements for a complete set of drivers, one or more drivers must be replaced.
To accomplish this, the recommended method is to copy the source files of the driver most closely
matching the desired functionality and then modifying the copy as required. Each driver’s interface is
documented in the respective driver header file. For example, the system driver’s functionality is detailed
in file RTKSYS.H.

The following table summarizes the source files required to build the drivers delivered with RTKernel-32.
All driver source files are located in directory Driver\Rtk32:

Type Name Source Files Comments
System SYSSTD SYSSTD.C No TLS support

HALT386.ASM Relies only on C/C++ RTL
SYSRT32 SYSRTT32.C Requires RTTarget-32.

HALT386.ASM TLS and Win32 support
limits number of tasks to 8192.

Interrupt IRQRT32 IRQCALL.OBJ Support for Preemptions.
IRQRTT.C Requires RTTarget-32 and 8259A interrupt controller(s).
I8259.ASM Supports 16 IRQs.
DUMISRS.ASM
IFLAG.ASM

Clock CLKPC CLKHRTPC.ASM Requires 8253 timer.
Incompatible with drivers CLKHRTPC and HRTPC.

CLKHRTPC CLKHRTPC.ASM Requires 8253 timer.
Combined Clock and high-resolution timer driver.
Incompatible with drivers CLKPC and HRTPC.

Highres. HRTNULL HRTNULL.ASM Does not implement any timer services
Timer

HRTPC CLKHRTPC.ASM Requires 8253 timer.
Incompatible with drivers CLKHRTPC and CLKPC.

CLKHRTPC CLKHRTPC.ASM Requires 8253 timer.
Combined Clock and high-resolution timer driver.
Incompatible with drivers CLKPC and HRTPC.

HRTPENT HRTPENT.ASM Requires Pentium or higher.
Must be calibrated at run-time.

HRTSC520 HRTSC20.ASM Requires AMD SC520 CPU.
Floating FLTNULL FLTNULL.ASM Does not swap floating point context.
Point

FLT387 FLT387.ASM Requires 387 or 100% compatible emulator.

FLTPII FLTPII.ASM Requires Pentium II or higher CPU.
FLTEMUMT FLTEMUMT.ASM Requires 387 or reentrant emulator.

Part II RTKernel-32 243

Appendix C Writing Custom Kernel Drivers

Memory MEMCHEAP CHEAP.C Uses malloc/free.
Does not support RTKernel-32 calls before function main
has been called.

MEMSTH STHEAP.C Static heap in data segment.
STHDATA.C Supports additional function MEMSTHeapInfo
STHCALL.C

MEMW32 MEMW32.C Uses Win32 Heaps.
MEMSTCH STHEAP.C Combined MEMCHEAP and MEMSTH.

STHDATA.C
STCHEAP.C

Source SRCNULL SRCNULL.C Does not implement source code position information.
Code

SRCTDS READTDS.C Requires read-only access to a file.
TDSGETP.C

Subsequently, the new driver should be linked after library RTK32[S].LIB and before any driver libraries
delivered with RTKernel-32.

244 On Time RTOS-32

Error Messages

Appendix D
Error and Information Messages

RTKernel-32 error messages have the following format:

RTKernel-32 error : Message
Current task : CurrentTaskName
Int handler IRQ : IRQ
Error location : CodePosition (hex or source position)
Error in task : ErrorTaskName
Semaphore : SemaphoreName

Only the lines relevant to the respective error are displayed. Message is a meaningful text issued by
RTKernel-32. If the error has occurred in a task, its name is given by CurrentTaskName. If the error has
occurred in an interrupt handler, IRQ is the IRQ number. If RTKernel-32 can determine the code position
where the error has occurred, this is displayed as CodePosition. If a symbol table is loaded, the source
code position is also displayed (file name and line number). If a different task or a semaphore was
involved in the error, its name is displayed also (ErrorTaskName or SemaphoreName, respectively).

RTKernel-32 messages are issued by an installable message handler. Please refer to Chapter 2,
Function RTKSetMessageHandler for details.

Error Messages
All possible error messages follow in alphabetical order. Messages issued only by the Debug Version
are marked "(dbg)".

AllocUserData: Too many user data entries used
RTKAllocUserData is called without any more user data entries available. The number of user data
entries is limited to 16.

Block size must be at least ’sizeof(void*)’
RTKAllocMemPool was called with a block size less than 4. Buffers allocated through Memory Pools
must have at least 4 bytes each.

Configuration structure size error
RTKernel-32 found that RTKConfig’s Size field does not have the expected value. Please check the
initialization of RTKConfig.

Conflicting math context flags
A call to RTKCreateThread specified both TF_MATH_CONTEXT and TF_NO_MATH_CONTEXT, which
is contradicting.

DeleteMailbox: Task queued to get/put from/into mailbox
An attempt was made to delete a mailbox using RTKDeleteMailbox, although it is being used by other
tasks.

Initial resource value must be 1
An attempt was made to initialize a resource or mutex semaphore with a value other than 1.

Initial semaphore value out of range
An attempt was made to initialize a binary or event semaphore with a value greater than 1.

Internal XXXX: Message (dbg)
An internal error has occurred in RTKernel-32. XXXX are 2 to 4 letters; Message provides more informa-
tion about the error. Normally, such errors should never occur. They suggest that internal data structures
of RTKernel-32 have been corrupted.

Interrupts enabled by task switch hook (dbg)
A task switch hook of an application has enabled interrupts which is not supported.

Part II RTKernel-32 245

Appendix D Error and Information Messages

Invalid mailbox (dbg)
A mailbox was passed to RTKernel-32 that does not reference an existing or valid mailbox structure. It is
also possible that internal data structures of RTKernel-32 have been corrupted, leading to a mailbox not
being recognized as valid. Unnoticed stack overflows or dangling pointers can cause such errors.

Invalid semaphore (dbg)
A semaphore was passed to RTKernel-32 that does not reference an existing or valid semaphore
structure. It is also possible that internal data structures of RTKernel-32 have been corrupted, leading to
a semaphore not being recognized as valid. Unnoticed stack overflows or dangling pointers can cause
such errors.

Invalid task handle (dbg)
A task handle was passed to RTKernel-32 that does not reference an existing or valid task. It is also
possible that internal data structures of RTKernel-32 have been corrupted, leading to a task not being
recognized as valid. Unnoticed stack overflows or dangling pointers can cause such errors.

IRQ out of range (dbg)
In invalid IRQ value was passed to one of the IRQ functions. RTKernel-32 supports IRQs 0 to 31, but
the interrupt driver used can further limit the number of available IRQs.

Library Protection: negative recursion level
Functions protected by a single Automatic Library Protection semaphore have released the semaphore
more often than it has been acquired.

Library Protection: recursion overflow
Functions protected by a single Automatic Library Protection semaphore have called each other recur-
sively nested by more than three levels. If this recursion is intentional, your Library Protection must be
reconfigured. In this case, please contact On Time’s technical support.

Out of memory to allocate ...
An attempt was made to create a mailbox, a semaphore, a task, a trace buffer, a Memory Pool, or an
interrupt stack, and not enough memory was available.

Preemptions not supported
RTKPreemptionsON was called although the interrupt driver does not support preemptions.

Priority out of range
RTKCreateThread or RTKernelInit was passed an invalid priority. The Debug Version also checks the
new priority in function RTKSetPriority.

Resource owned by task
Function RTKDeleteSemaphore was called for a resource or mutex semaphore currently occupied by a
task.

ResourceOwner called on non-resource semaphore (dbg)
Function RTKResourceOwner was called with a semaphore that was not initialized as a resource or
mutex semaphore.

RTKernelInit() not called
An attempt was made to use the kernel before it has been initialized and automatic initialization was
disabled in RTKConfig.

RTKIRQInfo: buffer too small
The buffer passed to RTKIRQInfo was too small. The buffer size should be at least 200 bytes.

RTKMailboxInfo: buffer too small
The buffer passed to RTKMailboxInfo was too small. The buffer size should be at least 120 bytes.

RTKPulse on non-event semaphores (dbg)
RTKPulse is only supported for event semaphores.

RTKResetEvent called on non-event semaphore (dbg)
Function RTKResetEvent is only supported for event semaphores.

RTKSemaInfo: buffer too small
The buffer passed to RTKSemaInfo was too small. The buffer size should be at least 130 bytes.

246 On Time RTOS-32

Informational Messages

RTKTaskInfo: buffer too small
The buffer passed to RTKTaskInfo was too small to accept even one task. The buffer size should be at
least 200 bytes.

RTKWait called in interrupt (dbg)
RTKWait or RTKWaitTimed was called inside an interrupt handler which is not supported.

Semaphore overflow (dbg)
An attempt was made to store more than 232-1 events in a counting semaphore.

Semaphore type unknown
RTKOpenSemaphore was passed an unknown semaphore type.

Signal: Current task does not own resource (dbg)
A resource or mutex was released using RTKSignal by a task not occupying the resource or mutex.

Signal: Resource released out of sequence (dbg)
Resources or mutexes were released by RTKSignal in an improper sequence (see Chapter 2, Sema-
phores).

Stack overflow (dbg)
RTKernel-32 has recognized a stack overflow; the task had less than 64 bytes left on its stack. The
Debug Version checks for stack overflow in each kernel call. This message is also issued by an explicit
call to RTKStackCheck if a stack overflow has occurred.

Task already owns resource (dbg)
RTKWait, RTKWaitTimed, or RTKWaitCond were called by a task that already occupies the respective
resource or mutex.

Task blocked in interrupt (dbg)
An attempt was made to perform a blocking task switch in an interrupt handler.

Task waiting on semaphore
RTKDeleteSemaphore was called although another task was waiting on the given semaphore.

User data index out of range
One of the user data functions has been called with an invalid user data index. The index must be
allocated using RTKAllocUserData.

Informational Messages
In some cases, RTKernel-32 issues informational messages without aborting the program:

RTKernel-32 Debug Version (dbg)
This message is issued for informational purposes by RTKernelInit in the Debug Version.

RTKernel-32 exit function (dbg)
This message is issued for informational purposes by RTKernel-32’s exit function in the Debug Version.

Part II RTKernel-32 247

Part III RTFiles-32

Part III
RTFiles-32
RTFiles-32 is a FAT-12/16/32 compatible file system for embedded systems. It allows embedded
systems to access files on mass storage devices such as floppy disks and hard disks which can be
shared with MS-DOS, Windows, or any other operating system which supports FAT disk volumes.

RTFiles-32’s documented device driver structure allows it to be ported to many different environments
and storage media. Device drivers for commonly used devices such as floppy disks and IDE drives are
included. Custom drivers can easily be incorporated.

The main features of RTFiles-32 are:

• Unlimited Number of Files
RTFiles-32 can handle as many open files as required by the application. Only about 100 bytes of
RAM is required for each open file.

• Up to 32 Logical Drives
RTFiles-32 easily handles many physical or logical drives.

• Supports FAT-12, FAT-16, and FAT-32
RTFiles-32 supports the same FAT (File Allocation Table) formats as MS-DOS, Windows, and
many other systems. Media can be shared between RTFiles-32 and other operating systems to
exchange data.

• Supports Diskettes, Flash, SRAM Cards, and Hard Disks
RTFiles-32 supports diskette drives and media with 360k, 1.2M, 720k, 1.44M, and 2.88M capacity.
IDE disks with CHS (Cylinder, Head, Sector) or LBA (Logical Block Addressing) interfaces as well
as IDE and DiskOnChip flash disks are supported. Adding custom drivers is easily accomplished
through RTFiles-32’s documented device driver interface.

• Supports Removable Devices and Hot Swapping
Floppy disks and removable hard disks (e.g., disks in PCMCIA sockets) can be removed and rein-
serted while an application is running. Devices are automatically remounted as needed. Critical
error handling support is available to handle disk removal of devices in use.

• Supports Hard Disks up to 2 Terabytes Size
The latest standards (such as LBA) for extended sector addressing are supported if also supported
by the disk controller.

• Support for Contiguous Files
RTFiles-32 can preallocate files to reside in a single contiguous chain of sectors. In this way, it can
be guaranteed that no extra seek operations are required for contiguous read or write operations.
Thus, the application can rely on achieving the maximum possible data throughput for such files.

• Efficient Cache Support
RTFiles-32 will cache frequently accessed data such as a volume’s FAT or directories. The appli-
cation has full control over the size of the cache and how delayed write operations should be
handled. Large data blocks being read or written contiguously are not cached to avoid cache
thrashing.

• Extensive Diagnostics Support
RTFiles-32 has functions to query the state of its cache in great detail. For each file or for a
complete volume, the degree of fragmentation can be enquired.

• Native API
RTFiles-32 has its own native API consisting of about 45 functions. The native API is best suited
for optimal performance and control.

248 On Time RTOS-32

 RTFiles-32

• Win32 Compatible API
If used with RTTarget-32, RTFiles-32 emulates about 30 file I/O related Win32 functions. Thus,
existing Win32 applications accessing files can be supported without source code modifications.

• C/C++ and Pascal Run-Time System Support
Through RTFiles-32’s Win32 API emulation, all file I/O functions of the respective run-time systems
are fully supported. C functions such as fopen, fread, fprintf, etc., work unmodified with RTFiles-32.
The same is true for C++ classes such as iostream.

• Multitasking Support
When RTFiles-32 is used with a multitasking system such as On Time’s RTKernel-32, all
RTFiles-32 operations contain appropriate locking to support simultaneous calls from several
tasks. Simultaneous access to different devices is fully supported (e.g., one task reads from a hard
disk while another writes to a diskette). I/O device wait times are made available to other tasks by
blocking the waiting tasks at a semaphore until the device I/O completion is signalled by an
interrupt.

• Low Interrupt Latencies
Although RTFiles-32’s device drivers are interrupt-driven, they never disable interrupts and do not
process data transfers in interrupt handlers.

• Installable Device Drivers
RTFiles-32’s device driver interface is very simple. Only three non-trivial functions are required to
access a device: MountDevice, ReadSectors, and WriteSectors. All drivers shipped with
RTFiles-32 come with complete source code which can be used as a model to implement custom
drivers.

• Installable System Drivers
RTFiles-32 needs only a few functions of the underlying system (e.g., to install interrupt handlers or
to set/reset semaphores, etc.). RTFiles-32 comes with system drivers for RTTarget-32 and/or
RTKernel-32. These drivers are shipped with complete source code, allowing the implementation
of alternate drivers.

Part III RTFiles-32 249

Terms and Definitions
The following terms will be used throughout this manual:

Sector The smallest storage unit which can be read from or written to a mass storage device. For
most diskettes and hard disks, one sector has 512 bytes.

Cluster A contiguous set of sectors used to allocate file space. RTFiles-32 supports cluster sizes of 1,
2, 4, 8, 16, 32, 64, and 128 sectors, as well as extended cluster sizes of up to 32768 sectors
per cluster. Extended cluster sizes are not DOS/Windows compatible.

Physical A physical mass storage device used to store files. Examples are hard disks or floppy disks.
Device

Device Alias for Physical Device.

Logical A portion (or possibly all) of a device holding a file system. Hard disks support several logical
Drive drives on a single device through partitions.

Drive Alias for Logical Drive.

Volume The media containing one or more logical drives such as a diskette or hard disk.

Partition A physical portion of a hard disk. Hard disks can be divided into up to four primary partitions.
A special type of partition (the extended partition) can be subdivided into any number of
logical drives. Non-extended partitions can hold exactly one logical drive each.

Partition A table with four entries located in the first physical sector of a hard disk. It describes the
Table primary and extended partitions of the disk.

FAT File Allocation Table. A data structure used by FAT file systems to record which clusters are
used by each file.

CHS Cylinder Head Sector. This abbreviation describes the traditional method of addressing
sectors on diskettes and hard disks.

LBA Logical Block Addressing. LBA is a newer method to address sectors on hard disks using a
single 32-bit sector index. The translation to a physical CHS value is performed by the disk
controller or device driver.

Sector Reading and writing file data on sector boundaries. The file pointer is always a multiple of the
Aligned sector size and data is read or written in multiples of the sector size. It does not mean that the
Access data buffer supplied by the application must be aligned in any way.

Device A global data structure used by RTFiles-32 to locate all available devices.
List

File The RTFiles-32 internal data associated with an open file. When the same disk file is opened
Instance several times, several instances of a single file exist simultaneously.

250 On Time RTOS-32

Sectors, Sector Addressing, and Clusters

Chapter 1
The FAT File System Structure

The FAT (File Allocation Table) file system was first introduced with MS-DOS in the early 1980s and
then extended several times to accommodate for larger disk volumes. The term FAT refers to the alloca-
tion housekeeping method used. FAT file systems use a single table (the FAT) to record which areas of
a disk are occupied.

This chapter describes the structure of FAT volumes.

Sectors, Sector Addressing, and Clusters
Mass storage devices such as diskettes or hard disks are frequently referred to as block devices.
Software cannot access the device in arbitrarily small units of data. Rather, read and write operations
have to be carried out in multiples of a sector. Most disks use a sector size of 512 bytes; however, other
sector sizes would be possible.

Depending on the physical geometry of a device, addressing a sector may be required in different forms.
On a single-sided diskette, a sector can be identified by its track and sector index. On a double-sided
diskette, the head must also be known. Most hard disks are implemented as a stack of disks, so the disk
must also be specified. On the other hand, a tape device would only require a linear sector index.

16-bit real-mode operating systems such as MS-DOS will normally use the BIOS to access a disk. The
BIOS uses the traditional CHS (Cylinder-Head-Sector) addressing scheme, which requires three
numbers to specify a sector. Unfortunately, the number of bits allocated for each number was chosen
rather small, limiting the accessible disk size to about 8 GB. Newer BIOSes have addressed this defi-
ciency and have defined a set of new, extended BIOS disk services which no longer have these limita-
tions.

Because the traditional CHS sector addressing is device-dependent, limiting, and does not match the
physical drive geometry on modern disk drives anyway, the LBA (Logical Block Addressing) scheme
was introduced. It uses a single 32-bit value to address a sector. The first sector has index 0, the
second 1, etc. The mapping of these LBA values onto the physical disk (i.e., the track, head, etc., the
sector actually resides on) is performed by the device driver or even the device itself. With a sector size
of 512 bytes and 232 available sector addresses, disks with a capacity of up to 2 terabytes (241) are
supported.

Internally, RTFiles-32 uses LBA values exclusively, so it can handle physical disks of up to 2 terabytes
size. Depending on the device driver used, LBA values may be translated to CHS values, limiting the
capacity available with a particular driver. RTFiles-32’s floppy driver uses CHS addressing, which is
good enough to address floppy disks with only a few MB capacity. Its IDE driver will query the IDE
controller for LBA support. LBA is then used if available.

Keeping track of a very large number of sectors can be inefficient for a file system. Thus, the FAT file
system introduces the concept of an allocation unit or Cluster. A cluster is simply a set of contiguous
sectors which will be used for file space allocation. For example, if a disk has 1000 sectors, and it is
formatted to have a cluster size of 2 sectors, only 500 clusters are available and must be managed by
the FAT.

Through clusters, the size and number of available allocation units can be adjusted independently of the
sector size. The advantage of few large clusters is that the file system needs less overhead for alloca-
tion unit housekeeping. The disadvantage is that disk space can be wasted because it is allocated to
files in integral multiples of the cluster size. For example, on a volume with a cluster size of 32k, a file of
33k would occupy 2 clusters. Only 1k of the second cluster is actually used, wasting 31k. If the same file
is copied to a drive with 4k cluster size, it would occupy 9 clusters, but only 3k of the last cluster would
be wasted.

Part III RTFiles-32 251

Chapter 1 The FAT File System Structure

Logical Drives and Partition Tables
The basic unit of a FAT file system is a logical drive. A logical drive is a contiguous portion (or possibly
all) of a disk consisting of the following components in the given order:

• boot record

• one or several FATs

• root directory

• data area

Diskettes, and all devices formatted as diskettes, will contain exactly these components.

With the introduction of MS-DOS 2.0, hard disks with much larger capacity than diskettes needed to be
supported. Since MS-DOS was not able to handle such large volumes with a single logical drive, the
concept of a partition table was added. The partition table only appears on hard disks. This table can
contain up to 4 entries, each entry describing a single logical drive in a portion of the disk. A special
partition type, the Extended Partition, can implement a linked list of any number of logical drives. Each
logical drive described by a partition has exactly the format described above: boot record, FAT(s), root
directory, and data area.

For backward compatibility, the first sector of a hard disk still has the basic structure of a boot record; it
just adds the partition table to the end of the sector. Such a boot record with a partition table is called a
Master Boot Record. If a hard disk is booted, the master boot record is executed which in turn will scan
the partition table for a bootable logical drive. If one is found, the boot record of that logical drive is
loaded and executed.

The Boot Record
The boot record is the first sector of a logical drive. It can (but does not have to) contain a boot loader
needed to boot an operating system. The boot record always contains a structure called the BIOS
Parameter Block describing some properties of the logical drive. For example, this information includes:

• size of the logical drive

• cluster size

• number and size of FATs

• size of root directory

• a disk serial number

The File Allocation Table and Cluster Sizes
The FAT follows the boot record. The FAT is a linked list of clusters, where each cluster chain repre-
sents a file. For example, if file C:\SOMEDIR\SOMEFILE.DAT resides in cluster 100, 101, 102, and 110,
then the 100th integer value in the FAT has value 101. This means that the next cluster of this file is
cluster number 101. The value found at 101 will be 102. At 102, value 110 is found. Cluster 110 is the
last cluster of file, so an end-of-file marker is found there.

A volume’s unused space is not linked in the FAT. Instead, its space is marked with value 0.

Microsoft has defined three different FAT types: FAT-12, FAT-16, and FAT-32. With FAT-12 (used
mostly on diskettes), each FAT entry has a size of 12 bits. Thus, it can handle only about 4096 (minus a
few reserved values) clusters. FAT-16 uses 16 bits to represent a cluster and consequently supports up
to about 65536 clusters, while FAT-32 allocates 24 bits per cluster value. Since the number of available
clusters is limited, large disks require larger cluster sizes. A cluster size must be a power of two. The
maximum cluster size supported by DOS/Windows is 64 sectors or 32k bytes. Windows NT supports
cluster sizes up to 128 sectors.

252 On Time RTOS-32

Directories and Files

Some formatting programs allow the cluster size to be specified. In this case, the user must decide
whether he prefers large clusters (and thus a small number of total clusters) or a large number of small
clusters. If a volume will host many small files, a small cluster size should be selected to minimize the
amount of space wasted in unused portions of the last cluster allocated to each file. Formatting with few
large clusters is advantageous for volumes that should hold only a few, large files. The total size of the
FAT depends on the number of available clusters and will therefore be small on such a volume, reducing
the amount of housekeeping data the file system software has to maintain.

MS-DOS will usually format a drive to hold two copies of the FAT. The second copy is maintained as a
backup copy for disk repair utilities. If the primary FAT gets corrupted, a disk repair program can copy
the secondary FAT onto the primary FAT. The file system software itself will never actually use the
second FAT. Thus, the second FAT can improve security, but it always incurs a performance penalty
because each FAT update requires twice as many disk write operations as it would for a single FAT
volume. It should also be noted that the added security is limited. Many errors will cause both FATs to
be corrupted (example: the program terminates abnormally while unflushed data is cached). To improve
performance, RTFiles-32 has an option not to maintain the second copy of the FAT. However, by
default, both FATs are updated. RTFiles-32 can also format disks to hold only a single FAT.

Directories and Files
Information about individual files is maintained in directories. Each directory entry contains the name of
a file (max. 8 characters), the file name extension (max. 3 characters), the date and time of the last file
update, the current file size, file attributes, and the first cluster number holding the file’s data. Subse-
quent clusters of the file must be looked up in the FAT.

Two types of directories must be distinguished: the root directory and subdirectories. On FAT-12 and
FAT-16 drives, the root directory resides in a fixed location immediately following the last copy of the
FAT. It has a fixed size determined at format time; its size is recorded in the boot record. The root
directory cannot be extended after formatting. Subdirectories are stored like regular files. Unlike the root
directory, each subdirectory has a directory entry in its parent directory. This directory entry contains the
same information as for files and the space allocated to the subdirectory is recorded in the FAT. Thus,
subdirectories can be extended dynamically and their size is not limited. Subdirectories can also be frag-
mented, just like files. On FAT-32 drives, the root directory is also maintained in a file chain and can thus
be extended like any other directory.

Part III RTFiles-32 253

Chapter 2 RTFiles-32 in Embedded Applications

Chapter 2
RTFiles-32 in Embedded Applications

This chapter gives an overview of RTFiles-32 and how it is integrated in an embedded program. Some
of RTFiles-32’s features are introduced.

Structure of an RTFiles-32 Program
Unlike file systems of most operating systems, RTFiles-32 is linked as a library into embedded systems
application programs. This approach has several advantages: only those parts of the file system actually
used will be linked and the file system can be accessed using function calls as opposed to software
interrupts, dynamically linked entrypoints, or some other complicated access method.

RTFiles-32 consists of the following components:

• Portable File System Core
The file system core is contained in the RTFiles-32 library. It is completely written in ANSI C. Its
source code is available as a separate add-on product and contains no device specific code.

• RTFiles-32 Data Tables
A default set of the data tables is also contained in the RTFiles-32 library, but it can be replaced by
the application (see Chapter 5, section RTFiles-32 Data Tables). The configuration of these tables
determines how many logical drives, simultaneously open files, and cache buffers RTFiles-32 can
maintain.

• Device List
RTFiles-32 can use one or more devices with one or more device drivers. Most device drivers are
capable of handling several physical devices. The RTFiles-32 library contains all device drivers
shipped with RTFiles-32 as well as a default configuration of these drivers to be linked into an
application. An application can override the default (e.g., to add a custom driver or to remove an
unneeded driver) by defining a suitable data structure (see Chapter 5, section Device List).

• System Driver
The system driver enables RTFiles-32 and the device drivers to access system dependent services
such as installing interrupt handlers, obtaining DMA buffers, etc. There is no default system driver
in the RTFiles-32 library. Instead, each system driver is supplied as an additional library file, which
must also be linked to the application. Further details are given in Chapter 5, section The System
Driver.

When RTFiles-32’s default configuration is used, no source code modifications are required in existing
programs using files. Existing file I/O operations using one or more of RTFiles-32’s alternate APIs work
unmodified. Thus, it is very easy to port existing programs with file I/O to RTFiles-32.

RTFiles-32 APIs
The file system core implements RTFiles-32’s native API, which consists of approximately 45 functions.
Their prototypes are given in header file RTFILES.H and in RTFILES.PAS for Pascal. This API is
completely documented in Chapter 3 and supports access to all of RTFiles-32’s features.

As an option, RTFiles-32 can emulate the Win32 API. The Win32 emulation is available by default if
RTFiles-32 is used with RTTarget-32. With the Win32 API emulation, all run-time system functions for
file I/O are made available automatically since they are implemented using operating system calls. Thus,
both C++ and C style file I/O operations such as iostreams or fprintf can be used.

Mounting Devices and Logical Drives
RTFiles-32 must assign drive letters and mount all drives to be used. Mounting involves determining the
file system type (FAT-12/16/32), the drive’s size, etc. RTFiles-32 mounts drives in an MS-DOS and
Windows compatible order to achieve the same drive letter assignment. During the first RTFiles-32 API

254 On Time RTOS-32

RTFiles-32 Buffers

call which needs access to a drive, drive letters are assigned according to the rules given below. Please
note that removable devices are not accessed until they are actually needed. However, the partition
tables of all fixed hard disks are read at program startup.

• Drive letters are assigned to devices in the order they appear in the device list.

• Drive letter assignment starts with letter ’A’. When a hard disk is mounted, the driver letter is set to
’C’ or higher.

• Floppy disks and non-removable hard disks are mounted before removable hard disks.

• A single drive letter is reserved for every floppy and removable hard disk, even if they are not
present or never accessed. For non-removable hard disks, drive letters are only assigned for
existing FAT partitions.

• For non-removable hard disks, drive letters are assigned in this order:
- the first primary partition of all devices, then
- all logical drives in extended partitions of all drives, then
- all other primary partitions of all drives.

While this mounting algorithm may seem complicated, it corresponds exactly to the method used by
MS-DOS and should, therefore, result in the same drive letter assignment. Please note that you can
utilize a much simpler scheme by setting flag RTF_DEVICE_MOUNT_CONTIGUOUS for all devices. If
used, all partitions of a device will be assigned consecutive drive letters.

The only drive letters automatically skipped by RTFiles-32 are ’A’ and ’B’ if no or only one floppy disk is
present before the first hard disk is found. However, you can force RTFiles-32 not to use drive letters by
inserting dummy devices into the device list using the RTFDrvNULL driver.

RTFiles-32 Buffers
RTFiles-32’s most important data structure is its buffers. Buffers are used to hold FAT and directory
data, as well as application file data when data is read or written at file offsets which are not integral
multiples of the sector size.

The buffers also serve as RTFiles-32’s cache. Data is read into the buffers as needed and is kept as
long as possible. If the same data is needed again later, RTFiles-32 does not need to reread it from disk.
RTFiles-32’s algorithm used to determine which buffers are flushed or discarded at which time has been
developed based on statistics from many tests. The application has some control over this algorithm
both for individual files (RTFOpen flags RTF_COMMITTED, RTF_CACHE_DATA, and RTF_LA-
ZY_DATA) or complete devices (device flag RTF_DEVICE_LAZY_WRITE). In addition, the application
can control the number of available buffers and function RTFBufferInfo() can be used to analyze buffer
utilization and cache efficiency.

Frequently, the caching strategy is a trade-off between throughput, real-time performance, and data
security. RTFiles-32’s default behavior corresponds to that of MS-DOS when no disk cache program is
loaded:

• Buffers containing application data are flushed and discarded when the file pointer leaves the
sector of the buffer.

• When a file is close, and the file’s allocated size has changed, the FAT of the drive holding the file
is updated.

• A file’s directory entry is written to disk when the file is created and, if the file was modified, when
the file is closed.

Various options are available to override these defaults (see Chapter 5 and Chapter 7 for details).

It should be noted that RTFiles-32’s buffers are not used as an application data cache. When the appli-
cation reads or writes large data blocks which completely span one or more sectors, the device driver
will read/write directly from/to the buffer supplied by the application, completely bypassing RTFiles-32’s
buffers. This is done to avoid large application I/O requests displacing FAT and directory data in the
buffer cache, since FAT and directory data are more likely to be accessed again.

Part III RTFiles-32 255

Chapter 2 RTFiles-32 in Embedded Applications

Another level of caching can be performed by device drivers. For example, the IDE and Floppy drivers
can use a read-ahead buffer (which can also be configured). When the application reads a sector, the
driver will actually read 4 sectors. If the following sectors are read in subsequent reads, entire disk
accesses can be eliminated.

File Types
RTFiles-32 supports four different types of files: data files, directories, logical drives, and physical
devices. Logical and physical drive files are also supported by Windows NT with the same naming
conventions as under RTFiles-32. All four file types are accessed using the same file I/O functions such
as RTFOpen, RTFRead, RTWrite, etc., or their API emulation equivalents. However, some operations
may not be available for all file types. For example, you cannot rename a device file or set the file date
and time of a logical drive file, since such files do not have a standard directory entry.

Data Files
A data file has a name, attributes, date and time of last update, an allocated file size, and a current file
size. Unlike DOS, RTFiles-32 supports allocated file sizes exceeding the current file size by more than
one cluster to support contiguous files (see Chapter 3, section Function RTFExtend for details).

If the file is open, it also has a current file pointer and a set of flags. The file pointer marks the offset
within the file’s data where the next read or write operation will start. The file pointer is advanced auto-
matically. The file’s flags define some options for the file, such as whether the file is open for read-only
or read/write access, etc.

Data files are used by application programs to store data. Their size is limited to 232-1 (4G) bytes, even
on FAT-32 volumes.

Directory Files

Unlike DOS, RTFiles-32 allows opening directories as files. There are only a few differences to data
files. Directories must be opened in read-only mode. The name of a root directory is ’X:\’ (with ’X’ being
the drive letter) while the name of any subdirectory is the subdirectory’s filename, and directory files do
not have a current file size. Instead, their allocated file size is used.

Directory files can be useful for scanning directories for entries not accessible through RTFFind-
First/RTFFindNext (e.g., deleted file entries, etc.).

Logical Drive Files

RTFiles-32 allows a logical drive to be opened as a file. Both read-only and read/write access are
supported. The file name of a drive file is ’\\.\X:’, where ’X’ must be replaced with the desired drive letter.

A drive file spans the complete logical drive, starting at the first sector of the drive (the boot sector).
Access to drive files must be sector size aligned. This means you can only read or write data in
complete sector size multiples. The same restriction applies to seek operations. Logical drive files
bypass RTFiles-32’s buffers. Read and write requests are passed directly to the device drivers.
However, RTFiles-32 will ensure that the buffer contents remains consistent with the drive’s contents
when a device or drive file accesses data also present in the buffer cache.

Logical drive file I/O is possible even on unformatted drives as long as low-level sector I/O is possible.
Logical drive files can be used to high-level format a volume.

Physical Device Files

Physical device files are similar to logical drive files. However, device files span a complete hard disk,
not just a single logical drive of that disk. Since device files would be identical to logical drive files on
floppy disks, they are not required here.

The file name of a device file is ’\\.’\PHYSICALDRIVEx’ where ’x’ is a digit representing the ’x’th hard
disk. Thus, file name ’\\.’\PHYSICALDRIVE0’ would open the first hard disk, ’\\.’\PHYSICALDRIVE1’ the
second, etc. Hard disks are numbered starting with 0 in each RTF_DEVICE_FDISK entry in RTFiles-
32’s Device List.

256 On Time RTOS-32

File Types

For obvious reasons, using logical drive files and physical device files with read/write access is
dangerous. Writing incorrect data to critical areas of a device such as the partition table, a boot record,
the FAT or directory can completely destroy a file system.

Raw I/O
An even lower level of access to a device is available through RTFiles-32’s raw I/O functions. Raw I/O
functions call the device driver directly and bypass RTFiles-32’s file system core. However, consistency
with the buffer cache is maintained.

Part III RTFiles-32 257

Chapter 3 RTFiles-32 Native API

Chapter 3
RTFiles-32 Native API

This chapter describes RTFiles-32’s native API. All functions documented here are declared in header
file RTFILES.H, which must be included in every module using these functions.

Many applications will not use RTFiles-32’s native API directly, but will prefer to use standard C or C++
library functions/operators instead. The use of alternate APIs (C++, C, and Win32 API emulation) is
detailed in Chapter 4. However, some of RTFiles-32’s advanced features are only accessible through its
native API. Therefore, it is recommended to read this chapter to get a complete overview of RTFiles-32’s
functionality. Chapter 4 also describes how to use an alternate API primarily, but also use RTFiles-32’s
native API for functions only available through this interface.

The results of some API functions depend on RTFiles-32’s configuration parameters described in
Chapter 5. The documentation in this chapter assumes that you are using the default configuration:

• up to 8 logical drives,

• up to 8 simultaneously open files,

• 32 buffers,

• Floppy driver for floppies 0 and 1, IDE driver for the master and slave on the first IDE controller,

• all device flags are 0.

Return Codes and File Handles
Most RTFiles-32 functions return an integer value. If the documentation for the respective function does
not explicitly state something different, negative return values indicate an error. Appendix A lists all
possible error return codes. Values greater than or equal to 0 (constant RTF_NO_ERROR) indicate
success. The meaning of positive return values is documented for each function.

RTFILES.H defines type RTFHANDLE, which is also an integer. RTFOpen and RTFFindFirst return
values of this type. Such values are file handles (if greater than or equal to 0) or error codes if less
than 0. File handles can be used in subsequent RTFiles-32 API calls to reference an open file. Handles
returned by RTFFindFirst are actually file handles for a directory. Care must be taken to close all file
handles to ensure that all data is flushed to the disk and subsequent RTFOpen calls will not fail because
the number of available file handles is exhausted.

The documentation of each RTFiles-32 function does not explicitly enumerate all possible errors. In
most cases, almost any error is possible. For example, each function that may access a device could
return any device-specific error.

General File I/O
This section describes the most common file I/O functions to open, read, write, and close files.

Function RTFOpen

RTFOpen opens and possibly creates a file for subsequent read and/or write access:
RTFHANDLE RTFOpen(const char * FileName, DWORD Flags);

Parameter FileName must point to the name of the file to open/create. File names are not case
sensitive; they will be converted to upper case. The file name can have one of the following formats:

[Drive:][\][Path\]Name[.Ext] A data file or directory file name with optional drive and path information.

[Drive:]\ A root directory.

\\.\Drive: A logical drive.

\\.\PHYSICALDRIVEx A physical hard disk. ’x’ must be a digit (starting at ’0’) specifying the
desired hard disk.

258 On Time RTOS-32

General File I/O

Drive must be replaced with a single letter greater or equal to ’A’.

For data and directory files, the same rules for file name syntax apply as under MS-DOS. For logical
drive and physical disk file names, the same rules as under Windows NT apply. For more information
about logical drive and physical disk files, please refer to Chapter 1, section File Types.

Parameter Flags can be a combination of the following flags:

RTF_READ_WRITE The file is opened for read and write access.

RTF_READ_ONLY The file is opened for read only access.

RTF_OPEN_SHARED Opening the file multiple times should not generate an "access denied" error.
By default, RTFiles-32 will allow the same file to be opened several times
only if all instances of the file are opened with read only access. However, if
one or more instances also require write access and all instances specify
this flag, the call succeeds. Please note that a drive file or device file spans
one or more logical drives and thus conflicts with any other file on the
respective drive or device.

RTF_OPEN_NO_DIR Do not open directories. Use this flag to avoid accidentally opening direc-
tories.

RTF_OPEN_DIR Overrides flag RTF_OPEN_NO_DIR and forces support for opening a
directory. Please note that directories can only be opened with read only
access.

RTF_CREATE Instructs RTFOpen to create the file if it does not exist.

RTF_CREATE_ALWAYS Instructs RTFOpen to create the file even if it already exists.

RTF_COMMITTED Specifies that all updates to the file should be written to the physical device
immediately. This includes the directory entry for the file as well as the
drive’s FAT when the file’s size changes. Use this flag with care, since the
performance penalty can be severe. By default, RTFiles-32 will flush data
buffers when the file pointer leaves a sector and it will flush FAT and
directory data when the file is closed.

RTF_CACHE_DATA Instructs RTFiles-32 not to discard data buffers for this file. This option is
useful during random access where small blocks are read with frequent inter-
leaving seek operations. In this case, RTFiles-32’s internal buffers will serve
as a cache for the file. By default, RTFiles-32 assumes that files are read or
written sequentially and will therefore discard data buffers when the file
pointer leaves a sector. In this way, it is avoided that data sectors displace
FAT and directory data in the buffers.

RTF_LAZY_DATA Instructs RTFiles-32 not to flush dirty (modified) data buffers when the file
pointer leaves a sector. This flag automatically also sets RTF_CA-
CHE_DATA. This flag can improve performance when the same data is
written several times, since data which would get overwritten will never
actually be written to the disk. Such unflushed (lazy) data buffers will be
flushed when the file is closed, or when the last file on the same drive is
closed on drives with device option RTF_DEVICE_LAZY_WRITE.

RTF_ATTR_HIDDEN If RTFOpen creates the file, any combination of these file attributes may be
RTF_ATTR_SYSTEM set. The file will be created with all specified attributes set.
RTF_ATTR_ARCHIVE

If the function succeeds, the return value is a file handle for the opened file and the file pointer of the file
is set to 0. If the return value is less than 0, the function has failed and the return value is the error code.
All possible error codes are given in Appendix A. Function RTFErrorMessage can be used to display a
meaningful message string for the error code.

Part III RTFiles-32 259

Chapter 3 RTFiles-32 Native API

Function RTFClose
RTFClose closes an open file:

int RTFClose(RTFHANDLE File);

Parameter File must have been assigned in a previous successful call to RTFOpen. RTFClose will write
any unflushed file data to the disk (except for RTF_DEVICE_LAZY_WRITE devices) and release all
resources associated with the file handle.

If the function succeeds, the return value is RTF_NO_ERROR. If the function fails, the return value is a
negative error code.

Function RTFRead

RTFRead reads data from a file:
int RTFRead(RTFHANDLE File, void * DataPtr, UINT Length, UINT * Read);

Parameter File references the open file from which to read.

DataPtr specifies the address for the data to be read.

Length specifies the number of bytes to read.

Parameter Read points to an unsigned integer to receive the number of bytes actually read. Usually,
*Read will contain Length after the call. However, in case of an error or if the end of file is encountered
during the read, the value may be less. Read may be set to NULL if this information is not required by an
application.

Reading past the end of file is not regarded as an error. If RTFRead returns RTF_NO_ERROR, but
*Read is less than Length, the end of file has been encountered.

This function advances the file’s file pointer by the amount given in *Read. In case of an error and if
parameter Read is NULL, the new file pointer is undefined.

If the function succeeds, the return value is RTF_NO_ERROR. If the function fails, the return value is a
negative error code.

Function RTFWrite
RTFWrite writes data to a file:

int RTFWrite(RTFHANDLE File, void * DataPtr, UINT Length, UINT * Written);

Parameter File references the open file to write to.

DataPtr specifies the address of the data to be written.

Length specifies the number of bytes to write.

Parameter Written points to an unsigned integer to receive the number of bytes actually written. Usually,
*Written will contain Length after the call. However, in case of an error, the returned value may be less.
Written may be set to NULL if this information is not required by an application.

Writing past the current end of file will automatically extend the file. When the file size exceeds the
current allocated file size, new clusters are allocated for the file. RTFiles-32 will allocate new clusters
immediately following the current last cluster, if possible.

This function advances the file’s file pointer by the amount given in *Written. In case of an error and if
parameter Written is NULL, the new file pointer is undefined.

If the function succeeds, the return value is RTF_NO_ERROR. If the function fails, the return value is a
negative error code.

Function RTFSeek
RTFSeek repositions a file pointer and possibly extends a file:

long RTFSeek(RTFHANDLE File, long Offset, int Whence);

Parameter File references the open file for which to reposition the file pointer.

260 On Time RTOS-32

General File I/O

Offset specifies how far the file pointer should be moved. Please note that Offset is a signed long value.

Parameter Whence specifies Offset’s meaning. The following values are allowed:

RTF_FILE_BEGIN Offset is an absolute file pointer value.

RTF_FILE_CURRENT Offset should be added to the current file pointer value.

RTF_FILE_END Offset should be added to the current file size.

Moving the file pointer before the beginning of the file is an error. However, moving it beyond the current
file size is supported. In this case, the file is extended. The data between the previous file size and the
new file size is undefined. This method to extend a file is much faster than actually writing data to it.

Please note that this function cannot move the file pointer by more than 231-1. If you want to set the file
pointer to a larger value, at least two subsequent calls to RTFSeek with Whence set to RTF_FILE_CUR-
RENT are required.

If the function succeeds, the return value is the new file pointer value, or, if the file pointer is larger than
231-1, RTF_LONG_FILE_POS is returned. In this case, the actual file pointer can be queried using
function RTFGetFileInfo. If the function fails, the return value is some other negative error code.

An alternate method to extend a file is to use function RTFExtend described below.

Function RTFExtend

RTFExtend changes the allocated file size, but not the current file size, of a file:
int RTFExtend(RTFHANDLE File, DWORD Length);

Parameter File references the open file to be extended.

Parameter Length specifies by how many bytes the file is to be extended relative to the current file
pointer.

RTFExtend will add parameter Length to the current file pointer value and round the result up to the next
multiple of the cluster size. If fewer clusters are currently allocated for the file, new clusters are allocated
for the file. The allocation is guaranteed to consist of a single cluster chain. If the file has a current
allocated file size of 0, the file will be unfragmented after this call. If, however, clusters are already
allocated, RTFExtend will attempt to allocate the new cluster chain immediately following the existing
last cluster chain. If this fails, the new cluster chain is allocated somewhere else and the file will not be
contiguous.

If the function succeeds, the return value is RTF_NO_ERROR. If the function fails, the return value is a
negative error code. If RTFExtend cannot find a chain of free clusters long enough to satisfy the request,
error RTF_DISK_FULL is returned. However, it may still be possible to extend the file by some other
means (e.g., RTFSeek or RTFWrite); only contiguous extension of the file is not possible.

Files allocated contiguously may exhibit improved and possibly even deterministic access times (see
Chapter 7 for a detailed discussion on file I/O performance considerations). However, RTFExtend itself
can take substantially longer than RTFSeek to extend a file. In particular on volumes with only little free
space, reading the complete FAT may be required.

RTFExtend does not alter the current file size. As a consequence, the difference between the allocated
file size and the current file size may become greater than or equal to a cluster size. This situation
cannot occur under MS-DOS or other FAT file systems. If the extra allocated file space is not used by
subsequent write or seek operations, disk analysis utilities such as SCANDISK will report either lost
clusters (the clusters allocated but currently not in use) or an invalid file size in the directory entry.
However, this is not a problem. MS-DOS is still able to use the file. Fixing the problem with SCANDISK
does not loose any data.

Function RTFCommit
RTFCommit immediately flushes all buffers associated with a file to disk:

int RTFCommit(RTFHANDLE File);

Parameter File references the open file to be committed.

Part III RTFiles-32 261

Chapter 3 RTFiles-32 Native API

RTFCommit guarantees that all of the file’s data is flushed. If the file was opened with flag RTF_LA-
ZY_DATA, all dirty buffers of the file’s drive are flushed. Otherwise, the file’s data buffer, directory entry,
and the complete FAT are flushed.

If the function succeeds, the return value is RTF_NO_ERROR. If the function fails, the return value is a
negative error code.

Function RTFTruncate
RTFTruncate sets the current file size to the current file pointer position:

int RTFTruncate(RTFHANDLE File);

Parameter File references the open file to be truncated.

RTFTruncate sets the file size to the current file pointer and frees any allocated file space beyond the
new file size.

If the function succeeds, the return value is RTF_NO_ERROR. If the function fails, the return value is a
negative error code.

Information about Files
This section describes functions to get and set information about open files.

Function RTFGetFileInfo
RTFGetFileInfo returns information about an open file:

int RTFGetFileInfo(RTFHANDLE File, RTFFileInfo * FileInfo);

Parameter File references the open file for which information is requested.

Parameter FileInfo must point to a structure RTFFileInfo, declared in RTFILES.H:
typedef struct {
 RTFDOSDirEntry * DirEntry;
 DWORD FilePos;
 DWORD AllocatedSize;
 DWORD ClusterChains;
 DWORD VolumeSerialNumber;
 char * FullName;
} RTFFileInfo;

When the function returns RTF_NO_ERROR, the structure is filled with the following information.

DirEntry points to the file’s directory entry:
typedef struct {
 char FileName[8];
 char Extension[3];
 BYTE Attributes;
 char Reserved[8];
 WORD FirstClusterHi; // FAT-32 only
 RTFDOSDateTime DateTime;
 WORD FirstCluster;
 DWORD FileSize;
} RTFDOSDirEntry;

DirEntry is only valid while the file is open. If you need the information in the directory entry after the file
has been closed, you must copy it.

FilePos has the current file pointer value.

AllocatedSize is the currently allocated file size.

ClusterChains indicates how many separate cluster chains are allocated for the file. For unfragmented
files, this value will be 1.

VolumeSerialNumber holds the serial number of the volume the file resides on.

262 On Time RTOS-32

File Attributes

FullName points to the complete path name of the file. This field is only valid while the file is open. If you
need the file’s full name after the file has been closed, you must copy it.

If the function succeeds, the return value is RTF_NO_ERROR. If the function fails, the return value is a
negative error code.

Function RTFGetFileSize

RTFGetFileSize retrieves the current size of an open file:
int RTFGetFileSize(RTFHANDLE File, DWORD * Size);

Parameter File references the open file for which to retrieve the file size.

Parameter Size must point to DWORD to receive the file’s size.

If the function succeeds, the return value is RTF_NO_ERROR. If the function fails, the return value is a
negative error code.

Function RTFSetFileTime
RTFSetFileTime sets the date and time information in a file’s directory entry:

int RTFSetFileTime(RTFHANDLE File, const RTFDOSDateTime * Time);

Parameter File references the open file for which to set the time and date.

Parameter Time must point to a filled structure RTFDOSDateTime declared in RTFILES.H:
typedef struct {
 WORD Second2:5;
 WORD Minute:6;
 WORD Hour:5;
 WORD Day:5;
 WORD Month:4;
 WORD Year1980:7;
} RTFDOSDateTime;

Seconds2 holds the seconds part of the desired time divided by 2. Year1980 holds the year part of the
desired date minus 1980. The meaning of all other fields is self-explanatory.

RTFiles-32 will update the file’s date and time on every write access. Thus, function RTFSetFileTime
should not be followed by a call to RTFWrite, since this would overwrite the date and time set by
RTFSetFileTime.

If the function succeeds, the return value is RTF_NO_ERROR. If the function fails, the return value is a
negative error code.

File Attributes
The functions in this section can be used to query and change file attributes of closed files.

Function RTFGetAttributes
RTFGetAttributes returns the attributes set for a specific file:

int RTFGetAttributes(const char * FileName);

Parameter FileName is the name of the file for which to retrieve the attributes.

If the function return value is positive, it contains the file’s attributes, which can be any combination of
the following values:

RTF_ATTR_READ_ONLY The file is read only. Any attempt to open it with read/write access will
return error "access denied".

RTF_ATTR_HIDDEN The file is marked as hidden. This attribute has no effect on any RTFiles-32
function.

RTF_ATTR_SYSTEM The file is marked as being a system file. This attribute has no effect on any
RTFiles-32 function.

Part III RTFiles-32 263

Chapter 3 RTFiles-32 Native API

RTF_ATTR_VOLUME The file is a volume label. Only a directory entry on a logical drive in the
root directory can have this attribute set.

RTF_ATTR_DIR The file is a directory.

RTF_ATTR_ARCHIVE The file is marked to be backed up. This attribute has no effect on any
RTFiles-32 function, but it is set on every write operation.

If the function fails, the return value is a negative error code.

Function RTFSetAttributes
RTFSetAttributes assigns a new set of attributes to a given file:

int RTFSetAttributes(const char * FileName, BYTE Attributes);

Parameter FileName is the name of the file for which to set the new attributes.

Parameter Attributes can be a combination of the following values:

RTF_ATTR_READ_ONLY

RTF_ATTR_HIDDEN

RTF_ATTR_SYSTEM

RTF_ATTR_ARCHIVE

Please refer to the previous section for the meaning of the attributes. An attempt to set attributes
RTF_ATTR_VOLUME or RTF_ATTR_DIR will cause this function to fail.

If the function succeeds, the return value is RTF_NO_ERROR. If the function fails, the return value is a
negative error code.

Directories
Functions described in this section are used to create, remove, and change directories.

Function RTFGetCurrentDir
RTFGetCurrentDir returns the current drive and directory:

int RTFGetCurrentDir(const char * DirName, UINT MaxLength);

Parameter DirName must point to a string buffer to receive the full path of the current directory, including
a drive letter.

Parameter MaxLength specifies the size of the buffer passed in DirName. It is recommended to use a
buffer with RTF_MAX_PATH (80) characters length. If the buffer is too small to hold the current path, the
function fails.

If the function succeeds, the return value is RTF_NO_ERROR and the current path has been copied to
the specified buffer. If the function fails, the return value is a negative error code.

Function RTFSetCurrentDir

RTFSetCurrentDir changes the current directory and drive:
int RTFSetCurrentDir(const char * DirName);

Parameter DirName must point to the name of the new current directory. The new directory can have
any legal file name syntax. If no drive is given, the current drive is not changed. If only a drive, but no file
name is given, only the drive is changed, and the current directory last used on the new drive is used.

RTFiles-32 maintains a default directory for each drive, but only one current directory can be active at
any one time.

If the function succeeds, the return value is RTF_NO_ERROR. If the function fails, the return value is a
negative error code.

264 On Time RTOS-32

Finding Files

Function RTFCreateDir
RTFCreateDir creates a new directory:

int RTFCreateDir(const char * DirName);

Parameter DirName must point to the name of the directory to create. The directory can have any legal
file name syntax.

If the function succeeds, the return value is RTF_NO_ERROR. If the function fails, the return value is a
negative error code.

Function RTFRemoveDir
RTFRemoveDir removes a directory:

int RTFRemoveDir(const char * DirName);

Parameter DirName must point to the name of the directory to be removed. The directory can have any
legal file name syntax.

This function fails on an attempt to remove a current directory, a directory which is not empty, or a root
directory.

If the function succeeds, the return value is RTF_NO_ERROR. If the function fails, the return value is a
negative error code.

Finding Files
The functions in this section are used to scan directories for files.

Function RTFFindFirst

RTFFindFirst searches a directory for a file satisfying certain criteria:
RTFHANDLE RTFFindFirst(const char * NamePattern,
 BYTE Attr1, BYTE Attr2,
 RTFDOSDirEntry * FileInfo.
 char * FileName);

Parameter NamePattern must point to a file name, which can contain wildcard characters ’*’ and/or ’?’,
and can optionally be preceded by a path. If a path is present, it must not contain any wildcard char-
acters.

Parameter Attr1 specifies a set of all file attributes a file must have to match the request. Parameter
Attr2 are exclude attributes. Files having any one of these attributes set do not satisfy the request.
Please note that specifying the same attributes for both Attr1 and Attr2 will find no files. Any combination
of the following flags can be specified for Attr1 and Attr2:

RTF_ATTR_READ_ONLY
RTF_ATTR_HIDDEN
RTF_ATTR_SYSTEM
RTF_ATTR_VOLUME
RTF_ATTR_DIR
RTF_ATTR_ARCHIVE

Parameter FileInfo must point to an RTFDOSDirEntry structure. If the function succeeds, this structure
will be filled with the directory entry of the file found.

Parameter FileName points to a string buffer which must be at least 13 characters long. This buffer will
receive the file name if a file is found. This parameter may be NULL.

If the function succeeds, at least one file satisfies the search criteria. *FileInfo contains the directory
entry of the first file and the function return value is greater than or equal to 0. The return value is a file
handle which may be passed to subsequent calls to RTFFindNext. It is important to close the handle
using RTFFindClose when no longer needed. Failing to do so will quickly exhaust the available file
handles.

Part III RTFiles-32 265

Chapter 3 RTFiles-32 Native API

If the function fails, the return value is a negative error code. In this case, no handle is allocated and
RTFFindClose need not be called.

Function RTFFindNext
RTFFindNext finds more files with the same search criteria as a preceding call to RTFFindFirst:

int RTFFindNext(RTFHANDLE File, RTFDOSDirEntry * FileInfo, char * FileName);

Parameter File must be a valid handle returned by a previous call to RTFFindFirst.

Parameter FileInfo must point to a RTFDOSDirEntry structure.

Parameter FileName is an optional parameter (may be NULL) which points to a string buffer of at least
13 characters to receive a file name.

If the function succeeds, this structure will be filled with the directory entry of the file found.

If the function succeeds, the return value is RTF_NO_ERROR. If the function fails or no more files are
found, the return value is a negative error code.

Function RTFFindClose
RTFFindClose closes a handle created by RTFFindFirst:

int RTFFindClose(RTFHANDLE File);

Parameter File must be a valid handle returned by a previous call to RTFFindFirst.

If the function succeeds, the return value is RTF_NO_ERROR. If the function fails, the return value is a
negative error code.

File Name Operations
Functions in this category are used to rename, delete, or create unique files.

Function RTFRename

RTFRename renames a file:
int RTFRename(const char * FileName, const char * NewName);

Parameter FileName must point to the name of the file to be renamed. Parameter NewName points to
the new name of the file. Both file names must not contain wildcards and must reference the same
logical drive. However, they may reference different directories. Data files and directory files (except root
directories) may be renamed or moved with this call.

This function fails if a file with the name specified by NewName already exists, on an attempt to rename
the current directory or a parent of the current directory, or on an attempt to rename a volume label.

If the function succeeds, the return value is RTF_NO_ERROR. If the function fails, the return value is a
negative error code.

Function RTFDelete

RTFDelete deletes a file:
int RTFDelete(const char * FileName);

Parameter FileName must point to the name of the file to be deleted and may not contain wildcards.
This function cannot delete directories.

If the function succeeds, the return value is RTF_NO_ERROR. If the function fails, the return value is a
negative error code.

Function RTFMakeTempFileName

RTFMakeTempFileName creates a file with a unique name:
int RTFMakeTempFileName(const char * DirName, char * FileName, UINT MaxLength);

Parameter DirName must point to the name of the desired directory. For the current directory, use ".".

266 On Time RTOS-32

Disk and Volume Management

Parameter FileName must point to a buffer to receive the full path and file name of the file to be created.
MaxLength specifies the size of the buffer referenced by FileName. It is recommended to use a buffer
with RTF_MAX_PATH (80) characters length.

This function will generate a file name consisting of a hexadecimal string derived from the current date
and time and with extension ".TMP". If a file with this name already exists, the file name is modified until
a unique name is found. This file is then created with current file size and allocated file size zero and no
attributes set.

If the function succeeds, the return value is RTF_NO_ERROR and the created file’s name has been
copied to the supplied buffer. If the function fails, the return value is a negative error code.

Function RTFMakeFileName

RTFMakeFileName builds a valid file name from information found in a directory entry:
int RTFMakeFileName(const RTFDOSDirEntry * FileInfo, char * FileName);

Parameter FileInfo must point to a valid directory entry, which, for example, could have been read from a
directory. Parameter FileName must point to a string buffer of at least 13 characters length to receive
the file name.

If the RTF_ATTR_VOLUME attribute is set in FileInfo->Attributes, the file name built does not contain a
period to separate name and extension. For other files, the period is present only if the extension is not
blank. This function does not access any physical disks.

If the function succeeds, the return value is RTF_NO_ERROR and the file name is copied to *FileName.
If the function fails, the return value is a negative error code.

Function RTFExpandName

RTFExpandName will translate an arbitrary file name to a complete absolute path with drive, path, and
file name components:

int RTFExpandName(char * FileName, UINT MaxLength);

Parameter FileName must point to the file name to be expanded.

MaxLength specifies the size of the buffer pointed to by FileName. The result is written to *FileName,
overwriting the original name.

RTFExpandName will access the drive only to determine the current directory. The function does not
check whether the file or any of its parent directories exist.

If the function succeeds, the return value is RTF_NO_ERROR and the expanded file name is copied to
*FileName. If the function fails, the return value is a negative error code.

Disk and Volume Management

Function RTFResetDisk

RTFResetDisk unmounts a single or all mounted devices:
int RTFResetDisk(const char * DriveName);

If parameter DriveName is NULL, all devices are unmounted; otherwise, only the device hosting the
specified drive is unmounted.

Unmounting a device makes RTFiles-32 discard all information it has about a device. The next time any
drive on the device is accessed, RTFiles-32 will reread the drive’s boot sector and reinitialize all internal
data structures for this drive.

Please note that this function affects drive letter assignment only if parameter DriveName is NULL. In
that case, the next disk I/O function will rescan all partition tables, which may cause driver letters to
change.

If the function succeeds, the return value is RTF_NO_ERROR. If the function fails, the return value is a
negative error code. Note that all files on the respective drive(s) must be closed for this function to
succeed. If any files are open, RTF_ACCESS_DENIED is returned.

Part III RTFiles-32 267

Chapter 3 RTFiles-32 Native API

Function RTFGetDiskInfoEx
RTFGetDiskInfoEx returns information about a logical drive:

int RTFGetDiskInfoEx(const char * DriveName, RTFDiskInfo * DiskInfo, int Flags);

Parameter DriveName must be a valid file name, e.g., a root directory name. Only the drive information
(possibly the current default drive) is determined.

Parameter DiskInfo must point to a structure RTFDiskInfo declared in Rtfiles.h:
typedef struct {
 char Label[12];
 char DriveLetter;
 char Reserved[3];
 DWORD SerialNumber;
 DWORD FirstPhysicalSector;
 UINT FATType;
 UINT FATCount;
 UINT MaxDirEntries;
 UINT BytesPerSector;
 UINT SectorsPerCluster;
 UINT TotalClusters;
 UINT BadClusters;
 UINT FreeClusters;
 UINT Files;
 UINT FileChains;
 UINT FreeChains;
 UINT LargestFreeChain;
} RTFDiskInfo;

Parameter Flags can be any combination of:

RTF_DI_BASIC_INFO Returns all fields in structure RTFDiskInfo except FreeClusters,
BadClusters, Files, FileChains, FreeChains, LargestFreeChain. This flag
never requires a FAT scan.

RTF_DI_FREE_SPACE Returns field FreeClusters. This flags may require RTFiles-32 to scan the
complete FAT if the amount of free space is not known. In this case,
RTF_DI_FAT_STATISTICS is returned in addition to RTF_DI_FREE_-
SPACE.

RTF_DI_FAT_STATISTICS Return fields BadClusters, Files, FileChains, FreeChains, LargestFree-
Chain. This flag will always cause RTFiles-32 to scan the complete FAT.

If the function succeeds, the return value is the Flags value corresponding to the returned information, or
a negative error code. RTFGetDiskInfoEx will complete significantly faster if no FAT scan is necessary.
On large FAT-32 volumes, a complete FAT scan can take up to about one minute. When the FAT has
been scanned, the number of free clusters is cached (on disk for FAT-32 and in RAM for all disk
formats), allowing subsequent calls with RTF_DI_FREE_SPACE to return much faster.

The various fields of structure RTFDiskInfo are:

Label A zero-terminated string with the volume’s label. The string is empty if the volume
has no label.

DriveLetter The drive letter in upper case.

SerialNumber The volume’s serial number.

FirstPhysicalSector The LBA address of the logical drive’s boot record. For diskettes, this value will
be 0.

FATType The type of file system found. It may have values 12, 16, or 32 for FAT-12, FAT-16,
or FAT-32 volumes.

FATCount The number of FATs on the volume.

MaxDirEntries The size of the root directory. This value is 0 for FAT-32.

268 On Time RTOS-32

Disk and Volume Management

BytesPerSector The sector size. This value will usually be 512.

SectorsPerCluster Specifies the size of the smallest unit of storage that can be allocated to a file in
sectors.

TotalClusters Number of clusters for file storage on the volume.

BadClusters The number of clusters which are marked bad and are unavailable for file storage.

FreeClusters The number of clusters currently available.

Files The number of files on the volume including directories, but not counting the root
directory and files with an allocated file size of 0.

FileChains The number of contiguous cluster chains. On a completely unfragmented volume,
this value would be identical to Files.

FreeChains The number of contiguous cluster chains of free clusters. On a completely unfrag-
mented volume, this value would be 1.

LargestFreeChain The maximum allocated file size for a newly allocated contiguous file in clusters. On
a completely unfragmented volume, this value would be identical to FreeClusters.

Fields FileChains and FreeChains are good indicators for the degree of fragmentation of the volume; the
example program RTFCMD defines a Fragmentation Percentage as follows: if all files and all free
clusters each reside in single cluster chains (the ideal case), the fragmentation is 0%. If the average
number of file chains per file is 2 (where free space is counted as one file), fragmentation is 100%. Thus,
the fragmentation percentage can be calculated as follows:

100 * (FileChains + FreeChains - (Files+1)) / (Files+1)

Of course, this is not a true percentage since the value can exceed 100%.

Function RTFGetPartitionInfo
RTFGetPartitionInfo returns information about a partition or physical disk:

int RTFGetPartitionInfo(const char * DriveName, RTFPartitionInfo * PartitionInfo);

Parameter DriveName must be a valid file name (for example, a root directory named "C:\"), a logical
drive name ("\\.\C:"), or a physical disk name ("\\.\PHYSICALDRIVE0"). If the name refers to a physical
disk file, the returned partition information applies to the whole disk, not just a single logical drive.

Parameter PartitionInfo must point to a structure RTFPartitionInfo declared in RTFILES.H:
typedef struct {
 RTFPartitionRecord Partition;
 DWORD PartitionSector;
 int PhysicalDiskIndex;
 UINT BytesPerSector;
 BYTE MediaDescriptor;
 BYTE Reserved;
 short DeviceListIndex;
} RTFPartitionInfo;

Structure RTFPartitionRecord is defined as:
typedef struct {
 BYTE BootIndicator, // 0x80 for bootable, 0 otherwise
 StartHead, // 0 based
 StartSector, // 1 based, bits 0-5,
 StartTrack, // 0 based, bits 0-7, take bits 8,9 from StartSector
 OSType, // FAT-12: 1, FAT-16: 4, 6, 14, FAT-32: 11, 12
 EndHead, // see StartHead
 EndSector, // see StartSector
 EndTrack; // see StartTrack
 DWORD RelativeSector, // offset to first sector of partition data
 // for primary partitions, this is the absolute

Part III RTFiles-32 269

Chapter 3 RTFiles-32 Native API

 // LBA of the boot sector
 Sectors; // number of sectors in partition
} RTFPartitionRecord;

Please note that actual values must be calculated as follows:
ActualStartSector = StartSector & 63;
ActualStartTrack = StartTrack | ((StartSector & 0xC0) << 2);
ActualEndSector = EndSector & 63;
ActualEndTrack = EndTrack | ((EndSector & 0xC0) << 2);

For large hard disks, the EndTrack value may be incorrect, because it is limited to 1024 cylinders. If you
need to calculate the size of a disk or partition, rely on field Sectors.

If the function succeeds, the return value is RTF_NO_ERROR and the structure is filled as described
below. If the function fails, the return value is a negative error code.

Partition This field contains a physical copy of the partition record read from the partition
table to mount this partition. For floppy disks and physical disks, RTFiles-32 will
create a fake partition record describing the whole disk.

PartitionSector The physical sector number of the hosting device containing the partition table
containing the above partition record. This value will be 0 for all primary partitions.

PhysicalDiskIndex The index of the physical disk device hosting this partition, or -1 for a floppy disk.
The first hard disk in the system has index 0.

BytesPerSector The sector size of the disk.

MediaDescriptor The media byte of the hosting device. This value will be F8h for hard disks and
some other value read from the boot sector for floppies. If this value is 0,
RTFiles-32 was unable to determine the media descriptor. This situation can occur
when the boot sector of a floppy disk is unreadable.

DeviceListIndex The zero-based index of the device hosting the partition in RTFiles-32’s device list.

Function RTFSetVolumeLabel
RTFSetVolumeLabel writes or removes a volume label to/from a drive:

int RTFSetVolumeLabel(const char * DriveName, const char * Label);

Parameter DriveName must be a valid file name (e.g., a root directory named "C:\"). Only the name’s
drive information is evaluated. Parameter Label must point to the new label of up to 11 characters
length, or it must be NULL to remove any existing label.

If the function succeeds, the return value is RTF_NO_ERROR. If it fails, the return value is a negative
error code.

Function RTFFormat
Function RTFFormat formats a logical drive:

int RTFFormat(const char * DriveName,
 UINT MinSectorsPerCluster,
 RTFFormatCallback Progress,
 DWORD Flags);

Parameter DriveName must be a logical drive file name in the form "\\.\X:", where "X" is replaced with
the drive letter of the logical drive to be formatted.

Parameter MinSectorsPerCluster specifies the minimum number of sectors per cluster RTFFormat
should set up. This parameter should be 0 to use a default cluster size, 1 to always use the smallest
possible cluster size, or any other power of two. Cluster sizes up to 64 sectors are compatible with other
operating systems, 128 is compatible with Windows NT. RTFiles-32 supports cluster sizes up to
32768 sectors (extended cluster sizes), but such volumes cannot be mounted by any other OS. If the
specified cluster size is too small, RTFiles-32 will automatically adjust it. This may become necessary on
FAT-12 or FAT-16 drives to avoid exceeding the maximum supported number of clusters. For most
applications, the default cluster size is recommended (set MinSectorsPerCluster to 0).

270 On Time RTOS-32

Disk and Volume Management

Parameter Progress is a callback to supply progress information:
typedef void (RTFAPI * RTFFormatCallback)(const char * DeviceName,
 int Action,
 DWORD Total,
 DWORD Completed);

It will be called periodically by RTFFormat. Parameter Action can have one of the following values:

RTF_FMT_PGS_LOW_FMT Low-level formatting is in progress.

RTF_FMT_PGS_HIGH_FMT High-level formatting is in progress.

RTF_FMT_PGS_CLEAR_MEDIUM The data area of the drive is being deleted.

Parameters Total and Completed indicate how many sectors must be processed and how many have
been processed succesfully.

The Progress parameter for RTFFormat is optional and may be set to NULL.

Parameter Flags controls various options about how to format the device. It can have any combination
of the following flags:

RTF_FPLY_DRIVE_360 These flags specify the type of floppy disk that should be formatted. If
RTF_FPLY_DRIVE_1200 none of these flags is specified, the maximum capacity of the floppy disk
RTF_FPLY_DRIVE_720 drive is assumed. For example, if you want to format a 720k diskette in a
RTF_FPLY_DRIVE_1440 1.44M diskette drive, you must specify flag RTF_FPLY_DRIVE_720. If it
RTF_FPLY_DRIVE_2880 is omitted, RTFFormat would attempt to format the diskette for 1.44M.

RTF_FMT_SINGLE_FAT RTFFormat should create only a single FAT. By default, two FATs are
created. This flag is not compatible with all other operating systems.
However, drives formatted with a single FAT have a larger capacity and
better write performance. In particular, this flag should be used for Flash
or RAM disks to improve performance and efficiency.

RTF_FMT_FORCE- This flag forces RTFFormat to do a low-level format. By default,
_LOW_LEVEL RTFFormat will do a low-level format only if writing to the device fails.

Hard disks are never low-level formatted by RTFFormat. If you need to
low-level format a hard disk, use the respective raw I/O functions.

RTF_FMT_NO_LOW_LEVEL Prevent RTFFormat from low-level formatting a device. If writing to the
device fails, the function returns with an error.

RTF_FMT_FAT_12 Set up a FAT-12 file system.

RTF_FMT_FAT_16 Set up a FAT-16 file system.

RTF_FMT_FAT_32 Set up a FAT-32 file system.

RTF_FMT_NO_FAT_32 Set up a FAT-12 or FAT-16 file system, depending on the drive’s size.

If none of the last four flags is specified, RTFFormat will select a FAT type automatically. Drives with
less than 16M size will be formatted as FAT-12 and drives with less than 512M will be formatted as
FAT-16. Larger drives are formatted as FAT-32.

Please note that some combinations of MinSectorsPerCluster and Flags can prevent RTFFormat from
setting up a valid file system. For example, a FAT-16 drive must have at least 4085 clusters. However, if
a drive has only 10000 sectors, MinSectorsPerCluster is set to 4, and flag RTF_FMT_FAT_16 is
specified, RTFFormat will return error RTF_INVALID_FILE_SYSTEM.

RTFFormat does not perform a surface scan on the volume. Only if writing to any system portion of the
drive fails, the function returns the respective error code.

If the function succeeds, the return value is the FAT type set up (12 for FAT-12, 16 for FAT-16, or 32 for
FAT-32). If it fails, the return value is a negative error code. Demo programs RTFCMD and PartDemo
use this function.

Part III RTFiles-32 271

Chapter 3 RTFiles-32 Native API

Miscellaneous File Functions
This section documents various other functions of RTFiles-32.

Function RTFCommitAll
RTFCommitAll will flush all currently dirty buffers to disk:

int RTFCommitAll(const char * DriveName);

Parameter DriveName must either be a valid file name (e.g., a root directory name) or NULL. If
DriveName is not NULL, only the drive information (possibly the current default drive) is determined. All
of that drive’s hosting device’s dirty buffers are flushed. If the parameter is NULL, the buffers of all
devices are flushed.

If the function succeeds, the return value is RTF_NO_ERROR. If the function fails, the return value is a
negative error code.

Function RTFCloseAll
RTFCloseAll closes all currently open files:

int RTFCloseAll(void);

This function also invalidates all of RTFiles-32’s file handles which may be in use by the application.
Subsequent use of such handles will fail.

Please note that this function does not close handles other than RTFiles-32’s file handles. For example,
the Win32 file I/O API emulation uses Win32 handles to access files. Open Win32 handles are not
closed by this call.

If the function succeeds, the return value is the number of open files found and closed. If the function
fails, the return value is a negative error code. In case of failure, some files may have been closed
successfully, while others could not be closed.

Function RTFShutDown
RTFShutDown closes all currently open files and uninstalls all device drivers:

void RTFShutDown(void);

This function calls RTFCloseAll and then the ShutDown entrypoint for all devices in the device list.

No RTFiles-32 function calls will succeed after this call. RTFShutDown should only be called at program
termination.

Not all embedded systems will have to use this function. It is only required if you must ensure that any
changed interrupt vectors are restored after the program terminates.

This function does not return any information. Any errors encountered are ignored.

Function RTFErrorMessage
RTFErrorMessage returns a pointer to a message describing an RTFiles-32 error code:

char * RTFErrorMessage(int ErrorCode);

Parameter ErrorCode must be a negative value returned by a previous RTFiles-32 API call.

This function always succeeds. If the parameter specifies an invalid error code or a positive value, the
returned string will indicate this.

Example:
RTFHANDLE Handle;

Handle = RTFOpen("somefile", 0);
if (Handle < RTF_NO_ERROR)
 printf("Unable to open file, reason: %s\n", RTFErrorMessage(Handle));
else
{
 RTFRead(Handle,...);

272 On Time RTOS-32

Miscellaneous File Functions

 ...
 RTFClose(Handle);
}

Function RTFSetDefaultOpenFlags
RTFSetDefaultOpenFlags can be used to define flags to be applied to all subsequent calls to RTFOpen:

int RTFSetDefaultOpenFlags(DWORD GlobalFlags, DWORD LocalFlags);

Parameters GlobalFlags and LocalFlags can be any combination of flags specified for RTFOpen.
GlobalFlags are ored into the Flags parameter of all subsequent RTFOpen calls. LocalFlags are only
applied to RTFOpen calls from the task calling RTFSetDefaultOpenFlags. In a single-threaded environ-
ment, both flags are always ored into the Flags parameter.

RTFSetDefaultOpenFlags is useful for two purposes: globally changing open flags which affect
caching/committing (e.g., RTF_COMMITTED, RTF_CACHE_DATA, RTF_LAZY_DATA) or to set flags
for indirect calls to RTFOpen, such as through an emulated API. For example, ANSI C function fopen()
does not support opening a committed file, but the same effect can be achieved with:

RTFSetDefaultOpenFlags(0, RTF_COMMITTED);
f = fopen("somefile.txt", "w");
RTFSetDefaultOpenFlags(0, 0);

Another use could be to protect directories from being opened accidentally:
RTFSetDefaultOpenFlags(RTF_OPEN_NO_DIR, 0);

If you want to explicitly open a directory, just specify RTF_OPEN_DIR to override RTF_OPEN_NO_DIR:
f = RTFOpen("c:\\adir", RTF_READ_ONLY | RTF_OPEN_DIR);

If RTFSetDefaultOpenFlags succeeds, the return value is RTF_NO_ERROR. If the function fails, the
return value is a negative error code.

Function RTFSetCriticalErrorHandler
RTFSetCriticalErrorHandler installs a critical error handler to be called by RTFiles-32 in case of a device
error:

void RTFSetCriticalErrorHandler(RTFCriticalErrorHandler Handler);

Parameter Handler must be a function of the following type:
typedef enum { RTFRetry, RTFFail } RTFErrorAction;

typedef RTFErrorAction (RTFAPI * RTFCriticalErrorHandler)(char Drive,
 DWORD SerialNumber,
 int ErrorCode);

If the application never calls RTFSetCriticalErrorHandler, RTFiles-32 will fail all device errors. In other
words, the error will be passed to the application as a return code of the RTFiles-32 API function in
which the error occurred; if media has been removed or replaced, all files of that media are closed. This
behavior is implemented with the default critical error handler RTFDefaultCriticalErrorHandler.

The critical error handler will be called by RTFiles-32 on every error reported by a device driver in a read
or write operation. The handler is not called when the device is being mounted. Errors in this phase
simply cause the device not to be mounted. Also, device error RTF_MEDIA_CHANGED detected while
no files are open on a device simply cause the device to be remounted without calling the critical error
handler.

When the critical error handler is called, RTFiles-32 will probably have unflushed data in its buffer cache.
If the error cannot be recovered, data loss must be expected and the volume could be left in an incon-
sistent state.

The error handler receives parameters Drive, SerialNumber, and ErrorCode, which will contain the drive
letter of the drive on which the error occurred, the serial number of the volume being accessed, and the
RTFiles-32 error code which was reported by the device. The only valid return values are RTFFail or
RTFRetry.

Part III RTFiles-32 273

Chapter 3 RTFiles-32 Native API

If the handler returns RTFRetry, RTFiles-32 will attempt to perform the I/O operation again. If it fails
again (for the same or some other reason), the error handler will be called again. The only way to get
out of this situation is by failing the operation (the handler would have to return RTFFail) or a retry
succeeds. RTFiles-32 does not support ignoring errors as other file systems may.

If the handler decides to fail the operation by returning RTFFail, control passes back to the application.
The current RTFiles-32 API function will return with the return code last passed to the critical error
handler. If the error is one of the following,

RTF_MEDIA_CHANGED
RTF_WRONG_MEDIA
RTF_DRIVE_NOT_FOUND
RTF_DRIVE_NOT_READY

RTFiles-32 will assume that the media is no longer available and all data for this drive in the internal
buffer cache is discarded. This may include dirty buffers; their data will be lost. In addition, all open files
on the drive are closed without flushing any dirty data and the drive is unmounted. Please note that files
closed in this way do not need to be closed by the application, but this is nevertheless recommended. In
particular, if the files have been opened through a non-RTFiles-32 API, high level API file references
may still need to be closed (e.g., Win32 file handles, FILE pointers, stream objects, etc.).

A critical error handler must be programmed very carefully. Some rules to be observed are given below:

• A critical error handler must not itself access the drive referenced by parameter Drive. It can
access other drives, but this is not recommended to avoid recursive critical error situations.

• The critical error handler must return either value RTFFail or RTFRetry. It may not use any other
mechanism to relinquish control. For example, it may not throw an exception which it does not
catch within the context of the handler and it may not call longjmp to transfer to a scope built before
the RTFiles-32 API function call.

• Typically, a critical error handler will prompt the user to make sure the correct diskette is in the
drive, etc. In a multithreaded environment, it must be considered that the error handler can be
called by any task performing file I/O. It can even be invoked by several tasks simultaneously. The
application must make sure that the current task can communicate with the user safely (if
required).

When a critical error handler is called in a multithreaded environment, the device on which the error
occurred is locked and cannot be accessed by other tasks. Access to other devices, however, is not
limited in any way.

Below is an example of a critical error handler, taken from the RTFCMD demo program. It shows how a
critical error handler might look like in a multitasking environment:

RTFErrorAction RTFAPI MyCriticalErrorHandler(char Drive,
 DWORD SerialNumber,
 int ErrorCode)
{
 char Temp[4];

 if (RTKCurrentTaskHandle() != MainHandle)
 return RTFFail; // can’t talk to the user in other tasks

 switch (ErrorCode)
 {
 case RTF_WRONG_MEDIA: // we only want to
 case RTF_BAD_SECTOR: // handle these errors
 case RTF_DATA_ERROR:
 case RTF_MEDIA_CHANGED:
 case RTF_SECTOR_NOT_FOUND:
 case RTF_ADDRESS_MARK_NOT_FOUND:
 case RTF_CRC_ERROR:

274 On Time RTOS-32

Miscellaneous File Functions

 Wprintf(MainWindow, "RTFiles-32 Error on Drive %c:, "
 "Volume: %p: %s\r\n",
 Drive,
 SerialNumber,
 RTFErrorMessage(ErrorCode));
 while (1)
 {
 Wprintf(MainWindow, "Please enter ’F’ail or ’R’etry:");
 Temp[0] = ’\0’;
 WGets(MainWindow, Temp, 4);
 switch (toupper(Temp[0]))
 {
 case ’F’:
 return RTFFail;
 case ’R’:
 return RTFRetry;
 }
 }

 default:
 return RTFFail; // can’t do anything about other errors
 }
}

Function RTFDefaultCriticalErrorHandler
RTFDefaultCriticalErrorHandler is RTFiles-32’s default critical error handler. It merely returns RTFFail.
The application should never call this function. It should only be used by RTFSetCriticalErrorHandler to
restore the default handler.

Function RTFCreateMasterBootRecord

RTFCreateMasterBootRecord creates a valid master boot record with a partition table for a hard disk:
int RTFCreateMasterBootRecord(void * SectorBuffer,
 const RTFPartitionRecord * DiskGeometry);

RTFCreateMasterBootRecord does not access any physical disk. Parameter SectorBuffer must point to
a buffer of at least 512 bytes size. It will receive the new master boot record. Parameter DiskGeometry
points to a partition record describing the complete hard disk. This information will usually be supplied by
a device driver.

RTFCreateMasterBootRecord fills the supplied buffer with a master boot loader and a partition table
containing exactly one primary active partition spanning the complete disk.

Please refer to function RTFGetPartitionInfo for more information about structure RTFPartitionRecord.

If the function succeeds, the return value is RTF_NO_ERROR. If the function fails, the return value is a
negative error code. Demo program PartDemo uses this function.

Function RTFSplitPartition

RTFSplitPartition splits the last partition in a partition table into two partitions:
int RTFSplitPartition(void * MasterBootRecord, RTFSector Sectors);

RTFSplitPartition does not access any physical disk. Parameter MasterBootRecord must point to a
buffer of at least 512 bytes size containing a valid master boot record with a partition table. Parameter
Sectors specifies how many sectors to allocate to the currently last partition. It must be less than the
number of sectors it currently has. All remaining sectors are then allocated to a new partition.

Please note that partition size is rounded down to full cylinders, so the actual number of sectors can be
less than the specified value.

If the partition table already contains four partitions, the function will fail. If the function succeeds, the
return value is a zero-based index of the created partition (a value between 1 and 3). If the function fails,
the return value is a negative error code. Demo program PartDemo uses this function.

Part III RTFiles-32 275

Chapter 3 RTFiles-32 Native API

Function RTFCreateBootSector
RTFCreateBootSector creates a valid boot sector for a logical drive:

int RTFCreateBootSector(void * BootSector,
 const RTFPartitionRecord * Partition,
 BYTE MediaDescriptor,
 UINT MinSectorsPerCluster,
 DWORD Flags);

RTFCreateBootSector does not access any physical disk. Parameter BootSector must point to a buffer
of at least 512 bytes. It will receive the boot sector data. Parameter Partition must point to a partition
record describing the partition for which the boot sector is intended. If the boot record is to be written to
a hard disk, this data must be identical to the respective partition record in the partition table. Parameter
MediaDescriptor is the value to be written into the BIOS parameter block. RTFiles-32 never uses this
value, but other operating systems may require it to mount a volume. MediaDescriptors are usually
supplied by the device driver. Parameter MinSectorsPerCluster specifies the minimum number of
clusters. Parameter Flags controls additional properties of the file system to set up. Please refer to the
documentation of function RTFFormat for details about parameters MinSectorsPerCluster and Flags.

If the function succeeds, it returns the FAT type set up (12, 16, or 32). If it fails, the return value is a
negative error code.

Raw I/O Functions
Raw I/O functions allow the application to directly call device driver functions. The first parameter of all
of these functions is the zero-based index in RTFiles-32’s device list. It specifies the device on which
this operation should be performed. In this way, even devices which have not been mounted success-
fully or which contain no valid partition can be accessed.

Raw I/O functions can be used interleaved and in parallel with other, high-level I/O functions, but this is
not recommended. Since no files are opened to use the raw I/O functions, no share protection is
applied.

Function RTFRawMount
Function RTFRawMount calls the driver’s MountDevice function:

int RTFRawMount(int DeviceIndex);

If the function succeeds, it returns the device’s sector size. If it fails, the return value is a negative error
code.

Function RTFRawSetMedia
RTFRawSetMedia informs RTFiles-32 whether a specific device is available or not:

int RTFRawSetMedia(int DeviceIndex, int Media);

When parameter Media is zero, all subsequent calls to any device driver function for this device will
return RTF_MEDIA_CHANGED without attempting to actually access the device. Parameter Media
unequal to 0 allows RTFiles-32 to physically access the device.

If the function succeeds, it returns RTF_NO_ERROR. If it fails, the return value is a negative error code.

Function RTFRawShutDown
Function RTFRawShutDown calls the driver’s ShutDown function:

int RTFRawShutDown(int DeviceIndex);

If the function succeeds, it returns RTF_NO_ERROR. If it fails, the return value is a negative error code.

Function RTFRawRead
Function RTFRawRead calls the driver’s ReadSectors function:

int RTFRawRead(int DeviceIndex, void * Data, RTFSector Sector, UINT Sectors);

If the function succeeds, it returns RTF_NO_ERROR. If it fails, the return value is a negative error code.

276 On Time RTOS-32

Raw I/O Functions

Function RTFRawWrite
Function RTFRawWrite calls the driver’s WriteSectors function:

int RTFRawWrite(int DeviceIndex, void * Data, RTFSector Sector, UINT Sectors);

If the function succeeds, it returns RTF_NO_ERROR. If it fails, the return value is a negative error code.

Function RTFRawMediaChanged

Function RTFRawMediaChanged calls the driver’s MediaChanged function:
int RTFRawMediaChanged(int DeviceIndex);

If the function succeeds, it returns RTF_NO_ERROR. If it fails, the return value is a negative error code.

Function RTFRawDiscardSectors
Function RTFRawDiscardSectors calls the driver’s DiscardSectors function:

int RTFRawDiscardSectors(int DeviceIndex, RTFSector Sector, UINT Sectors);

If the function succeeds, it returns RTF_NO_ERROR. If it fails, the return value is a negative error code.

Function RTFRawGetDiskGeometry
Function RTFRawGetDiskGeometry calls the driver’s GetDiskGeometry function:

int RTFRawGetDiskGeometry(int DeviceIndex,
 RTFPartitionRecord * DiskGeometry,
 BYTE * MediaDescriptor);

If the function succeeds, it returns RTF_NO_ERROR. If it fails, the return value is a negative error code.

Function RTFRawLowLevelFormat
Function RTFRawLowLevelFormat calls the driver’s LowLevelFormat function:

int RTFRawLowLevelFormat(int DeviceIndex,
 const char * DeviceName,
 RTFFormatCallback Progress,
 DWORD Flags);

If the function succeeds, it returns RTF_NO_ERROR. If it fails, the return value is a negative error code.

Part III RTFiles-32 277

Chapter 3 RTFiles-32 Native API

Functions for Debugging
This section describes functions provided for debugging and diagnostics purposes.

Function RTFBufferInfo
RTFBufferInfo returns information about RTFiles-32’s internal buffer cache:

void RTFBufferInfo(RTFBufferStatistic * BufferInfo);

Parameter BufferInfo must point to a structure RTFBufferStatistic defined in RTFILES.H:
typedef struct {

 DWORD TotalBuffers,
 ValidBuffers,
 DirtyBuffers,
 MaxDirtyBuffers,

 PhysicalBufferReads,
 CachedBufferReads,
 BuffersDiscarded,
 CacheHits,

 PhysicalBufferWrites,
 CachedBufferWrites,
 AsynchBufferFlushs,

 UnbufferedReads,
 UnbufferedWrites;

} RTFBufferStatistic;

The counters contain the following values:

TotalBuffers The number of available buffers. The default value is 32. See Chapter 5,
RTFiles-32 Data Tables for information on how to change the number of buffers.

ValidBuffers The number of buffers currently holding valid data.

DirtyBuffers The number of buffers currently holding data which has not yet been written to
disk. This value must be 0 when all files are closed.

MaxDirtyBuffers The maximum number of dirty buffers at any one time since program startup.
This value should always be less than TotalBuffers. If it is not, consider
increasing the number of buffers or avoid excessive use of device flag RTF_DE-
VICE_LAZY_WRITE or RTFOpen flag RTF_LAZY_DATA.

When all buffers are dirty, RTFiles-32 may fail file I/O operations with error
RTF_OUT_OF_BUFFERS, since it is not always possible to flush buffers when a
new buffer is required.

PhysicalBufferReads The number of sectors read from disk into a buffer since program start.

CachedBufferReads The number of times RTFiles-32 required a sector of data and the required
sector was found in the buffer cache (cache hits).

BuffersDiscarded The number of times RTFiles-32 had to discard a valid buffer to accommodate a
new sector. When a discarded sector is required at a later time, it must be reread
from disk.

CacheHits A percentage value indicating buffer cache efficiency. This value is calculated as
100 * CachedBufferReads / (PhysicalBufferReads + CachedBufferReads).

PhysicalBufferWrites The number of times RTFiles-32 has flushed a buffer to disk.

CachedBufferWrites The number of times RTFiles-32 has modified the data in a dirty buffer. Such
buffers are either still present in the cache as dirty buffers or they have been
flushed at a later time.

278 On Time RTOS-32

Device Dependent Functions

AsynchBufferFlushs The number of times a buffer was flushed to disk even though it had been
modified in an earlier RTFiles-32 API function call. Such asynchronous buffer
flushes will not occur if all files are opened with flag RTF_COMMITTED.

UnbufferedReads The number of sectors read from disk, bypassing RTFiles-32’s buffer cache.
Such reads occur when the application reads large blocks of data containing
complete sectors.

UnbufferedWrites The number of sectors written to disk, bypassing RTFiles-32’s buffer cache.
Such writes occur when the application writes large blocks of data containing
complete sectors.

Function RTFBufferInfo never fails and does not return a value. Please note that all counters start with 0
at program start.

Function RTFDumpFileTable
RTFDumpFileTable writes information about all currently open files as text to a string buffer:

void RTFDumpFileTable(char * Buffer, UINT BufferLen);

Parameter Buffer must point to a string buffer to receive the data. BufferLen specifies the size of the
buffer. The buffer should have a size of at least 100 + n * 100, where n is the number of open files.

The buffer filled by this function can be displayed using printf to view the status of open files. Example:
Index Handle Flags FilePos Name
--
 3 00070003 W_S 1234 C:\ADIR\SOMEFILE.DAT
 4 00030004 RD_ 256 C:\ADIR

Column Index contains the file slot the file occupies in RTFiles-32’s internal file table. Handle is the
hexadecimal representation of the file’s handle. The Flags column may show a combination of the letters
R, W, D, and S, representing read only access, read/write access, directory, and shared, respectively.
FilePos gives the current file pointer value of the file. Name is the full path name of the file.

Use RTFDumpTable to analyze which files are open if you suspect that a program does not properly
close all files.

Device Dependent Functions
The following functions interface directly with RTFiles-32 device drivers.

Function RTFFLPYTurnMotorOFF
This function should be called by an application at least once per second if the floppy driver is used with
device flag RTF_CUSTOM_TIMER (see Chapter 5, Floppy Disk Driver for details):

void RTFFLPYTurnMotorOff(void);

It ensures that the floppy driver receives control to turn off the floppy motors when the motor timeout has
expired.

Function RTFDrvFlashInfo
Function RTFDrvFlashInfo can be used to gather statistics about a flash disk:

typedef struct {
 DWORD Blocks;
 DWORD BlockSize;
 DWORD EraseCountMax;
 DWORD EraseCountMin;
 DWORD EraseCountAverage;
 DWORD SectorsInUse;
 DWORD SectorsDeleted;
 DWORD SectorsAvail;
} RTFFlashInfo;

int RTFDrvFlashInfo(const RTFDrvFlashData * D, RTFFlashInfo * FlashInfo);

Part III RTFiles-32 279

Chapter 3 RTFiles-32 Native API

Parameter D must point to the linear flash driver’s data for the specific flash disk used in the device list.
Parameter FlashInfo points to a structure to receive the results.

If the function succeeds, the return value is RTF_NO_ERROR and *FlashInfo is filled with statistics
about the volume. Otherwise, a negative error code is returned.

Note that function RTFDrvFlashInfo directly calls the flash disk device driver and bypass RTFiles-32’s
file system locking. This function must never be executed while other threads are accessing the same
flash disk volume.

Function RTFDrvFlashCompact
This function can be used to execute the flash disk driver’s garbage collection without actually writing
data to the disk:

int RTFDrvFlashCompact(RTFDrvFlashData * D, int RequestedSectors);

Parameter D must point to the linear flash driver’s data for the specific flash disk used in the device list.
Parameter RequestedSectors specifies the minimum number of sectors that should be available when
the function returns. If the function succeeds, the return value is the number of available sectors on the
flash disk. If more sectors are requested than can be freed, the maximum possible number of sectors is
made available and returned, but no error is reported.

It is never necessary to explicitly call this function since the flash disk driver will execute its garbage
collection automatically whenever data is written to the flash disk and not enough space is available.
However, RTFDrvFlashCompact can be called before a write operation to speed up the write operation.
If RTFDrvFlashCompact returns at least as many sectors as are to be written, RTFWrite (or any other
disk write operation) is guaranteed not to erase any flash blocks during the write, allowing near real-time
write performance.

Note that freeing the last few sectors of a flash volume may take an excessive amount of time and is
therefore not recommended. The number of sectors that can be made available can be determined with
function RTFDrvFlashInfo (return values SectorsDeleted + SectorsAvailable). For performance reasons,
it is recommended to leave at least one erase block worth of sectors unused.

Note that function RTFDrvFlashCompact directly calls the flash disk device driver and bypasses
RTFiles-32’s file system locking. This function must never be executed while other threads are
accessing the same flash disk volume.

280 On Time RTOS-32

Win32 Emulation

Chapter 4
Alternate APIs for RTFiles-32

Many applications will prefer not to use RTFiles-32’s native API directly, but instead use functions of the
C/C++ run-time system or the Win32 API. In this way, programs can maintain compatibility with other
operating system environments.

Win32 Emulation
When RTFiles-32 is used with RTTarget-32 2.1 or higher, RTFiles-32’s installable file system feature is
used to redirect all Win32 file I/O API calls to RTFiles-32. More information about configuring the install-
able file system for use with RTTarget-32 is given in Chapter 7, section Win32 API Emulation with
RTFiles-32 and RTTarget-32 and in Part I of this manual.

RTFiles-32 supports the following Win32 API functions:

CloseHandle SetFileTime
FindClose DeleteFileA
CreateFileA MoveFileA
ReadFile GetTempFileNameA
WriteFile GetCurrentDirectoryA
SetFilePointer SetCurrentDirectoryA
SetEndOfFile CreateDirectoryA
FlushFileBuffers RemoveDirectoryA
GetFileSize GetDriveTypeA
GetFileTime GetDiskFreeSpaceA
GetFullPathNameA GetVolumeInformationA
GetFileInformationByHandle SetVolumeLabelA
GetFileAttributesA FindFirstFileA
SetFileAttributesA FindNextFileA

RTTarget-32 Win32 Handles
One important concept of the Win32 API are handles. The number of available Win32 handles is limited
but can be changed (please refer to Part I of this manual for details). It is very important that all handles
are closed when no longer needed to avoid errors caused by an out-of-handle situation.

Win32 handles (type HANDLE) must not be confused with RTFiles-32’s file handles (type RTFHANDLE
or int). Win32 handles reference objects indirectly, while RTFiles-32 handles reference them directly.
Consequently, Win32 handles can be duplicated with function DuplicateHandle; the associated file is
closed only after all handles have been closed. In contrast, RTFiles-32 file handles cannot be dupli-
cated; they can only be copied, which does not create a new handle. Any call to RTFClose will immedi-
ately close the file.

RTTarget-32 Flag RT_CLOSE_FIND_HANDLES
RTTarget-32 has a flag to work around a problem in some C/C++ run-time systems or older programs
ported from DOS. The Win32 API functions to search for files are FindFirstFile, FindNextFile, and
FindClose. FindFirstFile returns a handle which can be used in subsequent FindNextFile calls. This
handle must be closed with FindClose to avoid a Win32 handle leak. However, under DOS, the corre-
sponding DOS functions do not require closing such a handle. For this reason, some older programs
never close find handles. RTTarget-32 allocates a Win32 handle in each FindFirstFile call and
RTFiles-32 allocates a file handle in each call to RTFFindFirst (which is called by FindFirstFile). Thus,
programs that do not close find handles will quickly exhaust all available Win32 and RTFiles-32 handles.

To work around this problem, RTTarget-32 can be instructed to automatically close find handles once no
more files are found in FindNextFile. To use this feature, call

RTSetFlag(RT_CLOSE_FIND_HANDLES, 1);

during the startup phase of the program.

Part III RTFiles-32 281

Chapter 4 Alternate APIs for RTFiles-32

If this feature is used, programs which do close the find handle after no more files are found will receive
an error from FindClose since the handle has been closed already. However, this should normally not
cause any problems.

You should use RT_CLOSE_FIND_HANDLES only to support software with this bug which cannot be
modified. Well-behaved programs should always close find handles (either Win32 handles with
FindClose or the RTFiles-32 handle with RTFFindClose, if RTFiles-32’s native API is used).

ANSI C Run-Time System Functions
Thanks to RTFiles-32’s Win32 API emulation, standard ANSI C file I/O functions can be used. At least
the following functions are available:

clearerr
fclose
feof
ferror
fflush
fgetc

fgetchar
fgetpos
fgets
fileno
fopen
fprintf

fputc
fputchar
fputs
fread
freopen
fscanf

fseek
fsetpos
ftell
fwrite
getc
putc

remove
rename
rewind
setbuf
setvbuf
tmpfile

ungetc
unlink
vfprintf
vfscanf

Many compiler vendors extend the number of available file I/O functions. Usually, the compiler-specific
extensions will also work.

C++ iostreams
The iostream class library is built on the ANSI C file I/O functions. The only class which interfaces to the
file system is filebuf. It is fully supported.

Mixing Different APIs
In principle, it is no problem to use functions from different API groups within the same program simulta-
neously or even to access a single file. However, great care must be taken not to mix the various
methods to reference a file. For example, the ANSI C FILE stream functions use a pointer to a FILE
structure to reference files, while RTFiles-32 uses integer handles.

Since all possible APIs are built upon one another, a higher level API must always remember the file
reference of the API it builds on. The following table shows how to translate a file reference of one API
to a file reference of the next lower API level.

Destination Source Operations
file descriptor class filebuf filebuf.fd()
file descriptor struct FILE * fileno(FILE *)
Win32 Handle file descriptor _get_osfhandle(file descriptor) (_os_handle() for Watcom C/C++)
RTFiles-32 Handle Win32 Handle RTParseHandle(Win32Handle, &Type, &RTFHandle);

Demo program FAPIDemo.CPP uses several different APIs to access a single file. It demonstrates how
to translate file references between different APIs.

282 On Time RTOS-32

RTFiles-32 Data Tables

Chapter 5
Configuring RTFiles-32

This chapter describes how to configure RTFiles-32. This includes defining how much memory
RTFiles-32 should use, which device drivers are available, and which system driver should be used to
interface with the underlying operating system.

RTFiles-32 supplies defaults for the data tables and the device drivers, so many applications do not
have to be concerned about these. However, you must always select the correct system driver
depending on the platform the program will run on.

To change RTFiles-32’s default configuration, replacement modules must be linked to the application as
described below. It is important that these replacements are linked into the .EXE or .DLL file containing
the RTFiles-32 library. Otherwise, RTFiles-32 will not see the replacement and continue to use its
defaults.

RTFiles-32 Data Tables
RTFiles-32 needs memory to store information about currently available drives, open files, and for its
buffers. RTFiles-32 does not contain any dynamic memory allocation internally, so these data areas
must be statically defined in the program. By default, RTFiles-32 allocates enough space for up to eight
open files, eight logical drives, and 32 sector buffers.

To change these defaults, include the following lines in one of the application’s source files:
#define RTF_MAX_DRIVES 8
#define RTF_MAX_FILES 8
#define RTF_MAX_BUFFERS 32

#include <rtfdata.c>

and edit the respective constants to match your needs. If any of the given symbols is not defined,
RTFiles-32 will apply its respective default.

Example: The application will need to open up to 30 files simultaneously. At least two file handles should
be reserved, because RTFiles-32 may need them internally. To improve performance with so many
open files, the number of buffers is increased to 256:

#define RTF_MAX_FILES 32
#define RTF_MAX_BUFFERS 256

#include <rtfdata.c>

To analyze an application’s data needs, use functions RTFGetBufferInfo and RTFDumpFileTable.

The System Driver
RTFiles-32 needs a few system services to perform actions such as setting interrupt vectors, managing
semaphores, etc. RTFiles-32 is portable and not tied to any specific system. Rather, a system driver
must be supplied which maps RTFiles-32’s system calls to the corresponding operating system’s calls.

The system driver merely consists of a set of functions declared in INCLUDE\RTFSYS.H. To use a
specific system driver, the driver’s library file must be linked to the application. Please note that there is
no default driver. You must link exactly one of the drivers listed below.

The following drivers are available for RTFiles-32:

RTFSRTT.LIB RTTarget-32 driver. This driver should be used with RTTarget-32 for single-threaded
applications.

The time and date enquiry function is implemented using Win32 API function GetLocal-
Time. Please ensure that SetSystemTime is called at program startup; otherwise, the
returned times will be undefined.

Part III RTFiles-32 283

Chapter 5 Configuring RTFiles-32

Time measurements and the delay function use function GetTickCount. The timer
callback is implemented by hooking timer interrupt IRQ 0. Mutexes and semaphores are
implemented as byte counters. When the driver must wait (e.g., at a semaphore or
during a delay), function RTWait is called. For interrupt handling, functions RTSetInt-
Handler, RTEnableIRQ, RTEnableInterrupts, and RTIRQEnd are used. For TLS, the
Win32 API is used. Fatal errors are displayed through MessageBox and the program is
aborted with ExitProcess. DMA buffers are allocated by searching for a section name
specified by the calling device driver.

The driver is supplied with complete source code in file DRIVER\SYSRTT32.C.

RTFSK32.LIB RTKernel-32 driver. This driver should be used in RTTarget-32/RTKernel-32 applica-
tions.

The time and date enquiry function is implemented using Win32 API function GetLocal-
Time. Please ensure that SetSystemTime is called at program startup; otherwise, the
returned times will be undefined.

Time measurements use RTKGetTime(). The delay function is implemented with
RTKDelay for times larger than one tick. For shorter delays, a software loop timed with
the high resolution timer is used instead. RTKDelay(0) is called in each loop iteration.
The timer callback is implemented by a cyclic task running at priority 2. Mutexes and
semaphores are implemented as RTKernel-32 mutexes and counting semaphores. For
interrupt handling, functions RTKSetIRQHandler, RTKEnableIRQ, RTKEnableInterrupts,
and RTKIRQEnd are used. For TLS, RTKernel-32’s task user data is used. Fatal errors
are displayed through RTKFatalError. DMA buffers are allocated by searching for a
section name specified by the calling device driver.

The driver is supplied with complete source code in file DRIVER\SYSRTK32.C.

Device List
RTFiles-32 needs a list of devices with their associated drivers. Each available driver is implemented as
a structure of function pointers to all driver entrypoints. To access a specific device, the drivers need a
data structure for each device they should handle. In addition, RTFiles-32 must know whether the device
is a floppy or hard disk and which options apply for the device.

RTFiles-32’s driver list is a zero-terminated array of structures. Each structure defines everything
RTFiles-32 needs to know about the device:

typedef struct {
 int DeviceType;
 int DeviceNumber;
 DWORD DeviceFlags;
 RTFDriver * Driver;
 void * DriverData;
 RTFDeviceData DevData; // reserved for RTFiles-32 internal use
} RTFDevice;

The device list array used by RTFiles-32 is a global symbol:
extern RTFDevice RTFDeviceList[];

DeviceType can be either RTF_DEVICE_FLOPPY or RTF_DEVICE_FDISK. This information may be
required by the device driver if the driver can support different device types. It is also used to determine
whether the device has a partition table or not. Thus, you must use RTF_DEVICE_FLOPPY for all
devices without a partition table, even if they are not floppies (e.g., a RAM disk).

DeviceNumber is a zero-based index of the device within its class. For example, floppy disk A has
device number 0 and floppy B is device number 1. The exact meaning of the device number can depend
on the device driver.

DeviceFlags can be used to select special options to be applied to the device. These options can either
be general RTFiles-32 flags or device driver specific flags. The following device-independent flags are
available and can be used with any device driver:

284 On Time RTOS-32

Device List

RTF_DEVICE_SINGLE_FAT RTFiles-32 should use only the first FAT. Many devices are formatted
to have two or even more copies of the FAT. Both DOS and RTFiles-32
will use only the first FAT, but all other copies are always updated on
every change of the FAT. To improve performance, you can instruct
RTFiles-32 not to update redundant FAT copies.

RTF_DEVICE_LAZY_WRITE Usually, RTFiles-32 will flush all cached buffers of a file to the disk
when the file is closed. However, when this flag is set, RTFiles-32 will
wait until the last file of this drive is closed. This option can improve
write performance when many files are created/deleted and/or
extended simultaneously. However, the drive may be left in an incon-
sistent state if not all files are closed before the program terminates.

RTF_DEVICE_MOUNT_CON- This flag instructs RTFiles-32 not to assign drive letters to logical drives
TIGUOUS the same way MS-DOS would. Instead, all of the device’s drives are

assigned after all other devices not specifying this flag, and all drives
are assigned contiguous drive letters. The algorithm for assigning drive
letters is given in Chapter 2, section Mounting Devices and Logical
Drives.

RTF_DEVICE_REMOVABLE This flag informs RTFiles-32 that the device is removable. It is not
necessary to specify RTF_DEVICE_REMOVABLE for floppies;
RTFiles-32 always assumes them to be removable. Removable devices
are always assigned a drive letter and are not accessed until actually
needed. RTFiles-32 will automatically remount such devices when they
are hot swapped while no files are open on the device.

RTF_DEVICE_NO_MEDIA This flags instructs RTFiles-32 to assume that this device is initially not
present. RTFiles-32 will not attempt to access the device until
RTFRawSetMedia(.., 1) has been called. You should specify this flag
only for removable devices when the device driver is not able to detect
media insertion by itself. For example, this flag is required for PCMCIA
disks.

RTF_DEVICE_NEW_LOCK RTFiles-32 maintains semaphores to lock devices to prevent two
threads accessing the same device simultaneously. To support non-re-
entrant device drivers, no parallel access to any two devices managed
by the same driver is allowed by default. Each driver (not device) is
allocated its own lock. However, each device with this flag set will get a
new lock, allowing parallel access with other devices of the same
driver. Please consult section Device Drivers for details on which
drivers support this flag.

Please refer to section Device Drivers for details about device driver specific options.

The Driver member of structure RTFDevice is a pointer to a disk device driver. The following device
drivers are shipped with RTFiles-32; they are documented in detail later in this chapter:

RTFDrvFloppy Device driver for 3.5" and 5.25" floppy disk drives. Media with 360k, 1.2M, 720k, 1.44M,
and 2.88M are supported. DeviceType must be RTF_DEVICE_FLOPPY.

RTFDrvIDE Device driver for standard IDE hard disks and IDE flash disks, including PCMCIA ATA
and CompactFlash disks. DeviceType must be RTF_DEVICE_FDISK.

RTFDrvDOC Device driver for M-Systems DiskOnChip 2000 or DiskOnChip Millennium flash disks.
DeviceType must be RTF_DEVICE_FDISK.

RTFDrvSRAM Device driver for PCMCIA SRAM memory cards. DeviceType must be RTF_DEVI-
CE_FLOPPY.

RTFDrvFlash Generic linear flash disk driver. DeviceType may be either RTF_DEVICE_FLOPPY or
RTF_DEVICE_FDISK.

RTFDrvRAM RAM disk driver. DeviceType may be eiter RTF_DEVICE_FLOPPY or RTF_DEVI-
CE_FDISK.

Part III RTFiles-32 285

Chapter 5 Configuring RTFiles-32

RTFDrvNULL This is a dummy driver used to skip drive letters. DeviceType must be RTF_DEVI-
CE_FLOPPY.

Member DriverData is device driver specific. Each driver defines a data structure, a pointer to which
must be stored in this field. For many devices, the device data structure can be initialized to 0 to get the
driver’s default behavior. Please refer to the following sections for details about each driver’s specific
data.

RTFiles-32’s default driver configuration looks like this:
static RTFDrvFLPYData FLPYDriveAData = {0};
static RTFDrvFLPYData FLPYDriveBData = {0};
static RTFDrvIDEData IDEDriveCData = {0};
static RTFDrvIDEData IDEDriveDData = {0};

RTFDevice RTFDeviceList[] = {
 { RTF_DEVICE_FLOPPY, 0, 0, &RTFDrvFloppy, &FLPYDriveAData },
 { RTF_DEVICE_FLOPPY, 1, 0, &RTFDrvFloppy, &FLPYDriveBData },
 { RTF_DEVICE_FDISK , 0, 0, &RTFDrvIDE, &IDEDriveCData },
 { RTF_DEVICE_FDISK , 1, 0, &RTFDrvIDE, &IDEDriveDData },
 { 0 }
};

Please note that this device list assumes that the RTTarget-32 configuration defines a Nothing section
named FloppyDMA (see section Floppy Disk Driver below for details). Example:

Locate Nothing FloppyDMA LowMem 18k 64k ReadWrite

You can supply your own RTFDeviceList array to override RTFiles-32’s default configuration. The
following example would be used if you want to use only a single DiskOnChip:

static RTFDrvDOCData Disk0Data = {0};

RTFDevice RTFDeviceList[] = {
 { RTF_DEVICE_FDISK , 0, 0, &RTFDrvDOC, &Disk0Data },
 { 0 }
};

This example would also require an entry in your RTTarget-32 configuration file. Example:
Region DiskOnChip D0000h 8k Device ReadWrite

with a suitable address of the DOC’s memory window.

The following example supports one diskette drive, one IDE hard disk on the motherboard’s IDE
controller, a second IDE hard disk to be mapped as the master drive in a PCMCIA slot, and a RAM disk
of 8M maximum size:

static RTFDrvFLPYData A = {0};
static RTFDrvIDEData C = {0};
static RTFDrvIDEData D = {0};
static RTFDrvRAMData E = {8*1024*1024/512};

RTFDevice RTFDeviceList[] = {
 { RTF_DEVICE_FLOPPY, 0, 0, &RTFDrvFloppy, &A },
 { RTF_DEVICE_FDISK , 0, 0, &RTFDrvIDE, &C },
 { RTF_DEVICE_FDISK , 2, RTF_DEVICE_REMOVABLE |
 RTF_DEVICE_NO_MEDIA |
 RTF_DEVICE_NEW_LOCK, &RTFDrvIDE, &D },
 { RTF_DEVICE_FLOPPY, 0, 0, &RTFDrvRAM, &E },
 { 0 }
};

This example also requires that a DMA buffer is allocated in RTTarget-32’s configuration file.

The following example uses a single flash disk using RTFiles-32’s proprietary linear flash disk driver:
static RTFDrvMTDFileData MTDData = {"FLASH.BIN", 4*1024*1024};

static RTFDrvFlashData FlashDisk = { &RTF_MTD_File, &MTDData };

286 On Time RTOS-32

Device Drivers

RTFDevice RTFDeviceList[] = {
 { RTF_DEVICE_FDISK , 0, 0, &RTFDrvFlash, &FlashDisk },
 { 0 }
};

Please note that this last example is only intended to show the usage of an MTD driver. It cannot
execute under On Time RTOS-32.

Device Drivers
This secton describes characteristics and configuration options of the device drivers included with
RTFiles-32.

RTFiles-32 uses a device list to find all available devices. The device list is an array of structures (type
RTFDevice) named RTFDeviceList, where each structure describes a single physical device. Structure
RTFDevice has the following layout:

typedef struct {
 int DeviceType;
 int DeviceNumber;
 DWORD DeviceFlags;
 RTFDriver * Driver;
 void * DriverData;
 RTFDeviceData DevData; // reserved for RTFiles-32’s internal use
} RTFDevice;

This chapter describes how this structure must be filled for each driver, respectively. Device driver inde-
pendent device flags in RTFDriver.DeviceFlags have already been discussed in section Device List,
which also explains how to define a custom device configuration.

RTFDevice.DriverData is a void pointer; however, each driver defines a unique structure to which this
field must point. Most drivers support this structure to be initialized to 0 to get the driver’s default
behavior. Other drivers may require additional configuration data. All these structures are declared in
header file RTFILES.DRV in the Include directory and are explained in this section.

Some drivers may require various timeout values. Timeouts are always specified in milliseconds.

Floppy Disk Driver
The floppy disk driver requires a NEC uPD765A compatible diskette controller used in PC compatible
systems at port address 03F0h - 03F7h connected to IRQ 6 and a 8237 compatible DMA controller,
whose channel 2 is used for the floppy controller.

If the driver should automatically detect the installed drives and drive types, a BIOS CMOS RAM with
valid diskette configuration data is also required.

DMA Buffer

The floppy driver uses DMA to transfer data between the computer’s memory and the diskette controller.
Some severe restrictions apply to such a buffer on PC compatible systems:

• The buffer must be located at a physical address below 16M.

• It may not span a 64k address boundary in the physical address space.

• The DMA hardware bypasses the CPU’s MMU. Thus, the hardware accesses physical addresses
while the driver must use virtual addresses.

The floppy driver will call a system driver function to allocate a DMA buffer. With RTTarget-32’s and
RTKernel-32’s system drivers, the DMA buffer must be located explicitly in the application’s
RTTarget-32 configuration file with an entry such as:

Locate Nothing FloppyDMA <Region> 18k 32k ReadWrite

Part III RTFiles-32 287

Chapter 5 Configuring RTFiles-32

The name of this Nothing section must be "FloppyDMA". <Region> must be replaced with a physical
(not virtual) RAM region located below 16M. The section must have a size of at least 512 bytes;
however, for best performance, a larger buffer (such as 18k for a complete cylinder on a 1.44M diskette
in the above example) is recommended. The buffer may not span a 64k boundary, which is achieved by
specifying an alignment of at least the size of the buffer or 64k. The DMA hardware bypasses any CPU
memory protection, but ReadWrite access is required to enable the driver to access the buffer. If you
only need read-only access to floppies, you can also set it to ReadOnly.

The DMA buffer is used for all read and write operations. A large buffer allows more sectors to be trans-
ferred in a single operation, possibly improving performance. At most, a complete cylinder (2 tracks) of
data can be transferred. Thus, it does not make sense to allocate a DMA buffer larger than 2 times the
maximum number of sectors per track. For example, if you will be using 1.44M diskettes with 18 sectors
per track, the maximum usable DMA buffer size would be 18*2*512 = 18k. For 2.88M diskettes, it would
be 36k.

The DMA buffer is also used for read-ahead operations. When only a single sector is read, the floppy
driver will automatically round up the number of sectors to 4. If and how many sectors are read ahead
can be controlled with device flags (see below). When sectors are read which are already present in the
DMA buffer, disk access can be avoided. However, whether a read-ahead buffer improves performance
depends on the application’s characteristics.

If the driver does not find the "FloppyDMA" section at run time, any diskette access will return error
RTF_DEVICE_RESOURCE_ERROR.

RTFDevice.DeviceType

RTFDevice.DeviceType must be set to RTF_DEVICE_FLOPPY for this driver.

RTFDevice.DeviceNumber

This field supports values 0, 1, 2, and 3, for drives A, B, etc. Please note that most PC compatible
systems will only support 0 and 1 for drives A and B.

RTFDevice.DeviceFlags

Apart from device-independent device flags, the following flags can be specified for RTFDevice.Device-
Flags:

RTF_CUSTOM_TIMER This flag instructs the driver not to call the system driver to install a timer
callback. The timer callback is required to turn the diskette motor(s) off
after a timeout. The use of this flag is recommended when you already
have a timer interrupt running or you have a low-priority cyclic task in a
multitasking system. In this case, the application can periodically call
function RTFFLPYTurnMotorOff(). This function should typically be
called once per second. It requires very little CPU time and it never
blocks.

When RTF_CUSTOM_TIMER is not set, the system driver will supply the
callback. Under RTTarget-32, the timer interrupt is used for this purpose;
for example, an Idle Handler called by RTWait would be a better solution
(if supported by the application). The RTKernel-32 system driver will
create a task with priority 2 for this purpose. The RTKernel-32 task
handle is the public symbol RTFTimerTaskHandle. A dedicated task for
this purpose is wasteful. If you already have a low priority cyclic task, use
that instead.

RTF_MOTOR_TIMEOUT_1 This flag instructs the driver to turn the diskette motor(s) off after one
second of no access. The default value is two seconds. Large values can
improve performance, because turning the motor on requires an extra
delay in the driver. On the other hand, head wear can be higher with long
timeouts.

288 On Time RTOS-32

Device Drivers

RTF_MOTOR_TIMEOUT_5 This flag instructs the driver to turn the diskette motors off after five
seconds of no access.

RTF_MOTOR_TIMEOUT_10 This flag instructs the driver to turn the diskette motors off after 10
seconds of no access.

RTF_READ_AHEAD_0 Do not use the DMA buffer to read ahead sectors. By default, a read-
ahead value of 4 is used (i.e., when the application reads only one
sector, four contiguous sectors will be read instead).

RTF_READ_AHEAD_2 Use a read-ahead value of 2 sectors.

RTF_READ_AHEAD_8 Use a read-ahead value of 8 sectors.

RTF_READ_AHEAD_16 Use a read-ahead value of 16 sectors.

The floppy driver is not reentrant (this cannot be supported by the diskette controller) and therefore does
not support device flag RTF_DEVICE_NEW_LOCK.

RTFDevice.Driver

This field must point to RTFDrvFloppy.

RTFDevice.DriverData

The floppy disk driver requires a pointer to a structure of type RTFDrvFLPYData for RTFDevice.Driver-
Data with the following layout:

typedef struct {
 UINT DeviceType;
 RTF_FPLY_BIOS_Disk_Parameter * DPT;
 UINT DiskTimeout;
 UINT ControllerTimeout;
 UINT Retries;
 ...
} RTFDrvFLPYData;

DeviceType specifies the drive type. It can be initialized to 0 or any of the following values:
RTF_FPLY_DRIVE_360
RTF_FPLY_DRIVE_1200
RTF_FPLY_DRIVE_720
RTF_FPLY_DRIVE_1440
RTF_FPLY_DRIVE_2880

If set to 0, the driver will enquire the drive type from the BIOS CMOS RAM. Please note that this is only
supported if the computer has a CMOS RAM and the drive has been correctly defined in the BIOS
setup. You must not specify 0 for device numbers 2 and 3, since the BIOS only has information about
diskette drives 0 and 1 (A and B).

DPT may be NULL or must point to a valid BIOS Parameter Block for the device. The floppy driver will
supply a default BIOS Parameter Block which will work for most drives. If you know that your drives
require special values here, please supply an alternate BIOS Parameter Block.

DiskTimeout, ControllerTimeout, and Retries default to 2000, 500, and 3 if set to 0. You can override the
defaults by supplying non-zero values.

The other fields of RTFDrvFLPYData are for the driver’s internal use and should be left uninitialized or
initialized to 0.

Part III RTFiles-32 289

Chapter 5 Configuring RTFiles-32

IDE Hard Disk Driver
The IDE driver requires 1, 2, 3, or 4 IDE controllers (channels), each of which may have one or two
devices attached. By default, the controllers are assumed to use the following resources:

Controller I/O Addresses IRQ

0 1F0h-1F7h, 2F6h-2F7h 14

1 170h-177h, 276h-277h 15

2 0F0h-0F7h, 2F6h-2F7h 11

3 070h-077h, 276h-277h 10

If the driver should automatically detect the installed drives and drive types, a BIOS CMOS RAM with
valid hard disk configuration data is also required. BIOS CMOS RAM disk type look up is only supported
for IDE disk numbers 0 and 1.

RTFDevice.DeviceType

RTFDevice.DeviceType must be set to RTF_DEVICE_FDISK for this driver.

RTFDevice.DeviceNumber

This field can assume values 0 to 7. Device 0 is the master device on the first IDE controller, device 1 is
the slave on the first IDE controller, device 2 is the master device on the second IDE controller, etc.
Please note that most PC compatible systems will only support 0 and 1 for a single IDE controller.

RTFDevice.DeviceFlags

Apart from device-independent device flags, the following flags can be specified for RTFDevice.Device-
Flags:

RTF_NO_CMOS_RAM Instructs the driver not to attempt to query the BIOS CMOS RAM for the
presence of the device. By default, the driver will check the CMOS RAM
for device numbers 0 and 1 and return RTF_DRIVE_NOT_FOUND, if the
device is not defined. For other device numbers or when this flag is set,
the driver will attempt to access the device. If the device is not present,
the operation will fail due to a timeout which may take several seconds
(see InitTimeout in the driver’s data).

RTF_16_BIT_IO Instructs the driver to use 16-bit I/O instructions to communicate with the
device (default).

RTF_32_BIT_IO Instructs the driver to use 32-bit I/O instructions to communicate with the
device.

RTF_NO_MULTI_SECTOR By default, the IDE driver will transfer several sectors (typically 8 or 16)
per command to/from the IDE device, depending on the disk’s capabilities.
If you experience compatibility problems, you can set this flag to disable
multi-sector I/O.

The IDE driver is not reentrant within one channel/controller, but is reentrant for separate channels/con-
trollers. Thus, device flag RTF_DEVICE_NEW_LOCK can be specified on every even device number.

RTFDevice.Driver

This field must point to RTFDrvIDE.

RTFDevice.DriverData

The IDE disk driver requires a pointer to a structure of type RTFDrvIDEData for RTFDevice.DriverData
with the following layout:

290 On Time RTOS-32

Device Drivers

typedef struct {
 void * ReadAheadBuffer;
 UINT ReadAheadBufferSize;
 UINT PortBase;
 UINT InitTimeout;
 UINT DiskTimeout;
 UINT ControllerTimeout;
 UINT IRQ;
 ...
} RTFDrvIDEData;

ReadAheadBuffer may be set to NULL if you do not want to use the driver’s read-ahead feature. If it
should be used, it should point to a buffer which has a size of 4 plus an integral multiple of the device’s
sector size (512). For example, if the read-ahead buffer should read up to 4 sectors, the size should be
4 + 4 * 512. Field ReadAheadBufferSize contains the read-ahead buffer’s size in bytes. Modern IDE
disks will read ahead automatically, so RTFiles-32’s read ahead buffer is not required. On older IDE
controllers without cache, using it is recommended.

PortBase is the base I/O address of the IDE controller. If set to 0, the driver will use addresses 01F0h,
0170h, 00F0h, and 0070h for IDE controllers 1, 2, 3, and 4, respectively.

InitTimeout, DiskTimeout, and ControllerTimeout default to 10000, 5000, and 100 if set to 0. InitTimeout
specifies the timeout for the Recalibrate command sent to the controller when the device is mounted.
The IDE specification states that recalibration may take up to 2 minutes; however, we have not yet
encountered any drives which will need more than a few seconds.

IRQ defaults to 14, 15, 11, and 10 (for controllers 0, 1, 2, and 3) if set to 0. If you want to specify IRQ 0,
set this field to -1.

The other fields of RTFDrvIDEData are for the driver’s internal use and should be left uninitialized or
initialized to 0.

M-Systems DiskOnChip Driver
The M-Systems DiskOnChip flash disk driver supports up to two DiskOnChip 2000 or DiskOnChip
Millennium devices with a maximum capacity of 166M each. Parts of the driver have been supplied by
M-Systems. The driver’s source code is not included with RTFiles-32, but it can be licensed from
M-Systems (please contact On Time for details).

The DiskOnChip driver is not included in library RTFILES.LIB. Rather, library DRVDOC.LIB must be
linked to be able to use this driver.

Memory Windows

DiskOnChips are configured to map a memory window of 8k or 32k into the host computer’s address
space. Typically, this address will be C8000h, D0000h, or D8000h. The DiskOnChip must know the
address of this memory window and must have read/write access to it.

The driver will call a system driver function to find the memory window. With RTTarget-32’s and
RTKernel-32’s system drivers, the memory window must be located explicitly in the application’s
RTTarget-32 configuration file with an entry such as:

Region DiskOnChip D0000h 8k Device ReadWrite

If a second DiskOnChip must be supported, another such region with name DiskOnChip1 is required.
Example:

Region DiskOnChip1 D8000h 8k Device ReadWrite

The driver will search for regions with these names at program startup to find the installed devices. If the
driver does not find the "DiskOnChip" region at run-time, any access to the device will return error
RTF_DEVICE_RESOURCE_ERROR.

RTFDevice.DeviceType

RTFDevice.DeviceType must be set to RTF_DEVICE_FDISK for this driver.

Part III RTFiles-32 291

Chapter 5 Configuring RTFiles-32

RTFDevice.DeviceNumber

The device number of the first DiskOnChip device is 0, while the second device is numbered 1.
Currently, only two DiskOnChip devices are supported simultaneously.

RTFDevice.DeviceFlags

This driver does not define any device-specific flags.

The DiskOnChip driver is reentrant and supports device flag RTF_DEVICE_NEW_LOCK for every
device entry.

RTFDevice.Driver

This field must point to RTFDrvDOC.

RTFDevice.DriverData

This field must point to a unique structure of type RTFDrvDOCData. This structure should be initialized
to 0 or be left uninitialized.

PCMCIA SRAM Card Driver
The SRAM driver implements a floppy disk like drive compatible with Microsoft Windows on a PCMCIA
SRAM card. Up to two cards are supported in PCMCIA sockets 0 and 1. SRAM cards are memory-
mapped into the target’s address space using 4k aligned windows of at least 4k size. The addresses to
be used for this mapping are determined by regions named SRAMCard and SRAMCard1 for PCMCIA
sockets 0 and 1, respectively. You must include such region declarations in your configuration file to use
this driver. Example (also including the declarations needed for the PCMCIA controller):

Region PCMCIA D4000h 4k Device NoAccess
Region CARDBUS D5000h 8k Device NoAccess
Region SRAMCard DA000h 4k Device NoAccess
Region SRAMCard1 DC000h 4k Device NoAccess

Note that PCMCIA SRAM cards do not contain a CIS (PCMCIA Configuration Information Space). Thus,
the PCMCIA driver is not able to read any information from the card (e.g., vendor, card type, etc.).
RTTarget-32 demo programs PCCard and PCCardMT assume that an SRAM card has been inserted
whenever a card without a card function identification is found.

This driver directly interfaces with the PCMCIA driver of RTTarget-32 and can therefore only be ported
to other operating systems with modifications.

An example device list which uses the SRAM driver is:
static RTFDrvSRAMData SRAM0 = {0};
static RTFDrvSRAMData SRAM1 = {0};

RTFDevice RTFDeviceList[] = {
 { RTF_DEVICE_FLOPPY,0, RTF_32_BIT_IO |
 RTF_DEVICE_NO_MEDIA, &RTFDrvSRAM, &SRAM0 },
 { RTF_DEVICE_FLOPPY,1, RTF_32_BIT_IO |
 RTF_DEVICE_NO_MEDIA |
 RTF_DEVICE_NEW_LOCK, &RTFDrvSRAM, &SRAM1 },
 { 0 }
}

Entries in the RTFiles-32 device list must be filled as follows for the SRAM driver.

RTFDevice.DeviceType

RTFDevice.DeviceType must be set to RTF_DEVICE_FLOPPY for this driver.

RTFDevice.DeviceNumber

The device number must be 0 for PCMCIA socket 0 and 1 for PCMCIA socket 1.

292 On Time RTOS-32

Device Drivers

RTFDevice.DeviceFlags

This driver accepts flag RTF_32_BIT_IO or RTF_16_BIT_IO to instruct the driver to transfer data to/from
the SRAM card using 16- or 32-bit instructions (rep movsw or rep movsd). By default, 8-bit (rep movsb)
is used. Most PCI-PCMCIA controllers will support 32-bit access.

RTFDevice.Driver

This field must point to RTFDrvSRAM.

RTFDevice.DriverData

This field must point to a unique structure of type RTFDrvSRAMData:
typedef struct {
 RTFSector Sectors; // card’s capacity in 512 byte sectors
 ...
} RTFDrvSRAMData;

If Sectors is zero, the driver will attempt to determine the card’s capacity automatically by reading the
boot sector, or, for unformatted cards, through a memory test.

RAM Disk Driver
The RAM disk driver does not require any hardware. It uses function malloc() to allocate space to store
files. The device configuration specifies the maximum size the RAM disk should have, but the driver will
only allocate sectors as they are used. Thus, even if you request a RAM disk of 256M, for example, but
write files with only 3M size to the RAM disk, only those 3M (plus some overhead for FAT and direc-
tories) will be allocated. When files are deleted, the space previously allocated to the files is deallocated
with free().

RAM disks format themselves automatically as an FAT-12 or FAT-16 volume when the disk is mounted.
The application can reformat RAM disks as FAT-32, if desired. Any number of RAM disks can be
installed.

The RAMDisk driver is reentrant as long as malloc and free can be called simultaneously from several
tasks. Device flag RTF_DEVICE_NEW_LOCK is supported for each RAM disk.

RTFDevice.DeviceType

RTFDevice.DeviceType may be set to either RTF_DEVICE_FLOPPY or RTF_DEVICE_FDISK.

RTFDevice.DeviceNumber

This field is ignored and should be set to 0, even if several RAM disks are used.

RTFDevice.DeviceFlags

The RAM disk driver does not define any device dependent device flags. Please note that device-inde-
pendent flag RTF_SINGLE_FAT is not required, because the RAM disk driver will always format the
RAM disk with a file system with a single FAT.

RTFDevice.Driver

This field must point to RTFDrvRAM.

RTFDevice.DriverData

The RAM disk driver requires a pointer to a structure of type RTFDrvRAMData for RTFDevice.Driver-
Data with the following layout:

typedef struct {
 DWORD Sectors;
 ...
} RTFDrvRAMData;

Sectors specifies the maximum size of the RAM disk, in sectors of 512 bytes. If set to 0, a RAM disk with
a maximum size of approximately 4M is set up.

Part III RTFiles-32 293

Chapter 5 Configuring RTFiles-32

The other fields of RTFDrvRAMData are for the driver’s internal use and should be left uninitialized or
initialized to 0.

Linear Flash Driver
The linear flash disk driver implements a block device driver on directly addressable flash chips. The
driver consists of two layers: The flash chip independent flash driver and the MTD (Memory Technology
Driver), which is responsible for handling the flash memory (e.g., erasing, programming, mapping, etc.)

The linear flash disk driver maps 512 byte sectors onto flash blocks (also called erase units). Each block
has a header, which is followed by the actual storage used for data sectors. The driver can handle flash
devices with the following characteristics:

• Each erase unit has a size of at least 1024 bytes.

• At least two blocks are available to implement a disk device.

• At least 512 bytes and at least 1/128th of a block (whichever is larger) must be mappable into the
computer’s address space. Ideally, all of the flash memory is always directly accessible.

• When a block is erased, all bits are set to 1.

• Individual bits of the flash can be programmed from 1 to 0 without affecting other bits. However,
changing bits from 0 to 1 is only possible by erasing a complete block (erase unit).

The linear flash disk driver performs active wear leveling and minimizes the number of erase and write
operations. The driver records the number of erase cycles in the header of each block and it will not
allow the difference between the highest and lowest erase count to become larger than 1000.

The number of sectors the driver can handle is limited to 224 (16777216 sectors or 8 GB). The number of
erase cycles the driver can record is also 224. Once all blocks of a volume have been erased 224 times,
no further wear leveling takes place, but the disk continues to function normally.

The driver has been designed to recover from interrupted write operations. For example, if the device is
powered off while a sector is written to the flash, the previous sector’s content is restored the next time
the device is switched on. Every operation on the flash device can be rolled back to a consistent state.
Note, however, that higher level FAT data structures might still be corrupted (e.g., an FAT update was
completed successfully, but the respective directory entry was not written).

The data structures written to the flash memory by this driver are proprietary. Flash disks formatted with
this driver cannot be used with any other operating system.

RTFDevice.DeviceType

RTFDevice.DeviceType may be set to either RTF_DEVICE_FDISK (recommended) or RTF_DEVI-
CE_FLOPPY. However, once the flash disk has been formatted, this value must not be changed. If it is
changed, the disk must be repartitioned and reformatted.

RTFDevice.DeviceNumber

The device number is ignored and should be set to 0.

RTFDevice.DeviceFlags

This driver defines the following device dependent flags:

RTF_FLASH_NO_SECTOR_MAP By default, the driver will allocate a sector map at program initializ-
ation using malloc. This sector map allows the driver to locate the
physical location of a logical sector very quickly, but it does require
4 bytes of RAM per sector. For example, for a flash disk with a
capacity of 4M, the sector map would require 4M/512*4 = 32k of
RAM. If low memory overhead is more important than disk I/O
performance, specify this flag.

RTF_FLASH_NO_LOW_FMT By default, the driver will automatically low-level format flash
memory which contains no or invalid block headers. Use this flag to
prevent such formatting.

294 On Time RTOS-32

Device Drivers

RTF_FLASH_NO_HIGH_FMT By default, the driver will automatically high-level format flash
memory which contains no valid boot sector. Use this flag to
prevent such formatting. The default formatting uses format flags
RTF_FMT_SINGLE_FAT and RTF_FMT_NO_FAT_32 with a
default cluster size.

As long as no two flash disks share the same MTD or the MTDs used are reentrant, the flash disk driver
is reentrant and supports device flag RTF_DEVICE_NEW_LOCK for every device entry.

RTFDevice.Driver

This field must point to RTFDrvFlash.

RTFDevice.DriverData

This field must point to a unique structure of type RTFDrvFlashData:
typedef struct {
 RTF_MTD * MTDDriver;
 void * MTDData;
 ...
} RTFDrvFlashData;

Member MTDDriver must point to an MTD driver for the flash memory to be used. MTDData points to
the MTD driver’s data. All other fields of this structure should be initialized to 0 or left uninitialized.

More Information about MTDs is available in Chapter 7, section Flash Memory Technology Drivers
(MTDs). The following section has a complete flash disk driver configuration example.

MTD Drivers RTFMtdCFI2_8, RTFMtdCFI2_16, and RTFMtdCFI2_32
These MTD drivers for the linear flash disk driver RTFDrvFlash support flash chips with the following
characteristics:

• CFI compliant (Common Flash Memory Interface, a standard published by AMD),

• use CFI command set 2,

• 8 bits wide.

1, 2, or 4 such flash chips can be operated in parallel to form an 8, 16, or 32 bit wide flash bank. Driver
RTFMtdCFI2_8 can handle single chip 8 bit wide banks, RTFMtdCFI2_16 handles 2 chip 16 bit wide
banks, and RTFMtdCFI2_32 handles 32 bit wide banks implemented by 4 chips. Each driver can handle
any number of banks located in adjacent address regions of the target.

All three drivers share the same data type RTFMtdCFI2Data for their device data:
typedef struct {
 const char * RegionName;
 DWORD ReservedBlocks;
 DWORD EraseTimeout;
 DWORD EraseDelay;
 ...
} RTFMtdCFI2Data;

All fields may be initialized to zero for the driver’s default behavior. RegionName can be set to the name
of a Nothing entity declared in the program’s configuration file. If no RegionName (NULL) is specified,
name "FlashDisk" is assumed. The drivers determine the address and number of banks from the "Flash-
Disk" Nothing entity. ReservedBlocks is the number of erase blocks at the end of the flash disk which
will not be used. Such reserved blocks can be used as a boot device. However, no code can be
executed from such a boot device while the flash disk is being written to. EraseTimeout and EraseDelay
specify after how many milliseconds the driver should abort a block erase operation, or respectively wait
until the block erase status is polled. If zero is specified, EraseTimeout is set to the value found in the
CFI data structure (typically 10-15 seconds). The default value for EraseDelay is half of the typical erase
time given in the CFI data (typically 0.5 seconds).

Part III RTFiles-32 295

Chapter 5 Configuring RTFiles-32

If the drivers find flash chips with erase block regions of varying block size, only the erase block region
with the largest number of blocks is used.

Example: The AMD Élan SC520 Evaluation Board is equipped with eight AM29LV017D flash chips
(2MBits, 8 bits wide each), which satisfy the characteristics specified above. The chips are organized in
two banks with four chips in each 32-bit wide bank.

The SC520 demos initialize these two flash banks to reside at addresses 30000000h and 30800000h in
configuration file Sc520ini.cfg. The hardware declaration configuration file Sc520.cfg declares a region
for the flash memory:

Region Flash 1G-256M 16M Device

The FlashDemo program’s configuration file locates the required Nothing entity named "FlashDisk" into
this flash region:

Locate Nothing FlashDisk Flash Flash.Size

The RTFiles-32 device list must include the linear flash disk driver which in turn must reference a
suitable MTD. This configuration requires the RTFMtdCFI2_32 MTD driver:

#include <rtfiles.h>

// custom RTFiles-32 Device List
// we just want a single flash disk device configured as a hard disk
// the Eval Board uses 4 Flash (8 bits wide each) to implement a 32-bit
// wide device, so we use the RTFMtdCFI2_32 MTD driver.

// MT data
static RTFMtdCFI2Data MTDData = {0};

// Flash driver data, links to MTD driver
static RTFDrvFlashData FlashDisk = { &RTFMtdCFI2_32, &MTDData };

// Device List, pulls in flash driver
RTFDevice RTFDeviceList[] = {
 { RTF_DEVICE_FDISK, 0, 0, &RTFDrvFlash, &FlashDisk },
 { 0 }
};

The complete example executable on the AMD Élan SC520 Evaluation Board is called FlashDemo and
is included with RTFiles-32.

NULL Device Driver
The NULL device driver does not implement access to any mass storage device. It is a dummy driver
used to create gaps in the drive letter assignment. Any number of dummy drives using the NULL device
driver can be used.

RTFDevice.DeviceType

RTFDevice.DeviceType must be set to RTF_DEVICE_FLOPPY.

RTFDevice.DeviceNumber

This field is ignored and should be set to 0, even if several NULL devices are used.

RTFDevice.DeviceFlags

The NULL device driver does not define any device dependent device flags. This field should be set
to 0.

RTFDevice.Driver

This field must point to RTFDrvNULL.

RTFDevice.DriverData

The NULL device driver does not define any data structure. This field should be set to NULL.

296 On Time RTOS-32

Program HelloFiles

Chapter 6
Demo Programs

This chapter briefly introduces the example programs included with RTFiles-32. They are intended to
run under RTTarget-32 and are configured like the RTTarget-32 demos.

All RTFiles-32 demos are linked with module INIT.C, which contains an Init function to set some run-
time options. For example, the Init function adds all installed memory to the program’s heap and reads
the date and time from the CMOS real-time clock. INIT.C is also a convenient place to add a custom
device list or other configuration options.

Program HelloFiles
This very simple program shows how programs without any RTFiles-32-specific source code can use
RTFiles-32. It uses the ANSI C file functions through the OS API emulation layer.

Program FAPIDemo
FAPIDemo shows how to use several different APIs within a single program. FAPIDemo is written
in C++.

Program RTFCmd
The RTFiles-32 Command Processor is a fairly large program which uses most of RTFiles-32’s native
API. It implements a subset of the commands supported by Windows NT’s command processor CMD or
the MS-DOS shell COMMAND.COM (e.g., DIR, COPY, REN, CD, etc.). Type "HELP" or "?" to get a list
of available commands.

Program RTFCmdMT
RTFCmdMT is a multithreaded version of RTFCmdMT and requires RTKernel-32. It allows spawning
commands to be executed by separate threads in the background. RTFCmdMT displays the CPU load
during all file I/O operations. Additional commands such as TASKS and INTS allow analyzing how much
CPU time RTFiles-32’s drivers need in interrupt handlers and in threads.

Program FlashDemo
This program demonstrates the use of the flash disk driver and the RTFMtdCFI2_32 Memory Tech-
nology Driver. This demo must be executed on the AMD Élan SC520 Evaluation Board.

Program DrvDemo
Program DrvDemo shows how to use a custom driver with RTFiles-32. The custom driver is included in
source files DRVSIMPL.H and DRVSIMPL.C. It implements a simple RAM disk located in a contiguous
region of memory on the target. Function RTFFormat is used to demonstrate formatting the device.

Part III RTFiles-32 297

Chapter 7 Advanced Topics

Chapter 7
Advanced Topics

This chapter discusses how to use various RTFiles-32 configuration options for different application
requirements. RTFiles-32’s default configuration is a compromise between good data security and good
performance. Usually, improving one of them will compromise the other. Another aspect discussed here
is real-time behavior, which may in turn require other configurations.

Optimizing for Best Throughput
The following parameters can have an impact on the average data throughput for file I/O.

• A large number of buffers
Ideally, all FAT data and all directory data required should fit into the buffer cache. For example, a
FAT-16 partition with 40000 clusters, 256 root directory entries, and 5 medium-size directories
(32 entries each) would require about 157 + 16 + 10 = 183 buffers to hold this data. To have a few
spare buffers for application files, 200 buffers would be a good value. For applications frequently
accessing several logical drives, enough buffers for all drives should be allocated.

Please note that the only disadvantage of many buffers is the large memory requirement (approxi-
mately 512 bytes plus 40 bytes per buffer). RTFiles-32’s buffer management is very efficient.
Searching a large number of buffers incurs a negligible performance penalty.

• Reading/Writing on sector boundaries
Applications that keep file pointers aligned on sector boundaries and read and write full sectors
bypass the RTFiles-32 internal buffer cache. The data is transferred directly between the device
and the application’s data area.

• Reading/Writing large data blocks
Most devices will exhibit superior performance when many sectors are read in a single driver call.
For example, reading 18 contiguous sectors from a single track on a 1.44M diskette may take
approximately 18 times as much time if RTFRead is called 18 times to read 512 bytes instead of a
single call to read 9k. (However, if the diskette driver’s read-ahead buffer feature is used, the
performance penalty of single sector reads is not quite as high).

• Avoid many seeks
Seek operations are slow. Seeks can be avoided by reading/writing sequentially (i.e., avoiding calls
to RTFSeek), using unfragmented files (see function RTFExtend), and not accessing several
different files interleaved or simultaneously on the same device.

• Driver read-ahead buffers
Some drivers may support a read-ahead buffer. Such read-ahead buffers are not used when large
data blocks are read, so they have no performance effect in such cases. If the application reads
data in small blocks, but the reads are mostly contiguous in the file, the read-ahead buffers can
significantly improve performance. The best size for such buffers is very difficult to predict and is
best determined by tests.

• RTFOpen flag RTF_CACHE_DATA
This flag will have a positive effect on performance if file read accesses use small block sizes and
frequent seek operations are performed. For sector-aligned accesses, it has no effect. If the file is
read sequentially, performance may suffer if this flag is set as FAT and directory data will be
pushed out of the buffer cache by application data which will never be used again.

• RTFOpen flag RTF_LAZY_DATA
This flag will have a positive effect on performance if file write accesses use small block sizes and
frequent seek operations are performed. For sector-aligned accesses, it has no effect. If the file is
written sequentially, performance may suffer if this flag is set.

298 On Time RTOS-32

Optimizing for Best Data Security

• Device flag RTF_DEVICE_LAZY_WRITE
This flag will improve performance if many small files are frequently created, renamed, deleted,
extended, etc. It does, however, compromise data security. If the program terminates abnormally,
not all data may be flushed to the disk, leaving the volume in an inconsistent state.

• Device flag RTF_DEVICE_SINGLE_FAT
This flag will improve performance if many files are frequently created, renamed, deleted,
extended, etc. However, the volume will be left with an invalid second copy of the FAT, causing
disk checking utilities such as SCANDISK or CHKDSK to report errors. Nevertheless, the volume
will be in a consistent state. The only disadvantage is that disk repair utilities will not be able to
recover a volume when the primary copy of the FAT has been corrupted (something that only
rarely succeeds in practice anyway).

Optimizing for Best Data Security
RTFiles-32’s default configuration ensures that all data associated with a file is flushed to disk at the
latest when the file is closed. The use of RTFOpen flag RTF_LAZY_DATA does not compromise this
behavior, but device flag RTF_DEVICE_LAZY_WRITE does. Device flag RTF_DEVICE_SINGLE_FAT
may prevent a corrupted primary FAT to be restored.

RTFOpen flag RTF_COMMITTED guarantees that a file is in a consistent state on disk after the
successful completion of any RTFiles-32 API call, even when the file has not been closed. If files are
written sector-aligned with large blocks, its performance penalty is acceptable. However, for write oper-
ations with small unaligned blocks, performance may suffer dramatically.

Real-Time File I/O
Real-Time file I/O means that the time needed by a read or write operation can be predicted, or at least
an upper bound for this time can be guaranteed. It does not necessarily imply that the I/O operation
must be fast, although many real-world applications will also require high speed.

To achieve real-time performance, a number of prerequisites must be satisfied:

• Single file operation
To avoid the need for the drive’s head to seek to different areas on the disk, other files on the same
device must not be accessed while real-time file I/O is in progress. The only exception could be
files on physically different devices which do not share any resources with the device hosting the
real-time file. For example, during a real-time read from an IDE drive, access to a diskette would be
allowed.

• Use of contiguous files
Again, to avoid extra seeks, the file must reside in a single chain of clusters. Such files can be
allocated using function RTFExtend. Please note, however, that RTFExtend itself is not real-time.
Its time requirement depends heavily on the degree of fragmentation of the volume and the number
and current state of the buffers.

• FAT and directory data must be in the buffer cache
RTFiles-32 must keep track of where the next read or write operation for a file will occur. The
directory data and FAT data for the file is required for this. To avoid extra seek and read operations
during real-time file I/O, this data must be in the buffer cache. The buffer cache must be large
enough to hold this data and the data must have been explicitly loaded before the real-time access
starts. RTFiles-32 API function RTFGetFileInfo guarantees to load this data into the buffers.

• Access should be sector-aligned
To avoid displacing sectors from the buffer cache and to best utilize the device’s performance, data
should be read and written sector-aligned (i.e., the file pointer should always be a multiple of the
sector size) and the size of data blocks should also be multiples of the sector size.

Part III RTFiles-32 299

Chapter 7 Advanced Topics

• The CPU must be fast enough
The device driver must be able to keep up with the device to make best use of the device’s
throughput. This may not be possible for systems using a slow CPU and a fast hard disk. When a
device driver misses a deadline (e.g., reacts too late when the device requests processing with an
interrupt), a complete rotation of the disk may be required to restart the operation. Performance
may suffer dramatically in such a situation.

• I/O must execute at highest task priority
If the real-time file I/O is performed in a multithreaded program, it must run at the highest priority of
all tasks. If this is not the case, another task might get the CPU time when the device driver would
need it, causing it to miss a deadline.

• Device access must be error-free
Most devices or device drivers will perform retries when read or write errors occur on a device.
Usually, each retry will require at least one additional disk rotation.

• The device must always be ready
Some devices may periodically be unavailable. For example, a diskette needs an extra delay when
its motor(s) must be started or a hard disk might perform internal recalibration at unknown and
uncontrollable times.

• Device access must be available
If a device shares any resources with some other device, that other device should not be used in
parallel. For example, a hard disk connected to a SCSI bus cannot sustain real-time performance if
a tape streamer connected to the same bus is used at the same time.

If all of the conditions listed above are met, the worst case time for a read or write operation will require
the following times:

The disk controller has to seek to the desired track. Since we are assuming contiguous access, a
maximum of one track must be seeked, so we will assume the drive’s track-to-track seek time.

The disk controller must wait for a specific mark on the disk to pass the read/write head. For example,
diskettes have an index hole near the innermost track for this purpose. This operation can take up to
one disk rotation.

The disk controller has to count passing sectors until the sector on the track at which the access should
start reaches the read/write head. This operation can take up to one rotation.

Contiguous reading or writing is now possible until the head must move to the next cylinder. In a worst-
case scenario, this will be only a single sector. However, a second seek operation will occur only after a
complete cylinder is processed.

To seek to the next cylinder, the drive’s track-to-track seek time plus 1 rotation is required to find the
index hole.

Thus, the complete time can be calculated as:

StartupTime Time to find the first sector

Worst case: track-to-track seek time plus two rotations

SeekTime Number of seeks during the transfer

Worst case: Integer of (CylinderSize + DataSize - 2 * SectorSize) / CylinderSize

The time requirement per seek is the maximum of one rotation and the drive’s track-to-
track seek time.

TransferTime Time to read or write the data

DataSize / BytesPerTrack / RotPerSec (rotations per second)

Example: A block of 4k size must be written to a 1.44M floppy disk. This diskette type rotates at six
rotations per second, stores 9k per track, and has two tracks per cylinder. The track-to-track seek time is
assumed to be equal to the time of one disk rotation (1/6 seconds). It is assumed that the drive’s motor
is still turned on from a previous disk access and that the read/write head is positioned one track before
the track the first sector is written to:

300 On Time RTOS-32

Using RTFiles-32 with RTTarget-32

StartupTime 1/6 + 2 * 1/6 0.50
Seek Steps (18k + 4k - 2 * 512) / 18k = 1
SeekTime 1 * 1/6 0.17
TransferTime 4k / 9k / 6 0.08
Total: 0.75

If 1M of data is written, the following times would apply:

StartupTime 1/6 + 2 * 1/6 0.50
Seek Steps (18k + 1024k - 2 * 512) / 18k = 57
SeekTime 57 * 1/6 9.50
TransferTime 1024k / 9k / 6 19.00
Total: 29.00

Using RTFiles-32 with RTTarget-32
Please ensure that the following conditions are met if you intend to use RTFiles-32 with RTTarget-32:

• The RTFiles-32 system driver to link is RTFSRTT.LIB. If you are also using RTKernel-32, use
RTFSK32.LIB instead.

• If you are using floppy disks, be sure to allocate a DMA buffer for the floppy driver in your configur-
ation file with:

Locate Nothing FloppyDMA <SomeRegion> 18k 32k ReadWrite

• If you are using M-Systems DiskOnChips, be sure to link library DRVDOC.LIB and to declare the
DOC’s memory window in your configuration file. Example:

Region DiskOnChip D0000h 8k ReadWrite

• You should link RTFILES.LIB and RTFiles-32’s system driver library before RTTarget-32’s library
RTT32.LIB.

• The RTTarget-32 and RTFiles-32 libraries should be linked into the same module (.EXE or .DLL).

Win32 API Emulation with RTFiles-32 and RTTarget-32

When RTFiles-32 is used with RTTarget-32 2.1 or higher, about 30 Win32 file I/O functions are
emulated by RTFiles-32. RTTarget-32 supports installable file systems and several file systems can be
active at the same time. When RTTarget-32 is used without RTFiles-32, it will by default use its file
system for consoles, LPTs, and RAM files. RTFiles-32, however, replaces RTTarget-32’s default
configuration to use console files, LPT files, and RTFiles-32’s file system, but not RAM files. Here is the
RTTarget-32 file I/O configuration used by RTFiles-32:

#include <rttarget.h>
#include <rtfiles.h>

static RTFileSystem Console =
{ RT_FS_CONSOLE, 0, 0, &RTConsoleFileSystem };

static RTFileSystem LPTFiles =
{ RT_FS_LPT_DEVICE, 0, 0, &RTLPTFileSystem };

static RTFileSystem FATFiles =
{ RT_FS_FILE | RT_FS_IS_DEFAULT, 0x7FFFFFFF, 0x00000FFF, &RTFilesFileSystem };

RTFileSystem * RTFileSystemList[] =
{ &Console,
 &LPTFiles,
 &FATFiles,
 NULL
};

Part III RTFiles-32 301

Chapter 7 Advanced Topics

If, for example, you want to retain RTTarget-32’s RAM files but exclude the LPT file system, you could
include the following configuration in your program:

#include <rttarget.h>
#include <rtfiles.h>

RTFileSystem Console =
{ RT_FS_CONSOLE, 0, 0, &RTConsoleFileSystem };

RTFileSystem RAMFiles =
{ RT_FS_FILE, 1 << (’R’-’A’), 0, &RTRAMFileSystem };

RTFileSystem FATFiles =
{ RT_FS_FILE | RT_FS_IS_DEFAULT, 0x0F, 0x03, &RTFilesFileSystem };

RTFileSystem * RTFileSystemList[] =
{ &Console,
 &RAMFiles,
 &FATFiles,
 (void*) 0
} ;

With this configuration, logical drive ’R’ can be used to access the RAM files. Logical drives ’A’ through
’D’ are reserved for RTFiles-32.

For additional information about RTTarget-32’s installable file systems, please refer to Part I of this
manual.

Using RTFiles-32 with RTKernel-32
If you intend to use RTFiles-32 with RTTarget-32 and RTKernel-32, the following issues should be
considered:

• The RTFiles-32 system driver to link is RTFSK32.LIB.

• Library RTFILES.LIB and RTFSK32.LIB should be linked before any RTKernel-32 and
RTTarget-32 libraries.

• The CPU time required for file I/O with blocking device drivers (such as the floppy and IDE drivers)
is very small. However, the achievable throughput can strongly depend on the priority of the task
performing the I/O operation.

• The file I/O functions of the run-time systems may not be reentrant. Thus, you should either use the
multithreaded run-time libraries or use RTKernel-32’s library protection feature to protect these
functions.

Implementing Custom Device Drivers
Each device driver must define three items:

• a structure of type RTFDriver containing the driver’s functions,

• a unique structure type defining the data required for each device to be handled by the driver,

• and optionally, device-specific flags to control device options.

Custom drivers are used just like the drivers included with RTFiles-32. References to a custom driver
can be placed in the RTFiles-32 device list to become effective.

302 On Time RTOS-32

Implementing Custom Device Drivers

Structure RTFDriver
Pointers to the driver’s functions must be contained in a global variable of structure type RTFDriver
declared in INCLUDE\RTFILES.DRV:

typedef struct RTFDriver {

 UINT Version;

 int (RTFAPI * MountDevice) (void * DriveData,
 int DeviceNumber,
 int DeviceType,
 DWORD Flags);

 int (RTFAPI * ShutDown) (void * DriveData);

 int (RTFAPI * ReadSectors) (void * DriveData,
 RTFSector Sector,
 UINT Sectors,
 void * Buffer);

 int (RTFAPI * WriteSectors) (void * DriveData,
 RTFSector Sector,
 UINT Sectors,
 void * Buffer);

 int (RTFAPI * MediaChanged) (void * DriveData);

 int (RTFAPI * DiscardSectors) (void * DriveData,
 RTFSector Sector,
 UINT Sectors);

 int (RTFAPI * GetDiskGeometry)(void * DriveData,
 RTFPartitionRecord * DiskGeometry,
 BYTE * MediaDescriptor);

 int (RTFAPI * LowLevelFormat) (void * DriveData,
 const char * DeviceName,
 RTFFormatCallback Progress,
 DWORD Flags);

} RTFDriver;

RTFAPI is defined as __cdecl.

Field Version must contain the RTFiles-32 version number (symbol RTFILE_VER). It is used to ensure
that all drivers are recompiled when new RTFiles-32 versions are released. RTFiles-32 will issue a fatal
error if it finds an out-of-date driver.

Function MountDevice is called when a device is mounted. This function may be called several times, in
particular for removable devices. This function should perform all necessary initialization. The fields
DriverData, DeviceNumber, DeviceType, and DeviceFlags from the device list are passed in parameters
DriveData, DeviceNumber, DeviceType, and Flags. If successful, MountDevice should return the sector
size of the device. If it fails, one of the negative errors codes defined in RTFILES.H should be returned.

Function ShutDown is called by RTFShutDown. It should bring the system into the state it had before
any devices were mounted (e.g., restore interrupt handlers). Please note that ShutDown will be called
unconditionally for all devices in the reverse order they appear in the device list, even for devices that
were never mounted. The return code of ShutDown is currently not used by RTFiles-32. It should return
RTF_NO_ERROR.

Function ReadSectors receives the device’s device data, a zero-based sector index (LBA value), the
number of sectors to read, and a pointer to the buffer to receive the data as parameters. ReadSectors
should indicate success by returning value RTF_NO_ERROR or failure with a negative error code as
defined in RTFILES.H.

Function WriteSectors receives the device’s device data, a zero-based sector index (LBA value), the
number of sectors to write, and a pointer to the buffer containing the data to be written as parameters.
WriteSectors should indicate success by returning value RTF_NO_ERROR or failure with a negative
error code as defined in RTFILES.H.

Part III RTFiles-32 303

Chapter 7 Advanced Topics

Function MediaChanged should check whether the volume in the drive has been removed or
exchanged, if such a check is supported by the hardware. If the driver implements access to a fixed
media device or the hardware is unable to detect media changes, the function should return
RTF_NO_ERROR. If, however, a media change is detected, error code RTF_MEDIA_CHANGED
should be returned. Please note that function MediaChanged is called only occasionally by RTFiles-32.
ReadSectors and WriteSectors should check for media changes and return RTF_MEDIA_CHANGED, if
detected.

Functon DiscardSectors is called by RTFiles-32 whenever a file is deleted or truncated to free any
sectors formerly occupied by the file. This driver function may be used by RAM or flash disks to improve
performance. DiscardSectors is optional and may be set to NULL.

Function GetDiskGeometry is called by RTFiles-32 to inquire the size and other characteristics of a disk.
This function is optional and may be set to NULL. However, if it is missing, RTFiles-32 is not able to
format such devices.

Function LowLevelFormat is called when a device must be low-level formatted. Low-level formatting
should bring the volume into a state allowing sector-level reading and writing. Devices which do not
require any low-level formatting should return RTF_NO_ERROR. If low-level formatting is required by a
device type, but the driver does not support it, RTF_UNSUPPORTED_DRIVER_FUNCTION should be
returned. This function is optional and may be set to NULL. Even if it is NULL, RTFiles-32 can still high-
level format devices handled by the driver.

To implement an RTFDriver structure, you must:

• implement the eight functions given above as static functions in a source file,

• declare a global variable of type RTFDriver and initialize it with pointers to these functions.

Please refer to the source code of the supplied drivers for examples. In particular, the example
DrvDemo contains a very simple driver example in source files DRVSIMPL.H and DRVSIMPL.C. It is
recommended to use this sample driver as a starting point to implement custom drivers.

Driver Device Data Structure
Most drivers will need some data to manage a device. Since a driver must be able to handle several
devices, a unique data area is reserved for each device. The data must be statically allocated by the
application and a pointer to the data must be placed in the DriverData field of the device list. It is passed
in parameter DriveData to all driver functions.

The layout of the device data is arbitrary, but must be defined by the driver. Please see the documenta-
tion in the previous sections of this chapter and in include file INCLUDE\RTFILES.DRV for device data
defined for drivers included with RTFiles-32.

Device-Specific Flags
A driver may define device flags to control options for the device. Such flags may be specified in the
DeviceFlags field in the device list; they will be passed to the Flags parameter of MountDevice.

The lower 16 bits of the device flags are reserved for RTFiles-32’s device-independent flags. If a custom
driver defines its own flags, bits 16 to 31 must be used.

Implementing Custom System Drivers
To implement a custom system driver, it is recommended to copy the source code of one of the drivers
included with RTFiles-32 and modify the copy for the intended system. As a starting point, you should
select the existing driver most closely resembling your system. For example, if the target system
supports multithreading and is 32-bit, you may want to start with the Win32 driver or the RTKernel-32
driver. For single-threaded systems, the RTTarget-32 driver is better suited.

Header file INCLUDE\RTFSYS.H contains detailed documentation about the system driver and each
function it should support. Please study it carefully before implementing your own driver.

304 On Time RTOS-32

Flash Memory Technology Drivers (MTDs)

The device drivers included with RTFiles-32 are intended to be portable. They will access the system
driver for all system-dependent functions. Thus, they should be able to run on a new system without
modification.

Flash Memory Technology Drivers (MTDs)
The linear flash disk driver does not know how to actually handle flash memory. Rather, it interfaces to
an MTD driver to manipulate the flash. Thus, the same flash disk driver can support many different types
of flash memory through different MTDs.

MTDs have a similar structure as RTFiles-32 device drivers. They consist of a structure with function
pointers to the driver’s various entrypoints:

typedef struct {
 DWORD TotalBlocks;
 DWORD BlockSize;
 UINT WindowSize;
} RTF_MTD_FlashInfo;

typedef struct {

 UINT Version;

 int (RTFAPI * MountDevice)(void * DriveData,
 RTF_MTD_FlashInfo * FlashInfo);

 int (RTFAPI * ShutDown) (void * DriveData);

 void * (RTFAPI * MapWindow) (void * DriveData, DWORD BlockIndex,
 DWORD WindowIndex);

 int (RTFAPI * EraseBlock) (void * DriveData, DWORD BlockIndex);

 int (RTFAPI * ProgramData)(void * DriveData, void * Address,
 void * Data, UINT Length);

} RTF_MTD;

RTFAPI is defined as __cdecl.

Field Version must contain the RTFiles-32 version number (symbol RTFILE_VER).

For all driver functions, parameter DriveData is taken from the linear flash disk’s data member
MTDData. The MTD must define its own data structure for its data. It should store all of its housekeeping
data in this structure. The application should statically allocate such a structure for each flash disk using
this MTD.

If nothing else is specified below, each MTD driver function should return RTF_NO_ERROR on success
or a suitable error code on failure.

Function MountDevice is called when a device is mounted by the linear flash disk driver’s MountDevice
function. This function may be called several times. This function should perform all necessary initializ-
ation including locating the flash device. Parameter FlashInfo points to structure RTF_MTD_FlashInfo,
which must be filled by MountDevice. TotalBlocks is the number of erase units to be used for this disk
device. BlockSize is the size of each erase unit in bytes. WindowSize is the size of the memory window
used to map portions of the flash memory into the computer’s address space. The value must be at least
512 bytes and at least 1/128th of BlockSize. It must not be larger than BlockSize. For flash devices
which are completely mapped into the computer’s address space, specify BlockSize as the window size.

Function ShutDown is called by the linear flash driver’s ShutDown function.

Function MapWindow is called whenever the linear flash disk driver needs to access portions of the
flash memory. Parameter BlockIndex is in the range 0 .. TotalBlocks-1; WindowIndex is in the range
0 .. (BlockSize/WindowSize - 1). The return value must point to the mapped window and must allow read
access to the mapped flash memory.

Function EraseBlock must set all bits of a complete erase unit to 1. Parameter BlockIndex is in the range
0 .. TotalBlocks-1. Window 0 of the block to erase is mapped when this function is called. The function
should verify that erasing was successful and return an error if it was not.

Part III RTFiles-32 305

Chapter 7 Advanced Topics

Function ProgramData writes data to the flash. The linear flash disk driver will ensure that no bits are set
from 0 to 1. Parameter Address is an address in the currently mapped memory window and indicates
the address in the flash where the written data should appear. Parameter Data points to the data to
write. Parameter Length specifies the number of bytes to write. Again, the function should ensure that
writing was successful and return an error if it was not.

To implement an MTD driver structure, you must:

• implement the five functions given above as static functions in a source file,

• declare a global variable of type RTF_MTD and initialize it with pointers to these functions.

Please refer to the source code of the supplied drivers for examples. File Driver\Rtf32\Mtdfile.c contains
a simple MTD driver simulating flash memory in a memory mapped file under Windows NT or
Windows 2000.

306 On Time RTOS-32

 RTFiles-32 Error Codes

Appendix A
RTFiles-32 Error Codes

This appendix lists and explains all error codes that can be returned by RTFiles-32.

The errors are sorted in numerical order. For each error, the numeric value, symbolic constant, and a
description are given.

0 RTF_NO_ERROR
Not an error. This value indicates success of an operation.

-1 RTF_ERROR_RESERVED
This error code is reserved and will not be returned by RTFiles-32.

-2 RTF_PARAM_ERROR
The parameters passed to an RTFiles-32 function are invalid. For example, the flags passed to
RTFOpen are contradictory or the size of a string buffer is too small.

-3 RTF_INVALID_FILENAME
A device, directory, or file name passed to RTFiles-32 has an invalid syntax, contains illegal
characters, or exceeds RTF_MAX_PATH (80) characters.

-4 RTF_DRIVE_NOT_FOUND
The program attempted to access a logical drive which is not mounted.

-5 RTF_TOO_MANY_FILES
The program attempted to open more files than slots were available in the file table. Changing
the size of the file table is described in Chapter 5, RTFiles-32 Data Tables. Please note that this
error can also be returned by functions other than RTFOpen and RTFFindFirst, since many
other RTFiles-32 API functions need one (or two in case of RTFRename) file slots internally.

-6 RTF_NO_MORE_FILES
This value is returned by RTFFindFirst and RTFFindNext when no more files satisfy the search
criteria.

-7 RTF_WRONG_MEDIA
A diskette has been replaced in a diskette drive, and the serial number of the new disk does not
match the serial number of the original disk. To correct this error, the original diskette must be
inserted or the operation must be failed.

-8 RTF_INVALID_FILE_SYSTEM
The information found in the boot record of a logical drive is inconsistent and probably corrupted.
The drive cannot be mounted.

-9 RTF_FILE_NOT_FOUND
The requested file name was not found on the disk.

-10 RTF_INVALID_FILE_HANDLE
A file handle passed to an RTFiles-32 API function is invalid. Either it has been closed already or
it was not returned by a previous successful call to RTFOpen or RTFFindFirst, or it was closed
automatically due to the removal of the media hosting the file.

-11 RTF_UNSUPPORTED_DEVICE
A device in the device list specified a device other than RTF_DEVICE_DISKETTE or RTF_DE-
VICE_FDISK in the DeviceType field.

-12 RTF_UNSUPPORTED_DRIVER_FUNCTION
This error is returned by device drivers or system drivers. For example, a device driver for read-
only devices would return this error on attempts to write to the device.

-13 RTF_CORRUPTED_PARTITION_TABLE
RTFiles-32 has found inconsistent values in a device’s partition table. The device cannot be
mounted.

Part III RTFiles-32 307

Appendix A RTFiles-32 Error Codes

-14 RTF_TOO_MANY_DRIVES
The number of logical drives found on all devices given in the device list exceeds RTFiles-32’s
internal drive table. Changing the size of the drive table is described in Chapter 5, RTFiles-32
Data Tables.

-15 RTF_INVALID_FILE_POS
A call to RTFSeek attempted to position the file pointer before the start of the file.

-16 RTF_ACCESS_DENIED
This error is returned whenever a security check fails. A few such checks are:

• Attempt to open a file for read/write access, but the read-only attribute is set.

• Attempt to open an already open file, and at least one of the file instances requires write
access, and RTF_SHARED is not specified for all instances of the file.

• Attempt to create a file and the specified file already exists with the read-only attribute set.

• Attempt to open a volume label.

• Attempt to open a directory with read/write access.

• Attempt to open a directory with flag RTF_OPEN_NO_DIR.

• Attempt to delete a file with attribute read-only, volume label, or directory set.

• Attempt to rename a file across drives.

• Attempt to rename a volume label.

• Attempt to rename a directory to one of its child directories.

• Attempt to rename the current directory.

• Attempt to set attributes, date and time, or file size of a root directory.

• Attempt to change a volume label or directory attributes.

• Attempt to write to, truncate, or extend a file open for read-only access.

• Attempt to remove a directory which is not empty.

• Attempt to remove a directory with the read-only attribute set.

• Attempt to remove the root or the current directory.

• RTFResetDisk was called while files are open on the target drive.

-17 RTF_STRING_BUFFER_TOO_SMALL
The size of a string buffer passed to an RTFiles-32 function is too small to hold the result.

-18 RTF_GENERAL_FAILURE
A device driver reported an error without supplying additional information about the cause. For
example, non-existing hardware or fatal hardware failures could generate this error.

-19 RTF_PATH_NOT_FOUND
The path for a file or a directory passed to RTFiles-32 was not found.

-20 RTF_FAT_ALLOC_ERROR
RTFiles-32 has found invalid values in a partition’s FAT. The FAT is most likely corrupted and
the partition must be reformatted.

-21 RTF_ROOT_DIR_FULL
It was attempted to create a new file in a root directory, but the directory is full. Unlike subdirec-
tories, root directories have a fixed size and cannot be extended.

-22 RTF_DISK_FULL
It was attempted to extend a file or directory, but not enough free clusters to satisfy the request
were found. For function RTFExtend, this error is returned when not enough contiguous clusters
are found.

308 On Time RTOS-32

 RTFiles-32 Error Codes

-23 RTF_TIMEOUT
This device error is reported when a device fails to respond within a reasonable period of time.

-24 RTF_BAD_SECTOR
A device driver has reported that a sector on the disk could not be read or written.

-25 RTF_DATA_ERROR
A device driver has reported that a sector read from disk has failed a data integrity check.
Typically, data is stored with CRC check sums which are used for such checks.

-26 RTF_MEDIA_CHANGED
During a device access, the driver has detected that the media in the drive has been removed or
exchanged.

-27 RTF_SECTOR_NOT_FOUND
A device driver was not able to locate a requested sector. Either a corrupted boot sector or
corrupted low-level formatting can cause this error.

-28 RTF_ADDRESS_MARK_NOT_FOUND
The address mark normally written during a low-level format was not found during a disk read or
write operation.

-29 RTF_DRIVE_NOT_READY
A disk device does not respond, either because it is not present, the media is not inserted, or
because of a hardware failure.

-30 RTF_WRITE_PROTECTION
It was attempted to write to a write-protected media.

-31 RTF_DMA_OVERRUN
A DMA controller has reported this error. This can happen when a DMA buffer spans a
64k address boundary.

-32 RTF_CRC_ERROR
A CRC check failed during a device read or write operation.

-33 RTF_DEVICE_RESOURCE_ERROR
A device driver has reported that some resource it requires is not available. For example, the
floppy driver was unable to allocate a DMA buffer or the RAM disk driver was unable to allocate
space for new sectors.

-34 RTF_INVALID_SECTOR_SIZE
A device reported itself to be formatted with a non-standard sector size. Usually, FAT volumes
should use sectors of 512 bytes size. Please contact On Time for information about how
RTFiles-32 can support other sector sizes.

-35 RTF_OUT_OF_BUFFERS
RTFiles-32 was unable to allocate a new buffer in its internal buffer cache. This situation can
only occur if all buffers are dirty and none of the dirty buffers reside on the same physical device
for which a new buffer is required. To avoid this error, increase the number of buffers, close
some files, or flush buffers before the failing function is called.

-36 RTF_FILE_EXISTS
This error is reported on an attempt to rename a file to an existing file name or create a directory
with the name of an existing directory or file.

-37 RTF_LONG_FILE_POS
This return code does not constitute an error. It is returned by RTFSeek when the new file
pointer value exceeds 231-1 (2G minus one). However, the function has succeeded when this
value is returned. Use function RTFGetFileInfo to retrieve the actual file pointer.

-38 RTF_FILE_TOO_LARGE
The application has attempted to extend a file to contain 4G or more bytes. However, FAT file
systems only support file sizes up to FFFFFFFFh bytes. This restriction also applies to FAT-32
partitions.

Part III RTFiles-32 309

Part IV RTPEG-32

Part IV
RTPEG-32
RTPEG-32 (Real-Time Portable Embedded Graphics) provides the building blocks for a powerful and
extensible graphical user interface. Advanced clipping techniques, font support, graphic image support,
and smart object methodologies are incorporated in RTPEG-32. In addition to the class library itself,
RTPEG-32 provides all of the other tools, documentation, and support needed to construct custom
graphical user interfaces.

RTPEG-32 is Swell Software Inc.’s product PEG ported to On Time RTOS-32.

This manual only contains a general introduction and programming tips for using RTPEG-32. The
RTPEG-32 API class reference is supplied in HTML form for online viewing.

The main features of RTPEG-322 are:

• True Windows 95 Look-and-Feel
RTPEG-32 includes a full set of controls which look and behave the way users expect. Predefined
classes include buttons, bitmaps, check boxes, scroll bars, menus, progress bars, radio buttons,
prompts, combo boxes, dialog boxes, lists, tree views, etc.

• Event Driven Programming Model
User interface objects of an application are typically C++ classes derived from a predefined
RTPEG-32 class. Such a derived classes can override methods such as Draw() to implement a
custom appearance, or they can override Message() to catch messages sent by a user input
device, separate threads, or other GUI controls.

• Rich Set of Drivers
A driver for VGA, 16 color mode, is included, as well as high performance drivers for 8-bit, 16-bit,
24-bit, and 32-bit color depth with arbitrary resolution. These drivers require VGA compatible
hardware or VESA BIOS support. The source code of these drivers is included, allowing easy
adaptation for custom video hardware.

• Keyboard Support
RTPEG-32 applications can be navigated using only the keyboard, if no mouse or other pointing
device is available.

• Mouse (MS Serial and PS/2) Support
Standard Microsoft compatible mice are supported.

• Never Disables Interrupts
All RTPEG-32 operations are fully interruptable. Real-time performance is never affected.

• Supports (But Does Not Require) RTKernel-32
Several threads can perform screen output simultaneously. RTPEG-32 performs all required
locking. Even the simultaneous execution of several modal windows is supported (e.g., to signal
error conditions while other threads continue to run).

• GUI Design Tools
Program WindowBuilder is a rapid prototyping and design tool used to quickly create RTPEG-32
graphical objects such as bitmaps, fonts, windows, etc.

• Win32 Emulation Library
The RTPEG-32 Win32 Emulation Library allows executing RTPEG-32 GUI programs under
Windows 95/98/ME/NT/2000.

• Unicode Support (RTPEG-32 Source Code Required)
The Unicode version of RTPEG-32 allows using fonts with up to 65535 characters, for example, to
support Far East languages and multi-language programs.

310 On Time RTOS-32

Windowing Interface Terminology

Chapter 1
Overview

This chapter describes the relationships between objects that constitute a graphical user interface.
Understanding these relationships is vital to making a user interface work efficiently.

Windowing Interface Terminology
This section introduces some terms used throughout this manual.

Window and Control
These terms are very loosely defined. They are only used for convenience when describing program
operation as an alternative to itemizing long lists of actual class names. It is sometimes convenient to
group the RTPEG-32 classes into two broad areas, the Window classes and the Control classes. This
does not always imply that a Window class is derived from PegWindow or that a Control class is not
derived from PegWindow, although that is often the case. The term Window implies only a background
object that contains other objects. The term Control is used to refer to an object that is normally a child
of a Window, or an object that the end user may interact with directly.

In RTPEG-32, there is actually very little difference between a Window and a Control. A Window can be
a child of a Control, and a Control can contain a Window. Certain features, such as scrolling, are
normally associated with Windows, while other features such as notification messages are normally
associated with Controls. This does not mean that a control cannot scroll, or that a Window cannot send
a notification message. These terms are only used to describe the general case. An application can
modify and extend this general case at will.

The term Window refers to any PEG object that is normally used as a background container for other
objects. Likewise, the term Control denotes the group of RTPEG-32 classes that most often do not
contain other objects, and are generally used directly by the end user.

Parent, Child, Sibling
These terms refer to the relationships between the windows, controls, and other items that are all part
the user interface. A control that is attached to a window is termed a Child of that window. Likewise, the
window that contains the control is termed the Parent window. If there are several controls attached to
the same window, those controls refer to each other as siblings.

While this is the most common case, there is nothing internal to RTPEG-32 that prevents a window
class such as PegWindow from being the child of a control, such as a PegButton. In fact, it is often very
useful to construct custom objects using exactly this type of parent-child relationship.

RTPEG-32 imposes no restrictions on the number of parent-child generations, nor will anything prevent
an object that is a parent object in one case from becoming a child of another object in a different case.
This allows reusing custom objects that are created in a variety of different ways.

Base, Derived, Inherited
The parent-child relationship described above is often confused with the class hierarchy, which
describes a completely different relationship among the classes composing the graphical interface.
Some of this confusion results from sloppy terminology, in that people often use the terms parent and
child when what they are really referring to is base and derived.

The term Base or base class is a relative term, indicating the named class is the foundation for a class
that is derived from it. A class that is called a base class in one case could easily also be a derived
class, inheriting data and methods from an even more fundamental object.

Part IV RTPEG-32 311

Chapter 1 Overview

Modal Execution
A window is said to be executed modally when that window must be closed or completed by the end
user before other windows are allowed to receive any user input. This is most often used for executing a
Modal Dialog, which is a dialog window that must be closed before any other open windows can receive
user input such as a mouse click.

In RTPEG-32, any window can be executed modally. In fact, there can be several modal windows
operating at one time in certain multitasking environments. Modal windows capture all input devices,
preventing other windows and controls from being active while the modal window is executing.

Screen Coordinates
RTPEG-32 screen coordinates are in pixels relative to the upper left corner of the screen, which is 0,0.
Screen coordinates are not relative to the client area of an object or its parent object.

Custom objects with custom drawing routines need to insure that they always use some corner of the
object’s client rectangle as the reference point for drawing routines.

Palettes and Colors
When running with a video configuration of 16 colors or less, RTPEG-32 always defines a fixed system
palette that is programmed into the video controller palette registers. PegImageConvert supports
advanced dithering techniques allowing you to make the best possible use of the limited number of
colors when displaying high color images.

For 256 color systems, RTPEG-32 operates with a pre-defined fixed palette, or you may optionally
generate and use a custom palette. The default system palette is defined such that the first 16 colors in
this palette are identical to the fixed 16-color palette of VGA systems. The next 216 entries in the system
palette are equally spaced color values covering the spectrum of RGB values from black (0, 0, 0) to
white (256, 256, 256). The remaining 24 palette entries are reserved for future use.

For systems with more than 256 colors, direct color mapping is used. The color values used by an appli-
cation are written directly into the video memory. The actual color to appear on the screen depends on
how a pixel value is mapped to RBG values. For example, 16-bit color systems frequently use a 5:6:5
mapping (the upper 5 bits are red, the next 6 bits are green, and the low bits are blue). 24-bit and 32-bit
color both use the 8:8:8 true color mapping. 32-bit color modes usually do not use the upper 8 bits of a
pixel (0:8:8:8 color mapping).

Include file Peg.hpp defines a few predefined color values which will produce the same colors on any
system with 16 or more colors:

BLACK DARKGRAY
RED LIGHTRED
GREEN LIGHTGREEN
BROWN YELLOW
BLUE LIGHTBLUE
MAGENTA LIGHTMAGENTA
CYAN LIGHTCYAN
LIGHTGRAY WHITE

Class PegScreen
Class PegScreen is the RTPEG-32 abstract device driver class that provides the drawing primitives
used by the individual PEG objects to draw themselves on the display device. PegScreen provides a
layer of isolation between the video hardware and the rest of the RTPEG-32 library.

PegScreen is an abstract class that defines the functions and function parameters instantiable
PegScreen derived target specific interface classes must provide. Abstract class means the class
contains one or more pure virtual functions which are placeholders in the class definition. They tell the
compiler that all classes derived from the PegScreen base class must provide working versions of the
virtual functions. In addition to the virtual functions, PegScreen also provides functionality that is
common to all implementations.

312 On Time RTOS-32

Class PegMessageQueue

RTPEG-32 is shipped with the following instantiatable classes derived from class PegScreen:

Driver Name Creating Function Comment

vga_4 CreatePegScreen_VGA_4 Supports graphics modes VGA 12h and VESA 102h (16
colors, 640x480 and 800x600).

vesa_8 CreatePegScreen_VGA_8 Supports all VGA and VESA 256 color modes. Linear
frame buffer support is required if the required video RAM
is larger than 64k.

vesa_16 CreatePegScreen_VGA_16 Supports all VESA 15/16 bit (32k/64k) color modes. Linear
frame buffer support is required.

vesa_24 CreatePegScreen_VGA_24 Supports all VESA 24-bit (16M) true color modes. Linear
frame buffer support is required.

vesa_32 CreatePegScreen_VGA_32 Supports all VESA 32-bit true color modes. Linear frame
buffer support is required.

vgascrn CreatePegScreen Supports VGA mode 640x480, 16 colors on any VGA
compatible graphics controller by programming this mode.
This is the only driver which does not need a BIOS.

Class PegMessageQueue
PegMessageQueue is a simple encapsulated FIFO message queue with member functions for queue
management. PegMessageQueue also performs timer maintenance and miscellaneous housekeeping
duties.

Messages are placed in the message queue from one of three sources:

• An input device, such as a mouse, touch screen, or keyboard.

• Any other task in the multitasking system (via PegTask).

• A PEG object.

The messages placed in PegMessageQueue are the driving force behind the graphical interface. These
messages contain notifications and commands which cause the graphical elements to redraw them-
selves, remove themselves from the screen, resize themselves, or perform any number of various other
tasks. Messages can also be user defined, allowing you to send and receive a nearly unlimited number
of messages whose meaning is defined by you. For example, it would be very common to have a task
send data for display to a graphical element.

Messages
Messages are defined as simple structures containing fields indicating the source, target, and content of
the message:

struct PegMessage
{
 PegMessage(void) { Next = NULL; pTarget = NULL; }
 PegMessage(WORD wVal) { Next = NULL; pTarget = NULL; wType = wVal; }
 WORD wType;
 SIGNED iData;
 PegThing * pTarget;
 PegThing * pSource;
 PegMessage * Next;
 union
 {
 LONG lData;
 PegRect Rect;
 SIGNED iUserData[4];
 WORD wUserData[4];
 PegPoint Point;

Part IV RTPEG-32 313

Chapter 1 Overview

 void * pData;
 };
};

Messages are identified by the member field wType. Currently RTPEG-32 reserves the first 4000h
message wType values for internal messages, which leaves message values 4000h through FFFFh
available for user definition. Peg.hpp provides a #define indicating the first message value which is
available for user definition. This #define is called FIRST_USER_MESSAGE.

Message Flow and Routing
RTPEG-32 follows a bottom-up message flow philosophy. This means that messages are sent directly
to the lowest level object that should receive the message. If the object does not want to process the
message, it passes it on to the message handler of its base class. Since all visible objects are derived
from PegThing, unhandled messages will eventually arrive at the handler of PegThing, which passes the
message to the parent of the current object. Again, the message can travel down the object’s hierarchy,
and eventually to the parent’s parent, etc. Once PegThing’s handler finds it has no parent, the message
is discarded.

Many messages, especially user defined messages, may be directed towards a particular object by the
pTarget message field or by the message iData field. If pTarget is anything other than NULL, the
message is always sent directly to the object pointed to by pTarget. Other messages do not have a
particular object as their target. Examples of these message include mouse, touch screen, and keyboard
messages. In these cases the pTarget member of the message is set to NULL, and it is the responsi-
bility of PegPresentationManager to determine which object should receive the message.

When a user defined message is pulled from the message queue and it has a pTarget value of NULL,
the message routing functions assume that the message iData field contains the ID of the object that
should receive the message. This means there are two ways of directing user defined messages to
particular objects. The pTarget field can contain an actual pointer to the destination object, which always
takes precedence, or pTarget can be NULL and PegPresentationManager will route the message to the
first object found with an ID value matching the message iData member. If you want to route user
defined messages using object ID values, those objects should have globally defined object IDs to
insure that there are never multiple objects visible with duplicate ID values.

Whenever an object sends a system-defined message to its parent window, the message contains a
pointer to the object that sent the message. This pointer is contained in the message field pSource. This
makes it very easy to identify the sender of the message and perform operations such as modifying the
appearance of the object, interrogating the object for additional information, etc.

System Messages

System messages are used internally to command objects to perform certain operations. The definition
of these messages is determined by RTPEG-32, and RTPEG-32 objects understand what to do when
they receive various system messages.

In addition to defining custom messages, it is very common to want to receive and process the system
messages that are generated internally. This is sometimes called intercepting a message, because it
catches a message that RTPEG-32 has sent to an object and change the interpretation of the message,
or even cause the object to ignore the message entirely.

User Defined Messages

A user interface will be composed of any combination of PEG windows, buttons, strings, etc., along with
custom objects. At some point you will want to perform an action based on the user selecting a button,
or typing into a string field. You are notified of this user input via messages sent from the PEG control to
the parent window. When you create a control object, you tell the object what message to send back to
the parent window when the object is modified by the user by defining the object ID value. Once you
have constructed and displayed the control, you simply wait for the arrival of the message which
indicates the control has been modified.

314 On Time RTOS-32

Class PegMessageQueue

As an example, suppose the interface has two separate but related windows visible on the screen,
Window A and Window B. Window A displays several data values, in alphanumeric format, that can be
modified by the user. Window B displays these same data values as a line chart. When the user
modifies a data value in Window A, we want Window B to update the line chart to reflect the new value.
One way of accomplishing this is to define a new message which contains the altered data value. When
Window A is notified by one of its child controls that a value has been changed, it builds an instance of
the newly defined message, places the data value into the message, and sends the message to Window
B. When Window B receives the message, it realizes that the line chart should be redrawn using the
new data value.

When defining custom messages, using enumerations is recommended with the first enumeration equal
to FIRST_USER_MESSAGE. For example, the following class declaration includes the typical method
of defining custom messages:

Class MyWindow::public PegWindow
{
 public:
 enum ThisWindowMessages // my user defined messages
 {
 TURN_BLUE = FIRST_USER_MESSAGE,
 TURN_GREEN,
 TURN_INVISIBLE
 };
}

The above example illustrates a common way to define your own messages. We have implied in this
example that you can re-use message values over and over again since the message number enumer-
ation is a member of the class, rather than a global enumeration. This is in fact the case. As long as the
object receiving the message can clearly identify what the message means you don’t have to worry
about reusing the same message numbers at various points in your application.

There are three ways to send a message from one window to another. First, you can either call the
destination window’s message handling function directly, passing your message as a parameter.
Second, you can load the message’s pTarget field with the address of the window (or any object) that
should receive the message and push the message into PegMessageQueue. Finally, you can load the
message’s pTarget field with NULL, the message iData member with the ID of the target window, and
push the message into PegMessageQueue. The second or third methods are generally preferred,
because they adhere to the encapsulation philosophy.

With pTarget pointing to an application object, it must be ensured that the object is not deleted before
the message arrives. When a user defined message contains a non-NULL pTarget value, there is no
verification that the pTarget field of the message is a valid object pointer. For this reason, in some situ-
ations it is better to use NULL pTarget values, and route messages using object IDs. If PegPresentation-
Manager is unable to locate an object with the indicated ID, the message is simply discarded.

There are also differences between these methods in terms of the order in which things are done. When
a message is sent, the sending object immediately continues processing, and the target window will
receive and process the new message after the sending window returns from message processing. If
the receiving window’s message handling function is called directly, it will immediately receive and
process the message, in effect pre-empting the current execution thread. While these differences are
generally inconsequential for user defined messages, they can be very important for RTPEG-32 system
messages.

Signals
Messages are used to issue commands or send other information between objects that are part of the
user interface. The previous section explained how a user defined messages notifies a parent window
that a child control has been modified. This usage is so common, in fact, that RTPEG-32 has defined a
simplified method for defining these messages and a corresponding syntax for receiving them. This
method is called Signalling, and the messages sent and received via Signalling are called Signals.

Part IV RTPEG-32 315

Chapter 1 Overview

Signals are designed to simplify programming by reducing the complexity associated with windows and
dialogs containing a large number of child controls. Signals are also defined to solve some common
problems associated with other less friendly messaging systems:

• Very often a single window, such as a modal dialog window, will have a large number of child
objects. It can be very difficult to remember all of the unique messages associated with each of
these objects.

• Complex control types, such as PegString or PegComboBox, can be modified in several different
ways. The result of this is that either multiple message types must be sent by the control to the
parent window, or the receiver of a single notification message would have to further interrogate
the control to determine exactly why it sent a message.

• Although a control may define several different types of modification, you may not be interested in
every type of control modification that can occur. In that case, you do not want the control to waste
processing time by generating messages you are not interested in.

• To facilitate the implementation of a RAD window prototyping tool such as PegWindowBuilder, a
consistent, simple, and robust message definition method must be in place.

Basically, signalling is nothing more than allowing an object to automatically generate and use multiple
user defined message types based on a single object ID value. Every object using signals must have an
object ‘ID’ value, which can and should be an enumerated ID name.

RTPEG-32 defines many different signals that can be monitored for each control. Whenever the control
is modified by the user, the control checks to see if it is configured to notify its parent of the modification.
If so, the control generates a unique message number based on the control ID and the type of notifica-
tion. The message source pointer is loaded to point to the control, and the message is then sent to the
parent window or dialog.

To receive a signal, RTPEG-32 defines the SIGNAL macro, which is used in the parent window
message processing function. The parameters to the SIGNAL macro are the object ID and the notifica-
tion message number. The SIGNAL macro is a shorthand method for determining the exact message
number sent by a control with a given ID and corresponding to one of the 32 possible notification types.

The example below illustrates the use of signals in the definition and run-time processing of a typical
dialog window. Since we have not yet discussed all of the information you need to know to fully under-
stand this example, we don’t want you to be concerned with the details (in fact, a lot of the details have
been left out). Instead, the syntax for defining the control object IDs for each of the dialog controls and
the message processing statements corresponding to each control is shown.

A few object Ids are reserved to facilitate the proper operation of modal dialog and modal message
windows. The reserved object ID values occupy the upper range of the possible Id values. Custom Id
values should start at 1.

Class MyDialog : public PegDialogWindow
{
 private:
 enum MyChildControls
 {
 USER_NAME = 1, // string control ID
 HAS_EMAIL, // check box ID
 EMAIL_ADDRESS, // email address string ID
 };
};

SIGNED MyDialog::Message(const PegMessage &Mesg)
{
 switch (Mesg.wType)
 {
 case SIGNAL(USER_NAME, PSF_TEXT_EDITDONE):
 // add code for user name modification here:
 break;
 case SIGNAL(USER_NAME, PSF_FOCUS_RECEIVED):
 // add code here to bring up help for user name:

316 On Time RTOS-32

Class PegPresentationManager

 break;
 case SIGNAL(EMAIL_ADDRESS, PSF_TEXT_EDITDONE):
 // add code for email address change here:
 break;
 case SIGNAL(HAS_EMAIL, PSF_CHECK_ON):
 // add code for checkbox turned on:
 break;
 case SIGNAL(HAS_EMAIL, PSF_CHECK_OFF):
 // add code for checkbox turned off:
 break;
 default:
 return PegDialogWindow::Message(Mesg);
 }
 return 0;
}

Class PegPresentationManager
PegPresentationManager keeps track of all of the windows and sub-objects present on the display
device. In addition, it maintains which object has the input focus (i.e. which object should receive user
input such as keyboard input), and which objects are on top of other objects. There is no limit to the
number of windows and controls and other objects that may be present on the screen at any one time.

PegPresentationManager keeps track of all of those windows and their children and grandchildren
through the use of tree structured lists. Intrinsic to the design of RTPEG-32, all objects that can be
displayed are derived from the common base class PegThing, described further below. Two important
members of PegThing are a pointer to each PegThing’s first child object, and a pointer to each
PegThing’s next sibling. Using these two pointers, PegPresentationManager maintains all objects in
lists.

PegPresentationManager is also derived from PegWindow, which is derived from PegThing. This means
that PegPresentationManager is more or less just another window, although in this case the window has
no border, can often appear invisible, and always fills the entire screen or display. In essence, PegPre-
sentationManager is the great-great-grandfather of all widows, dialogs, and controls.

Event Driven Programming
RTPEG-32 is message-driven, which may also be called event-driven. This means that real processing
is only done in response to messages received from the outside world. No callbacks are used. One PEG
object can communicate easily with another without worrying about how to physically address that
object.

PegPresentationManager supplies the overall control of RTPEG-32 applications. PegPresentationMa-
nager::Execute() (called by PegExecute()) is the main execution loop for the GUI interface. In multi-
threaded programs, other threads can run in parallel to PegPresentationManager::Execute(). PegPre-
sentationManager::Execute() blocks itself on the internal message queue when no further messages are
available for processing.

Input Focus Tree

An additional task of PegPresentationManager is message routing. Many system messages, such as
mouse and keyboard input messages, are not directed to any particular object. For this reason, PegPre-
sentationManager internally maintains a pointer to the object that was last selected by the user using the
mouse or other input means. This object is called the current or input object, meaning that by default this
object will receive input messages.

PEG views each displayed window and child objects of each window as branches in a tree. When input
focus moves from object to object, PegPresentationManager insures that the entire branch of the tree up
to the actual input object has input focus. Whether an object is a member of the input focus branch of
the presentation tree can be detected at run-time time by testing the PSF_CURRENT system status
flag:

Part IV RTPEG-32 317

Chapter 1 Overview

if (StatusIs(PSF_CURRENT))
{
 // this object is in the branch
 // of the display tree that has input focus.
}

Just because an object is a member of the input focus tree does not mean the object is the end or leaf of
the input focus branch. A pointer to the final input object is returned by PegPresentationManager::Get-
CurrentThing().

An application can override the user’s input selection and manually command PegPresentationManager
to move the input focus by calling the PegPresentationManager::MoveFocusTree() function. MoveFo-
cusTree() will set input focus to the indicated object by sending PM_NONCURRENT messages to
objects that are no longer members of the input focus branch, and PM_CURRENT messages to objects
that are members of the new input focus branch. The effect is that non-directed input messages will be
sent to the newly designated input object.

When a new window is added to PegPresentationManager, that window automatically receives input
focus. Likewise, if that window has any child objects, the first child object of the window receives focus.
This continues until a leaf node (an object with no children) is found. The Add() function is most
commonly used to add child objects to a window. Since the last object added to a window becomes the
first child of the window (unless AddToEnd() is used to add the object), the last object added to a
window will have input focus when the window is first displayed.

Keyboard Input Methods

Keyboard input arrives in the form of PM_KEY messages, meaning that the Message.wType field ==
PM_KEY. The actual key value is passed in the Mesg.iData field, and the key flags such as shift key
state, control key state, etc., are passed in the Mesg.lData parameter.

As described above, when a window is added to PegPresentationManager, the first client-area child
object of the window gains input focus. The end user can fully navigate through a PEG application by
sending a very small number of PM_KEY messages to PEG. The list below describes the key values
that PEG objects monitor to allow the user to navigate through the graphical interface.

PK_TAB The focus is moved to the next child of the current window. If the current child is the
last child, focus wraps back to the first child of the current window. If the Shift key is
pressed (i.e. the KF_SHIFT flag is set in the PM_KEY message lData member), the tab
direction is reversed.

<Ctrl> PK_TAB Cycles the focus through top level windows.

F1 Moves focus to the first menu item of the menu bar of the current window.

PK_LNUP, The arrow keys move focus from sibling to sibling, and are also used to navigate
PK_LNDN, through PegMenu items.
PK_LEFT,
PK_RIGHT

PK_CR Carriage return is used to select the item which has focus.

PK_ESC Escape closes an open menu or cancels a PegString edit operation.

<Ctrl> F4 Closes the current window.

Class PegThing
Class PegThing is the most fundamental and important class of RTPEG-32. It is the base class from
which all viewable objects are derived. You will be using the public functions of PegThing often when
programming with RTPEG-32. Some basic properties of PegThing include: whether or not the object is
visible; whether the object has a parent and who is the parent; whether the object has children and who
are the children; whether the user should be allowed to interact with an object; etc.

The complete API of class PegThing is given in the online RTPEG-32 Reference.

318 On Time RTOS-32

The Class Hierarchy

The Class Hierarchy
Below is a list of all RTPEG-32 classes. Derived classes are indented below their base classes. Italic
classes have two base classes and thus appear twice.

PegThing
PegIcon
PegSlider
PegHScroll
PegVScroll
PegGroup
PegTitle
PegStatusBar
PegProgressBar
PegPrompt

PegVPrompt
PegString
PegSpinButton
PegMenu
PegMenuBar
PegMenuButton
PegButton

PegTextButton
PegMLTextButton
PegBitmapButton
PegCheckBox
PegRadioButton
PegDecoratedButton

PegWindow
PegDecoratedWindow

PegDialog
PegMessageWindow

PegProgressWindow
PegTable
PegTextBox

PegEditBox
PegTerminalWin

PegList
PegHorzList
PegVertList

PegComboBox
PegNotebook
PegPresentationManager
PegSpreadSheet
PegAnimatedWindow
PegTreeView

PegChart
PegLineChart
PegMultiLineChart
PegStripChart

PegToolBar
PegToolBarPanel

PegMessageQueue

PegScreen

PegTextThing
PegTextButton
PegRadioButton
PegCheckBox
PegGroup
PegMenuButton
PegTitle
PegMessageWindow
PegPrompt
PegString
PegTextBox
PegDecoratedButton
PegTreeNode

PegImageConvert
PegBmpConvert
PegGifConvert
PegJpgConvert

PeqQuant

Part IV RTPEG-32 319

Chapter 1 Overview

Unicode
Unicode support is available for owners of an RTPEG-32 source code license. Currently, Unicode
support is not available for Watcom C/C++. If you need Unicode support with Watcom C/C+, please
contact On Time for additional information.

An application that wants to use the Unicode version of RTPEG-32 must define C/C++ preprocessor
symbol PEG_UNICODE. This will cause type PEGCHAR to resolve to type wchar_t. In addition, a few
symbols and functions are defined to ease string handling of the application. Macro PTEXT() can be
used to define a string with the correct type, depending on symbol PEG_UNICODE. The following string
manipulation functions declared in Include\Pegtypes.hpp can be used as a replacement of correspon-
ding run-time system functions: PegStrCat, PegStrnCat, PegStrCpy, PegStrnCpy, PegStrCmp,
PegStrnCmp, PegStrLen, PegAtoL, PegAtoI.

The Unicode version of RTPEG-32 processes Unicode keyboard input and does not use input code
page 1252 as its Ascii counterpart. For example, the Euro symbols (AltCar-E in most national keyboard
drivers) is returned as hex value 20ACh in Unicode apps and as 80h in Ascii apps.

RTPEG-32 Unicode applications must link library Pegu.lib instead of Peg.lib. The Win32 emulation
library is contained in Peguw32.lib and Pegu.lib. Demo program PegDemo compiles unmodified as
either an Ascii or Unicode application. Demo program Unicode shows how a multi-language application
can be implemented. Please refer to their respective makefiles for further details.

Win32 Emulation Library
RTPEG-32 programs to run under On Time RTOS-32 must link library PEG.LIB (or PEG11.LIB for
Watcom C/C++ 11.0). However, library PEGW32.LIB (and PEGW3211.LIB for Watcom C/C++ 11.0)
allows executing RTPEG-32 GUI programs under Windows 95/98/ME/NT/2000 as long as they do not
need any other On Time RTOS-32 functions not available under Windows. No source code modifica-
tions are required, but RTPEG-32 programs for Windows must be linked with libraries PEGW32.LIB and
PEG.LIB (in this order), no other On Time RTOS-32 libraries, but with standard Win32 API libraries such
as KERNEL32, GDI32, USER32, etc. In addition, the linker must be instructed to produce a Win32 GUI
instead of a Win32 Console program.

Examples for the Dialog demo (Microsoft, Borland, and Watcom):
cl -Zi -Zp4 Dialog.cpp pegw32.lib peg.lib user32.lib gdi32.lib
 /link /subsystem:windows

bcc32 -W -v -a4 Dialog.cpp pegw32.lib peg.lib

wcl386 -s -zp4 -d2 -hc -l=nt_win Dialog.cpp pegw32.lib peg.lib

Library PEGW32.LIB contains Win32 emulation versions of all screen device drivers and dummy
versions (do nothing, return 0) of the following RTTarget-32 native API functions:

RTSetFlags()
RTCMOSSetSystemTime()
RTCMOSExtendHeap()
RTInitMouse()
RTSetMousePos()
RTMouseDone()
RTGetGMode()
RTEmuInit()

These functions are not needed under Windows but allow a program to link successfully even if it refer-
ences them.

320 On Time RTOS-32

Application Program Structure

Chapter 2
Programming with RTPEG-32

This chapter presents more in depth information and a few examples for using the RTPEG-32 library
effectively.

Application Program Structure
An RTPEG-32 program’s main function should perform the following steps:

• If RTKernel-32 is used, RTKernelInit() should be called first.

• A screen device driver (a PegScreen object) must be created.

• Objects PegMessageQueue and PegPresentationManager must be created. This is done by
calling function PegInitialize().

• If mouse support is desired, the RTTarget-32 mouse driver must be initialized.

• All initial UI objects such as windows and control must be added to the PegPresentationManager.
This will typically be done by function PegAppInitialize().

• Multithreaded applications can create additional threads at this point.

• The RTPEG-32 message loop is executed by calling PegExecute(). Function PegExecute() will not
return before the application has terminated.

Example:
int main(void)
{
 PegScreen * pScreen = CreatePegScreen_VESA_8();
 PegPresentationManager * pPresent =
 PegInitialize(pScreen, sizeof(class PegScreen));

 RTInitMouse(-1, 12, 0, 5, 5); // this is for a PS2 mouse
 RTSetMousePos(pScreen->GetXRes() / 2, pScreen->GetYRes() / 2);

 PegAppInitialize(pPresent);

 PegExecute(pPresent);

 RTMouseDone();
 return 0;
}

void PegAppInitialize(PegPresentationManager * pPresentation)
{
 PegRect Rect;
 Rect.Set(0, 0, 399, 319);
 RobotFrame * pFrame = new RobotFrame(Rect);
 pPresentation->Center(pFrame);
 pPresentation->Add(pFrame);
}

Function PegInitialize

The RTPEG-32 library must be initialized with a call to PegInitialize:
PegPresentationManager * PegInitialize(PegScreen * pScreen,
 int PegScreenClassSize);

Parameter pScreen must point to an instantiated screen driver. Parameter PegScreenClassSize must
be the size in bytes of the abstract class PegScreen. This value is used to verify that the application and
the PEG.LIB library have been compiled with the same structure alignment (minimum 4) and options
specified in header file pconfig.hpp.

The function’s return value is a pointer to the PegPresentationManager of the application.

Part IV RTPEG-32 321

Chapter 2 Programming with RTPEG-32

Function PegExecute
PegExecute executes the main message loop of the application:

void PegExecute(PegPresentationManager * pPresent);

Parameter pPresent must be the value returned by function PegInitialize. PegExecute will return when
the application terminates through message PM_EXIT.

Rules Of Memory Ownership
When an RTPEG-32 object is added (i.e. attached) to another object, RTPEG-32 owns that object. You
do not have to worry about deleting that object as long as you have passed it on to RTPEG-32.
RTPEG-32 ensures that all children of an object, along with the object itself, are deleted when the parent
object is closed.

For example, suppose you create a dialog window using the new memory allocation operator. After
creating the dialog, you also create a dozen or so controls and add them to the dialog. At this point all of
the controls are owned by the dialog. All that you need to do to delete all of the allocated memory is
delete the dialog.

Next, assume that you add the dialog to PegPresentationManager (i.e. the dialog is now visible). At this
point, you have given up all ownership of the dialog and the dialog’s child controls. RTPEG-32 is now
responsible for insuring that the dialog and its child controls are deleted from memory when the dialog is
closed.

Finally, assume that you manually Remove() the dialog from PegPresentationManager, without allowing
the dialog to close itself in response to user input. In this case, you again own the dialog, because
PegPresentationManager no longer has any knowledge of the dialog’s existence. However, the controls
which were added to the dialog are still owned by the dialog, so once again all that needs to be done to
delete all memory associated with the dialog and its controls is to delete the dialog.

Creating PegThings
PegThing contains information about the physical location of the objects on the screen, the client area of
an object, the clipping area of an object, the system status flags for the object (selected, sizable, etc.),
and pointers used to maintain the object’s position in the presentation tree.

PegThing provides the member function Add(PegThing * what), which is used to add controls or
windows to another. With Add(PegThing * what), parameter what is inserted into the current object’s
child list. If the current object is visible, the newly added object also becomes visible. The best way to
create a complex window is to create the window, create all of the window’s child objects and add them
to the window, and finally add the window to PegPresentationManager. In this way, the window and all
of the child objects become visible at the same time.

A further result of the class hierarchy is that it is perfectly reasonable to create an object that one would
normally consider to be a self-contained bottom level object, such as a PegPrompt, and add another
object, such as a PegButton, to the PegPrompt. The result is a PegPrompt that first displays the text
associated with the prompt, and then allows its child objects to draw themselves. In this example, the
PegButton would appear next to or over the prompt text, depending on the Prompt dimensions and text
justification flags. While this result may not appear very useful, you should be able to see that by
deriving your own version of PegPrompt specifically for this purpose, you could easily create a powerful
new object type simply by combining these two predefined objects.

The following code fragment illustrates the ease of creating and displaying new windows. The newly
created window will have a title, a menu bar, and a status bar:

PegRect WinSize;
WinSize.Set(10, 10, 120, 200);
Presentation()->Add(new AppWindow(WinSize, "My First Window"));
...
AppWindow::AppWindow(PegRect Rect, PEGCHAR * Title):
 PegDecoratedWindow(Rect)
{
 Add(new PegTitle(Title)); // add a title to myself

322 On Time RTOS-32

Deleting/Removing PegThings

 Add(new PegMenuBar(MainMenu)); // and a menu bar
 PegStatusBar * pStat = new PegStatusBar();
 pStat->AddTextField(80, "Hello");
 pStat->AddTextField(20, "How are you today?");
 Add(pStat); // and a status bar
}

Deleting/Removing PegThings
Removing a PegThing (i.e. a window, button, dialog, or other object derived from PegThing) from its
parent is not the same as deleting it. Removing an object takes it out of the active display tree. After
being removed, the object no longer has a parent, and it will not be visible. It is possible, even common,
to later re-add the object to a visible PegThing and use it over again.

A PegThing is removed by calling the PegThing member function Remove(PegThing * What). It doesn’t
matter if the parent object removes a child, or if a child removes itself, because the Remove() function
properly handles either case. That is, it is perfectly acceptable to use the following statement:

Remove(this);

when an object decides based on some message input that it is time to go away.

While Remove() can be useful, it is more common to want to both remove the object from its parent, as
well as delete the object from memory. There are three acceptable ways to remove and delete an
object:

• Sending a PM_DESTROY message to PegPresentationManager. The pSource member of the
PM_DESTROY message should point to the object which is to be destroyed. This method is most
often used when deleting objects from tasks outside of RTPEG-32.

• Calling the PegThing member function Destroy(PegThing * Who). Any PegThing can destroy any
other PegThing, including itself. This does not mean that the Destroy() function will end up
executing a delete(this) statement. The Destroy function checks to see if Who == this, and in this
case automatically sends a PM_DESTROY message to PegPresentationManager to finish the job.

• If a PegThing is already removed from its parent through use of the Remove() function, and the
object to be deleted is not this, nor is this a child of the object being deleted, it is fine to simply
delete the object.

One should never execute delete(this). When in doubt, it is always safe to call Destroy(). It is not
necessary to manually delete the individual children of a PegThing, in fact it will cause errors if this is
attempted.

Obtaining a Pointer to PegPresentationManager
The PegThing member function Presentation() is provided for this purpose. For example, the following
code segment could be used to determine whether a window is a top-level window (i.e. a child of
PegPresentationManager):

If (Presentation() == Parent())
{
 // Current object is a top-level object
}

Finding an Object’s Parent
The PegThing member function Parent() returns a pointer to the parent of the current object. If the object
has no parent, the Parent() function returns NULL.

Finding an Object’s Children
The first child of any object can be found using the function First(). This returns a pointer to the head of a
linked-list of child objects. The linked list can be traversed using the Next() function.

For example, an object could count the number of siblings (i.e. object’s with the same parent) it has
using the following code sequence:

Part IV RTPEG-32 323

Chapter 2 Programming with RTPEG-32

PegThing * pTest = Parent()->First(); // first child of my parent
int iSiblings = 0;
while (pTest)
{
 if (pTest != this)
 iSiblings++;
 pTest = pTest->Next();
}

System Status Flags
All RTPEG-32 objects have system status flags associated with them. The system status flags are
important for the correct operation of the library, but are generally not often needed by the application
software. PegThing provides public functions to examine and/or modify system status flags for an object.
The system status flags have names that start with PSF_, which stands for PEG System Flag.

The following code segment can be used to enquire which child of the current object has input focus:
PegThing * pTest = First();
while (pTest)
{
 if (pTest->StatusIs(PSF_CURRENT))
 break; // this object has input focus
 pTest = pTest->Next();
}

The following status flags are available:

PSF_VISIBLE The object is visible on the screen. This flag should not be modified by the
application level software. Clearing or setting this flag will not have the effect
of removing or displaying the object. The PegThing member functions Add
and Remove are used for that purpose.

PSF_CURRENT the object is in the current branch of the display tree. If the object is a leaf
object (i.e. it has no children) and it is current, then it is the object which will
receive keyboard input messages.

PSF_SELECTABLE This flag is tested by PegPresentationManager to determine if an object is
enabled and allowed to receive input messages. The application level
software can modify this flag.

PSF_SIZEABLE determines whether or not an object can be resized. The application can
modify this flag.

PSF_MOVEABLE determines whether or not an object can be moved. The application can
modify this flag.

PSF_NONCLIENT allows a child object to draw outside the client area of its parent. The applica-
tion can modify this flag after the object is constructed but before the object
is displayed.

PSF_ACCEPTS_FOCUS indicates that the object will become the receiver of input events when
selected. The application can modify this flag, but normally this is not
advised. If this flag is modified for a particular object, it is important for
correct operation that ‘breaks’ in the tree of objects accepting focus are
avoided. In other words, if a parent window cannot accept focus, then neither
should any of the window’s child objects be allowed to accept focus.

PSF_ALWAYS_ON_TOP This flag insures that the object is always on top of its siblings. The applica-
tion level software can modify this flag.

PSF_VIEWPORT instructs PegPresentationManager that the object should be given a private
screen viewport. Objects that have a viewport are drawn differently than
objects that do not have a viewport. In general, large objects or objects
which have a very complex drawing routine should be given viewports, while

324 On Time RTOS-32

Style Flags

small or simple objects should not. By default all PegWindow derived objects
receive viewports, and all other objects do not. This flag should not be
changed except immediately after the object is constructed.

Style Flags
All RTPEG-32 objects also have a set of style flags associated with it, which allow control of many things
related to how an object appears and functions. The style flags are interpreted in different ways by
different object types, and some style flags apply only to certain types of objects. PegThing provides
functions for reading or modifying an object’s style flags.

The following code segment can be used to set the AF_ENABLED style flag for a button. Note: this is an
example only. The PegButton class provides member functions for accomplishing this task.

PegButton * pChild = (PegButton *) First();
pChild->Style(pChild->Style() | AF_ENABLED));

Determining the Position of an Object
One of the most basic properties of all RTPEG-32 objects is the object’s position on the screen.
PegThing maintains this information, along with clipping and Z-ordering information to insure that objects
are only allowed to draw to the areas of the screen that are owned by the object. An object’s position is
held in the PegThing public member variable mReal, which is a value of type PegRect. PegThing also
maintains a separate but related member called mClient, which is an additional PegRect member that
indicates the client rectangle of the object. For many objects, the client area and the real area are equal.

For example, by using the mReal variables and the PegRect::Overlap function, we can easily determine
if two objects overlap using the following code segment:

PegThing * pThing1 = First();
PegThing * pThing2 = pThing1->Next();

if (pThing1->mReal.Overlap(pThing2->mReal))
{
 // objects overlap
}
else
{
 // objects do not overlap
}

Using Object Types
PegThing maintaines a type value for each object derived from it in the public member variable muType.
This value can be used to safely upcast a PegThing * to a pointer to a specific RTPEG-32 control or
window type. RTPEG-32 does not internally use the object type value, with the exception of checking
the range, which can be above or below TYPE_WINDOW. You can safely create and use your own
object types and assign new type values to these classes. If your new object is derived at some point
from PegWindow, it should have an object muType >= TYPE_WINDOW. The object type ranges are
specified in file \peg\include\pegtypes.hpp. This is sometimes useful as a debugging aid in addition to
the occasional need to upcast a PegThing pointer to a specific derived class pointer. Additional informa-
tion about object types is provided in the reference of the muType accessor functions.

Derived object types inherit the object type value of their parent. The type value can be overriden if
desired by re-assigning the object type after calling the base class constructor.

Object type values are divided into two groups. One group is for classes derived from PegWindow, and
the other group is for all other object types. When assigning custom object types, one should use the
value FIRST_USER_WINDOW_TYPE or FIRST_USER_CONTROL_TYPE as the base. This insures
that private type values will be unique and will not overlap on the RTPEG-32 class types.

Part IV RTPEG-32 325

Chapter 2 Programming with RTPEG-32

Object type values can be useful when searching child object lists for objects of a certain type, for
example PegString objects. This value is also useful when debugging since at times you may have a
pointer to a PegThing and wish to know exactly what type of PegThing it points to. After checking the
muType member of a PegThing, one can safely upcast a PegThing pointer to a pointer to a specific
RTPEG-32 object type. The possible return values of the Type() function are defined in header file
pegtypes.hpp.

The following code fragment illustrates one possible method of locating the status bar attached to a
window:

PegThing * pTest = First(); // get pointer to first child object
while (pTest) // search to the end of list if necessary
{
 if (pTest->Type() == TYPE_STATUS_BAR)
 {
 PegStatusBar *p StatBar = (PegStatusBar *) pTest;
 // use pStatBar to call member functions or change attributes
 break; // found the status bar, exit the loop
 }
 pTest = pTest->Next(); // continue down the list of children
}

Of course, it is simpler to call the PegWindow member function StatusBar(), which does exactly what is
shown above and returns a pointer to the PegStatusBar object if one is found.

Using Object IDs
A few object ID values starting at 1000 are reserved for proper operation of dialog boxes and message
windows. Therefore, custom IDs should always begin enumerations with a value of 1, so as not to
overlap the reserved ID values, which are at the very top of the valid ID range. The reserved object Ids
are:

enum PegButtonIds {
 IDB_CLOSE = 1000,
 IDB_SYSTEM,
 IDB_OK,
 IDB_CANCEL,
 IDB_APPLY,
 IDB_ABORT,
 IDB_YES,
 IDB_NO,
 IDB_RETRY,
};

Buttons with the Ids listed above are given special treatment by dialog and message window classes.
For further information, see PegDialog and PegMessageWindow.

Object ID values can be used to identify an object. When an object sends a notification signal to a
parent window, the object ID is contained in the iData member of the notification message.

A child object can be located using the object’s ID with the Find() function. Find will search the child list
of the current object for an object with an ID value matching the passed in value. Object IDs are also
useful for identifying top-level windows. It is often the case that one window needs to locate another
window without knowing whether the other window is actually displayed. The following code segments
illustrate using Window ID values to locate a top-level window:

Window1::Window1(...) : PegDecoratedWindow(...)
{
 Id(ID_WINDOW1);
}

PegDecoratedWindow * Window2::FindWindow1(void)
{
 return Presentation()->Find(ID_WINDOW1);
}

326 On Time RTOS-32

Messages

Messages
Messages are identified by the 16-bit member field wType of structure PegMessage. The first 4000h
message wType values are reserved for internal messages, which leaves message values 4000h
through FFFFh available for user definition. The first message value which is available for user defined
messagec is FIRST_USER_MESSAGE, declared in Peg.hpp.

Below are the system messages which would potentially be of interest in the application level software:

PM_ADD This message can be sent to add an object to another object. The message
pTarget field should contain a pointer to the parent object, and the message
pSource filed should contain a pointer to the child object.

PM_CLOSE Recognized by PegWindow derived objects, and causes the recipient to
remove itself from its parent and delete itself from memory.

PM_CURRENT Sent when an object becomes a member of the branch of the presentation
tree which has input focus.

PM_DESTROY This message can be sent to PegPresentationManager to destroy an object.
The pSource member of the message should point to the object to be
destroyed.

PM_DIALOG_NOTIFY Sent to the owner of a PegDialog when the dialog window is closed if the
dialog window is executed non-modally. The message iData member will
contain the ID of the button used to close the dialog window.

PM_DRAW Sent to an object to force that object to redraw itself.

PM_EXIT Sent to PegPresentationManager causes termination of the program.

PM_HIDE Sent whenever an object is removed from a visible parent.

PM_KEY Sent to the current input object when keyboard input is received. The
message iData member contains the corresponding ASCII character code, if
any, and the lData member of the message contains the keyboard scan code,
if available.

PM_LBUTTONDOWN Sent when the user generates mouse click input. The position of the mouse
click is included in the message Point field.

PM_LBUTTONUP Sent when the user releases the left mouse button.

PM_MAXIMIZE This message can be sent to any PegWindow derived object. If the target
window is sizable (as determined by the the PSF_SIZEABLE status flag), it
will resize itself to fill the client rectangle of its parent.

PM_MINIMIZE Similar to PM_MAXIMIZE, this message can be sent to any PegWindow
derived object. If the window is sizable, it will create a proxy PegIcon, add the
icon to the parent window, and remove itself from its parent.

PM_NONCURRENT This message is sent to an object when it loses membership in the branch of
the presentation tree which has input focus.

PM_PARENTSIZED Sent to all children of a PegWindow derived object if the window is resized.
This makes it very easy for child windows that want to maintain a certain
proportional spacing or position within their parent to catch this message and
resize themselves whenever the parent window is sized

PM_POINTER_ENTER Sent to an object when the mouse pointer passes over it.

PM_POINTER_EXIT Sent to an object when the mouse pointer leaves it.

PM_POINTER_MOVE Sent to an object whenever the mouse pointer moves over it.

PM_SHOW Sent to an object when it is added to a visible parent, before the object is first
drawn. This allows an object to perform any necessary initialization prior to
drawing itself on the screen.

Part IV RTPEG-32 327

Chapter 2 Programming with RTPEG-32

PM_SIZE Cause an object to resize or move. This is equivalent to calling the Resize()
function. Note that there is no difference between moving and resizing an
object. The new size and position is included in the message Rect field.

PM_RESTORE Can be sent to any sizeable PegWindow derived object to cause that window
to restore its size and position after it has been maximized or minimized.

PM_RBUTTONDOWN The right mouse button is pressed. RTPEG-32 objects do not process right
mouse button messages.

PM_RBUTTONUP The right mouse button is released. RTPEG-32 objects do not process right
mouse button messages.

PM_TIMER This message is sent to an object that has started a timer via the PegMes-
sageQueue TimerSet function when that timer expires. The ID of the timer is
included in the iData member of the message.

Overriding the Message() Method
Overriding the message handler method should in most cases return a result of 0. A non-zero return
value is used to terminate modal window execution. PegWindow derived classes such as PegDialog and
PegMessageWindow return non-zero results when a signal from a child control is received that causes
the window to close.

A Message() method should make sure that it passes the unhandled messages down to the base class
to insure that normal default operation occurs, unless of course the message should be intercepted. For
system messages, the base class’s Message handler should be called first before any custom
processing is done.

A typical Message() function for a derived class would appear as follows (assuming in this example that
the class is derived from PegWindow):

SIGNED MyClass:Message(const PegMessage &Mesg)
{
 switch (Mesg.wType)
 {
 case UIM_SHOW:
 PegWindow::Message(Mesg);
 // add your own code here:
 break;
 case USER_DEFINED_MSG1:
 // code for your user message
 break;
 case USER_DEFINED_MSG2:
 // code for another user defined message:
 break;
 case SIGNAL(IDB_OK, PSF_CLICKED):
 // code for OK button clicked:
 break;
 default:
 // pass all other messages down to the base class:
 return PegWindow::Message(Mesg);
 }
 return 0;
}

Drawing to the Screen
Drawing on the screen is performed through methods of class PegScreen. This is most often done from
within an overridden Draw() function, as was described in the previous chapter. Drawing always starts
with a call to BeginDraw() and completes by calling EndDraw(). When RTPEG-32 recognizes that an
object needs to be re-drawn (i.e. the object was just Add()-ed, or the object has been moved), it
re-draws the object by calling the object’s Draw() function.

328 On Time RTOS-32

Overriding the Draw() Method

Drawing can also be performed by functions other than Draw(). Such functions must be members of a
PegThing derived class, or at least have access to a PegThing object, since all of the PegScreen
drawing functions require as a parameter a pointer to the PegThing object calling the drawing function.
PegScreen requires this pointer to insure that an object is not allowed to draw outside of the area it
‘owns’ on the screen.

PegScreen only allows drawing to occur to areas of the screen which have been invalidated. Areas of
the screen are invalidated by calling the Invalidate() function, which is a member of PegScreen but also
provided in inline form as a member of PegThing. Under most circumstances the screen invalidation is
handled automatically by RTPEG-32 as the user moves things around on the screen, or as the program
adds and removes visible objects. If all drawing is done from with an overridden Draw() function, there is
no need to invalidate the screen, since the Draw() function is called specifically because an area of the
screen has been invalidated.

If you need to draw on the screen outside at random times, or for example based on a periodic timer,
you must invalidate the area you are going to draw to before you start drawing. If you want to be allowed
to draw anywhere within the client area of your object, you can simply call the Invalidate() function with
no parameters, which invalidates the area of the screen corresponding to an object’s client area. You
can also calculate and specify a more limiting rectangle to clip your drawing, and pass that rectangle to
the Invalidate() function. No matter how large the invalidated rectangle on the screen, you are never
allowed to draw outside of an object’s borders.

The following function is an example function that could be used to draw a series of lines to the screen
at any time. This example will paint the entire client area of the object black, and then fill the client area
of the object with RED horizontal lines, 1 pixel wide, spaced 4 pixels apart.

void MyObject::DrawLines(void)
{
 PegColor LineColor(RED, BLACK, CF_FILL);
 SIGNED yPos = mClient.wTop;

 Invalidate(); // invalidate my client area
 BeginDraw(); // prepare for drawing
 Rectangle(mClient, Color, 0); // fill with black
 while (yPos <= mClient.wBottom)
 {
 // draw red lines:
 Line(mClient.wLeft, yPos, mClient.wRight, yPos, Color);
 YPos += 4;
 }
 EndDraw(); // Done
}

Overriding the Draw() Method
You can create a custom interface appearance by deriving your own control types from the RTPEG-32
control types. For example, you may want to define a button type that has an appearance different from
the standard RTPEG-32 button types provided.

The following code listings illustrate creating a new PegButton derived class, and overriding the Draw()
function to generate a custom button appearance. In this case we are going to draw a wide button
border, and use custom colors for the button client area and text. This example code can also be found
in the example program file Robot\Robobutn.cpp. The following is the class definition for the RoboButton
class:

class RoboButton : public PegButton
{
 public:
 RoboButton(PegRect &R, WORD wId, PEGCHAR *Text);
 void Draw(void);
 void DataSet(PEGCHAR * Text)
 {
 mpText = Text;
 Screen()->Invalidate(mClient);

Part IV RTPEG-32 329

Chapter 2 Programming with RTPEG-32

 }
 private:
 PEGCHAR * mpText;
};

The above class definition tells the compiler that we are defining a new class based on PegButton. This
definition also informs the compiler that we are going to override the PegButton Draw() function, since
we have defined a function named Draw() with the same return type and parameters as are defined in
the virtual PegButton Draw() function. Note: If your parameter list does not match the base class
parameter list, the compiler will assume that you are overloading, not overriding, a base class function.

The following listing is the Draw() function implementation for the RoboButton class:
void RoboButton::Draw(void)
{
 PegColor Color;

 BeginDraw(); // Note19

 if (Style() & BF_SELECTED) // Note20

 Color.uForeground = BLACK;
 else
 Color.uForeground = LIGHTGRAY;

 // draw the top: // Note21

 Line(mReal.wLeft, mReal.wTop, mReal.wRight, mReal.wTop,Color, 3);

 // draw the left:
 Line(mReal.wLeft, mReal.wTop, mReal.wLeft, mReal.wBottom, Color, 3);

 if (Style() & BF_SELECTED) // Note22

 Color.uForeground = LIGHTGRAY;
 else
 Color.uForeground = BLACK;

 // draw the right shadow:
 Line(mReal.wRight, mReal.wTop, mReal.wRight, mReal.wBottom-2, Color, 1);
 Line(mReal.wRight-1, mReal.wTop+1, mReal.wRight-1, mReal.wBottom-2, Color, 1);
 Line(mReal.wRight-2, mReal.wTop+2, mReal.wRight-2, mReal.wBottom-2, Color, 1);

 // draw the bottom shadow:
 Line(mReal.wLeft, mReal.wBottom, mReal.wRight, mReal.wBottom, Color, 1);
 Line(mReal.wLeft+1, mReal.wBottom-1, mReal.wRight, mReal.wBottom-1, Color, 1);
 Line(mReal.wLeft+2, mReal.wBottom-2, mReal.wRight, mReal.wBottom-1, Color, 1);

 // fill in the button client area:
 Color.Set(LIGHTRED, DARKGRAY, CF_FILL);
 Rectangle(mClient, Color); // Note23

 // draw the text centered:
 PegPoint Put;
 Put.x = (mClient.wLeft+mClient.wRight) >> 1;
 Put.x -= TextWidth(mpText, &SysFont) >> 1;
 Put.y = mClient.wTop+1;

19 Always start a custom drawing function with BeginDraw(). This call informs the screen driver that drawing is about to begin. If
this button is being drawn as part of a larger window drawing operation, the screen driver will recognize that this is a nested call to
BeginDraw().

20 This if statement is testing the button style flag BF_SELECTED to determine if the button is depressed. If the button is
depressed, we want to draw the button shadow on the top and left, instead of on the right and bottom. This provides the 3D action
desired for this button class.

21 This line is using the "Line" wrapper function of PegThing to call the PegScreen::Line() function. The line endpoints, color and
width are passed to the Line() function. In this case we are drawing a 3-pixel wide line, to create a wide button border.

22 We are again testing the button style flag BF_SELECTED to toggle the border colors.

23 On this line we are using the wrapper function Rectangle() to draw a rectangle on the screen. The rectangle will have a RED
border, and will be filled with the color DARKGRAY. This will fill the client area of the button.

330 On Time RTOS-32

Drawing to Memory

 if (Style() & BF_SELECTED)
 {
 Put.x++;
 Put.y++;
 }

 Color.Set(WHITE, BLACK, CF_NONE);
 DrawText(Put, mpText, Color, &SysFont); // Note24

 EndDraw(); // Note25

}

Drawing to Memory
An alternative to drawing directly to the screen is to draw to an offscreen bitmap. Such a bitmap can be
displayed at any location by calling the PegScreen Bitmap() member function. This is the preferred
method of displaying flicker-free animation, and can be used for many other purposes as well.

Drawing to memory works almost exactly like on-screen drawing. PegScreen member functions are
used to draw to an offscreen bitmap. Offscreen drawing is more of a drawing mode in which all screen
output is rediected to a bitmap.

Offscreen bitmaps must be created first using PegScreen member function CreateBitmap(). Then, the
alternate form of the BeginDraw() function that accepts a pointer to the bitmap is called to start drawing.
When drawing is done, the alternate form of the EndDraw() function must be called to put the
PegScreen driver back to normal drawing mode. While the PegScreen driver is in the offscreen drawing
mode, all of the normal PegScreen drawing functions draw into the bitmap.

The following example is a code fragment demonstrating offscreen drawing. This example is also
provided in the Gauge demo program. It draws a blank gauge bitmap offscreen, drawing the ‘needle’ or
position indicator on top of the background bitmap, and then copying the offscreen bitmap to the visible
screen. The resulting effect is that the gauge updates smoothly without any noticeable flicker.

void Gauge::Draw(void)
{
 if (!mpBitmap) // first time?
 {
 // Create the bitmap, and draw into it:
 mpBitmap = Screen()->CreateBitmap(gbDialBitmap.wWidth,
 gbDialBitmap.wHeight);
 DrawToBitmap();
 }

 // now just copy the bitmap to the screen:
 BeginDraw();
 PegPoint Put;
 Put.x = mReal.wLeft;
 Put.y = mReal.wTop;
 Bitmap(Put, mpBitmap);
 EndDraw();
}

void Gauge::DrawToBitmap(void)
{
 PegPoint Put;
 SIGNED x1, y1, x2, y2;
 SIGNED iRadius = (gbDialBitmap.wWidth / 2) - 8;

24 After calculating where to draw the button text, this call writes the text for the button on the button face using the RTPEG-32
font SysFont. Any other custom font could be used just as well.

25 The Draw() function must end with a call to EndDraw() to inform the screen driver that drawing is complete. A common mistake
is to forget to call the EndDraw() function, which can cause unpredictable results in terms of screen appearance.

Part IV RTPEG-32 331

Chapter 2 Programming with RTPEG-32

 // Open the bitmap for drawing:
 Screen()->BeginDraw(this, mpBitmap); // Note26

 Put.x = Put.y = 0;

 // copy the background bitmap into memory bitmap:
 Bitmap(Put, &gbDialBitmap); // Note27

 // find the center:
 x1 = mReal.Width() / 2;
 y1 = mReal.Height() / 2;

 // find the end:
 double angle = ((4.0 * PI) / 5.0) + (((double) miCurrent / 100.0) * PI);
 x2 = x1 + cos(angle) * iRadius;
 y2 = y1 + sin(angle) * iRadius;

 // draw the indicator line:
 PegColor LineColor(RED, RED, CF_NONE); // Note28

 Line(x1, y1, x2, y2, LineColor, 2);

 // Close the bitmap for drawing:
 Screen()->EndDraw(mpBitmap); // Note29

}

The real work of drawing the gauge is done in the class member function DrawToBitmap. DrawTo-
Bitmap draws the background of the gauge and the gauge indicator line into an offscreen bitmap, which
can then be copied to the screen at any time.

Using PegTimer
For this example we will create a derived PegDecoratedWindow class. In this derived window class we
will override the Message() function to provide custom functionality. The custom operation is to start a
periodic PegTimer and wait for timer expiration messages to arrive. The window will change colors each
time the timer expires.

class MyWindow : public PegDecoratedWindow
{
 public:
 MyWindow(const PegRect &Rect);
 SIGNED Message(const PegMessage &Mesg);
 Private:
 SIGNED miColor;
};

void PegAppInitialize(PegPresentationManager * pPresent)
{
 PegRect WinRect;
 WinRect.Set(0, 0, 100, 100);
 MyWindow *pWin = new MyWindow(WinRect);
 pPresent->Center(pWin);
 pPresent->Add(pWin);
}

26 This line of code is calling the alternate form of BeginDraw(), passing not only a pointer to the Gauge class itself, but also a
pointer to the bitmap that the class wants to draw to. This places the PegScreen driver into offscreen drawing mode.

27 This line of code is drawing a pre-generated bitmap (the bitmap was generated prior to compile using PegImageConvert) into
the memory bitmap. This bitmap forms the background of the gauge.

28 This line of code draws the gauge indicator line. The line is drawn from the center of the gauge to the outside edge. This line is
also drawn to the offscreen bitmap, not to the visible screen.

29 The offscreen drawing mode is terminated by calling the alternative form of EndDraw(), which accepts as a parameter a pointer
to the bitmap that was drawn to. The offscreen bitmap is now ready to be displayed.

332 On Time RTOS-32

Using PegTimer

MyWindow::MyWindow(const PegRect &Rect):
 PegDecoratedWindow(Rect, FF_THIN)
{
 Add(new PegTitle("A colorful Window!"));
 RemoveStatus(PSF_SIZEABLE);
 miColor = 0;
}

SIGNED MyWindow::Message(const PegMessage &Mesg)
{
 switch(Mesg.wType)
 {
 case PM_SHOW:
 PegDecoratedWindow::Message(Mesg);
 SetTimer(1, ONE_SECOND * 2, ONE_SECOND / 2);
 break;
 case PM_TIMER:
 SetColor(PCI_NORMAL, miColor);
 Invalidate();
 Draw();
 miColor++;
 miColor &= 0x0f;
 break;
 case PM_HIDE:
 KillTimer(1);
 PegDecoratedWindow::Message(Mesg);
 break;
 default:
 return PegDecoratedWindow::Message(Mesg);
 }
 return 0;
}

In the above Message() function, the derived window class catches the system messages PM_SHOW
and PM_HIDE, and the PM_TIMER messages generated by the timer. The PM_SHOW message is
received when the window is first displayed. This is a convenient place to start the timer. In this case we
set the timer to wait 2 seconds before the first timeout, and to expire every 500 ms (ONE_SECOND / 2)
thereafter.

This timer ID value is simply set to ‘1’. If you are using many timers, you will probably want to enumerate
the timer ID values, but in this case we are only using one timer and so we simply hard-coded the timer
ID value. Note that the PM_SHOW message handler also passes the message on down to the base
PegDecoratedWindow class. It is important to pass system messages on down to the base class in case
the base class is also catching the message.

The PM_HIDE message is received when the window is removed. This is a convenient place to stop the
timer. You must remember to kill timers that you have started before your windows are deleted, or
PM_TIMER messages will be sent to invalid destinations and your software will most likely crash. Since
a window is always removed before it is deleted, the PM_HIDE system message handler is an excellent
place to kill any active timers.

The PM_TIMER message handler is where we change the window color and re-display the window. A
member variable has been defined named miColor, and we will use this variable to keep track of which
color to display next. This example assumes we are running in 16-color mode, and therefore prevents
the color index from passing 15 (0x0f).

Note that after changing the window color by using the SetColor() function, we have to tell the window to
re-draw. The window does not automatically redraw since you may make several changes to the window
and you do not want each change to cause a window re-draw operation.

Part IV RTPEG-32 333

Chapter 2 Programming with RTPEG-32

Viewports
Viewports are used to improve drawing efficiency and to allow background drawing operations to occur
without overwriting foreground graphics.

Viewports are rectangular areas of the screen owned by the object visible in that rectangle. Each
viewport has only one owner, while one object may own several viewports.

RTPEG-32 maintains the screen viewports, and you do not ordinarily have to concern yourself with how
they work. There is one exception, however, that you may need to be aware of. Normally, only
PegWindow derived objects have viewport status. That means that other smaller objects like PegButton
and PegIcon do not own viewports, and simply inherit the viewport(s) of their parent window.

The viewport management algorithm employed does not allow breaks in the viewport tree. That is, an
object that owns viewports (i.e. a PegWindow derived object) should only be added to another object
that owns viewports. This does not mean that you cannot add PegWindow derived objects to objects
that are not derived from PegWindow, because you can. However, when you do this you should set the
PSF_VIEWPORT status flag of the parent object, to make it a viewport owner.

An example should clarify this concept. Suppose you want to create a simple object container class.
This container class will simply serve as a parent for a group of lists, windows, and other controls. This
is a common thing to do, as it allows you to add and remove the entire group of objects at any time
simply by adding or removing the container. Since the container class does not need to actually draw
anything, you decide to derive it from PegThing, the most basic class. Since at least some of the
children of the PegThing container are PegWindow derived objects, you will need to make the PegThing
container class a viewport owner. If you don’t do this, the PegWindow derived children of the container
class won’t show up on the screen. You can make the PegThing container class a viewport owner
simply by adding the PSF_VIEWPORT system status in the container class constructor:

AddStatus(PSF_VIEWPORT);

Now your container class will work correctly, and both PegWindow derived children and simple children
will be displayed when the parent container class is displayed.

Fonts
The PegFont type contains information about each font used in your application. The PegScreen text
output and text information routines require a pointer to a PegFont structure as a parameter. You do not
have to create these structures manually, since the PegFontCapture utility program will automatically
generate this data structure for you, along with the associated offset table and data table.

By default, only two fonts called SystemFont and MenuFont are used. SystemFont is slightly larger than
MenuFont, and is used for the title text in windows, and the strings in text boxes and string objects.
MenuFont is used by menu bar and menu buttons, and by the PegPrompt and PegTextButton objects.
You can easily change the font used by any text-related objects at run time by calling the SetFont()
member function for that object after the object has been created.

Please note that fonts used by RTPEG-32 use the standard 1252 ANSI code page (also called ISO
8859-1 or Latin 1) or Unicode encoding, while RTTarget-32’s text mode display routines use the OEM
437 code page. RTPEG-32 switches RTTarget-32’s input code page to 1252 at initialization. The
Unicode version of RTPEG-32 does not use code pages.

Default Fonts

Custom fonts can always be used through method SetFont(). To make a font a default font, use static
member method SetDefaultFont or class PegTextThing:

static void SetDefaultFont(const UCHAR uIndex, PegFont * pFont);

The function sets a default font for an application and not just for one particular object. Parameter
uIndex specifies for which purpose the given font is the new default:

334 On Time RTOS-32

Scrolling

PEG_TITLE_FONT Titles
PEG_MENU_FONT Menus
PEG_TBUTTON_FONT Text Buttons
PEG_RBUTTON_FONT Radio Buttons
PEG_CHECKBOX_FONT Ceck Boxes
PEG_PROMPT_FONT Prompts
PEG_STRING_FONT String
PEG_TEXTBOX_FONT Text Boxes
PEG_GROUP_FONT Groups
PEG_ICON_FONT Icons
PEG_CELL_FONT Spreadsheet Cells
PEG_HEADER_FONT Spreadsheet Headers
PEG_TAB_FONT Tab Control Labels
PEG_MESGWIN_FONT Message Windows
PEG_TREEVIEW_FONT Tree View

The Vector Font
Fonts created with PegFontCapture are variable width bitmapped fonts. The disadvantage of bitmapped
fonts is that a new font is needed for each point size and style used by the application. RTPEG-32’s
built-in vector font can be used to create any number and size of bitmapped fonts at run time. They can
then be used just like any other fonts.

The PegScreen member functions MakeFont() and DeleteFont() can be used to create and delete a
bitmapped font from the vector font. The following is an example of using the vector font in an applica-
tion program.

void MyWindow::Draw(void)
{
 BeginDraw();

 // create 20 point font, not bold, italic:
 PegFont * MyFont = Screen()->MakeFont(20, FALSE, TRUE);

 // use MyFont here to draw text on the screen
 DrawText(.., MyFont);

 ...
 // after the program is done with the font, is should be deleted:
 Screen()->DeleteFont(MyFont);
 EndDraw();
}

A bitmapped font created at run time can be assigned to any text related object such as a PegText-
Button or PegString. However the user must insure that the font has been created before it is assigned
to the object, and it must also be deleted after the object has been destroyed.

Scrolling
PegWindow provides the capability of adding scroll bars and using those scroll bars to pan or move the
client area of the window. Scroll bars are added by calling the SetScrollMode() PegWindow member
function.

The scroll bars added to the window make use of two virtual PegWindow functions: GetHScrollInfo and
GetVScrollInfo. When a scroll bar needs to update itself, it calls these parent window member functions
to learn the scroll bar limit, current setting, and percentage visible data. GetHScrollInfo() and GetVScrol-
lInfo() receive a pointer to a PegScrollInfo structure. It is the job of these functions to fill in the PegScrol-
lInfo wMin, wMax, wCurrent, wStep, and wVisible values so that the scroll bar is correctly positioned.

The PegWindow class provides default implementations of GetHScrollInfo and GetVScrollInfo. These
implementations examine all client-area children of the window to determine the outer limits that the
scroll bars should allow scrolling to. This default implementation also uses the window client area width
and height as the scroll bar ’visible’ value.

Part IV RTPEG-32 335

Chapter 2 Programming with RTPEG-32

The default implementation works well in most cases, and makes it very easy to create scrolling client
areas. All you need to do is add a child window to a scrolling parent that is much larger than the parent
client area. The default implementation will adjust the scroll bars such that the entire child window can
be viewed by moving the horizontal and/or vertical scroll bars.

In some cases the default operation does not provide the required functionality. In these cases you can
override the GetHScrollInfo and GetVScrollInfo functions to return custom scrolling information. For
example, suppose you want to create a continuous-time plot of data values, and use a horizontal scroll
bar to move back and forth in the time period displayed. In this case you would create a derived
PegWindow class in order to draw the chart data in the window client area. You would also provide an
overridden version of the GetHScrollInfo function to make the horizontal scroll bar reflect the accumu-
lated time values. In this case, the ScrollInfo minimum value might be the starting time of data recording,
the maximum value would be the current time, and the visible amount would be the time period visible in
the window client area.

336 On Time RTOS-32

Driver VESA_8

Chapter 3
Screen Drivers

RTPEG-32 is shipped with six different screen drivers, all of which are implemented as classes derived
from PegScreen. However, the internal class declarations are not accessible to the application. Only
methods defined by the abstract base class PegScreen should be used by an application.

Each driver implements a unique function to initialize it. These functions return a pointer to the
PegScreen derived calls of the respective driver or NULL, if initalizing the driver fails.

The DOS utility program VESATEST.COM shipped with On Time RTOS-32 can be used to determine
which drivers are suitable for a particular target computer.

The source code of all drivers is available in directory Driver\Peg. If you need additional screen drivers,
please contact On Time for further information.

Driver VESA_8
This driver is initalized with function:

PegScreen * CreatePegScreen_VESA_8(int Width = 800, int Height = 600);

VESA_8 supports any VESA 8-bit color modes if the complete video memory is accessible in a linear
address range. VESA BIOS version 2.0 or higher is required. This driver does not set the video mode at
run time; rather, it expects that the desired mode has been set by RTTarget-32’s boot code using the
GMode command.

Parameters Width and Height are only evaluated by the Windows emulation drivers. On the target, the
screen resolution is determined by the current graphics mode set by the boot code through a GMode
command.

If the current video mode is not a VESA 8-bit color mode, or the video mode does not use a linear frame
buffer, NULL is returned.

Driver VESA_16
This driver is initalized with function:

PegScreen * CreatePegScreen_VESA_16(int Width = 800, int Height = 600);

VESA_16 supports any VESA 15- or 16-bit color mode if the complete video memory is accessible in a
linear address range. VESA BIOS version 2.0 or higher is required. This driver does not set the video
mode at run time; rather, it expects that the desired mode has been set by RTTarget-32’s boot code
using the GMode command.

Parameters Width and Height are only evaluated by the Windows emulation drivers. On the target, the
screen resolution is determined by the current graphics mode set by the boot code through a GMode
command.

If the current video mode is not a VESA 15- or 16-bit color mode, or the video mode does not use a
linear frame buffer, NULL is returned.

Driver VESA_24
This driver is initalized with function:

PegScreen * CreatePegScreen_VESA_24(int Width = 800, int Height = 600);

VESA_24 supports any VESA 24-bit color mode if the complete video memory is accessible in a linear
address range. VESA BIOS version 2.0 or higher is required. This driver does not set the video mode at
run time; rather, it expects that the desired mode has been set by RTTarget-32’s boot code using the
GMode command.

Part IV RTPEG-32 337

Chapter 3 Screen Drivers

Parameters Width and Height are only evaluated by the Windows emulation drivers. On the target, the
screen resolution is determined by the current graphics mode set by the boot code through a GMode
command.

If the current video mode is not a VESA 24-bit color mode, or the video mode does not use a linear
frame buffer, NULL is returned.

This driver is somewhat slower than VESA_8, VESA_16, and VESA_32 due to poor pixel alignment in
the video memory.

Driver VESA_32
This driver is initalized with function:

PegScreen * CreatePegScreen_VESA_32(int Width = 800, int Height = 600);

VESA_32 supports any VESA 32-bit color modes if the complete video memory is accessible in a linear
address range. VESA BIOS version 2.0 or higher is required. This driver does not set the video mode at
run time; rather, it expects that the desired mode has been set by RTTarget-32’s boot code using the
GMode command.

Parameters Width and Height are only evaluated by the Windows emulation drivers. On the target, the
screen resolution is determined by the current graphics mode set by the boot code through a GMode
command.

If the current video mode is not a VESA 32-bit color mode, or the video mode does not use a linear
frame buffer, NULL is returned.

Driver VGA_4
This driver is initalized with function:

PegScreen * CreatePegScreen_VGA_4(int Width = 640, int Height = 480);

VGA_4 supports standard VGA BIOS mode 12h and VESA mode 102h, which is 16 color and
640x480/800x600 pixels resolution. This driver does not set the video mode at run time; rather, it
expects that the desired mode has been set by RTTarget-32’s boot code using the GMode 12h or
GMode 102h command.

Parameters Width and Height are only evaluated by the Windows emulation drivers. On the target, the
screen resolution is determined by the current graphics mode set by the boot code through a GMode
command.

If the current video mode is not 12h or 102h, NULL is returned. Note that this driver is significantly
slower than the VESA drivers due to the pixel plane organisation of the video memory.

Driver VGASCRN
This driver is initalized with function:

PegScreen * CreatePegScreen(void);

Driver VGASCRN does not require any BIOS support, but it needs 100% VGA compatible video
hardware. This driver will set the video controller to 16 color and 640x480 pixels resolution.

Note that this driver is significantly slower than the VESA drivers due to the pixel plane organisation of
the video memory.

338 On Time RTOS-32

Demo Cross Reference

Chapter 4
Demo Programs

This chapter describes the various graphics demo programs shipped with RTPEG-32. If you intend to
run these programs under the debugger, be sure to use the Graphics Monitor (GraphMon) to boot the
target. All demos except PegDemo expect to run with a 256 color VESA mode.

Demo Cross Reference
The table below lists all RTPEG-32 demo programs with the classes used:

PegDemo Robot Table TreeView

PegDialog PegButton PegTitle PegTitle
PegWindow PegPrompt PegMenuBar PegTreeView
PegDecoratedWindow PegThing PegTable PegTreeNode
PegTextBox PegPrompt PegMessageWindow
PegTextButton PegSlider PegIcon
PegTitle PegTextButton PegTextButton
PegMenuBar PegTimer PegPrompt
PegStatusBar PegAnimatedWindow PegRadioButton
PegMessageWindow PegGroup
PegString
PegEditBox
PegPrompt
PegHorzList
PegBitmapButton
PegComboBox
PegSlider
PegProgressbar
PegSpinButton
PegRadioButton
PegCheckBox
PegGroup
PegMLTextTextButton
PegTimer
PegVertList
PegHorzList

Notebook Spread Guage Dialog Terminal

PegTitle PegTitle PegWindow PegCheckBox PegTerminalWin
PegMenuBar PegMenuBar PegPrompt
PegNotebook PegStatusBar PegString
PegTextBox PegSpreadSheet
PegGroup PegMessageWindow
PegPrompt
PegCheckBox
PegRadioButton

All RTPEG-32 command line demo makefiles contain an additional target with letter "W" appended to
the demo’s name to build a Windows version. For example, the command:

make PegDemoW

would build program PegDemoW.exe which can execute under Windows.

Part IV RTPEG-32 339

Chapter 4 Demo Programs

Program PegDemo
PegDemo is the largest of all RTPEG-32 demos and serves as an introduction to what RTPEG-32 can
do. Many different classes are demonstrated. Unlike all other demos which use the VGA_8 driver, this
demo also shows how a program can dynamically detect at run-time which driver should be used. By
defining preprocesor symbol RTK32 and/or PEG_UNICODE, PegDemo shows how to use RTPEG-32
with RTKernel-32 and multiple threads and/or with Unicode support enabled.

Program Robot
This demo shows how several bitmaps are displayed in rapid sequence, giving the impression of a video
film.

Program Table
This demo shows how to use class PegTable and how a table can be populated with objects of different
types.

Program TreeView
This demo displays the RTPEG-32 class hierarchy using class PegTreeView.

Program Notebook
Notebook demonstrates several features of the PegNotebook class.

Program Spread
This program shows a spreadsheet using the PegSpreadSheet class.

Program Gauge
This demo shows how off-screen drawing can be used to display animated controls.

Program Dialog
Program Dialog is a small and simple program showing how information is passed to and retrieved from
controls which make up a dialog box.

Program Terminal
This demo shows a PegTerminalWin and how to add a simple command processor to the window.

Program Unicode
Demo program Unicode is only included with the RTPEG-32 Source Code product for Microsoft Visual
C++ and Borland C++. It allows switching the display of all strings between English and Japanese by
clicking on a button at run-time. All string references make use of the String Table, which is a multi-di-
mensional array of Unicode strings produced by WindowBuilder. (Note that the program’s windows
themselves are not included in the WindowBuilder project of this demo.)

The demo program switches between the normal fonts (SysFont and MenuFont) and the Unicode font
when switching between English and Japanese. This isn’t really necessary but the appearance of the
normal fonts is slightly better than the Unicode font. The Unicode font used for this demo is MS Song.

The process for creating the Unicode font is this: Using Fontcapture, generate individual fonts for each
code page required for the Unicode font. For this demo, the following code pages were used to produce
a few font files:

• Latin-1 code page (unilatin.cpp)

• Hiragana code page (hiragan.cpp)

• Katakana code page (katakan.cpp)

340 On Time RTOS-32

Program Unicode

• CJK code page. There is a limitation in the PegFont that prevents any one font from being more
than 65k bits wide. Since CJK contains about 28,000 characters, this code page is broken into
sections. The natural place to divide this is by Unicode hex ranges, i.e. 0x4000 to 0x4fff, 0x5000 to
0x5fff and so on. The font files generated, Kanji4 (CJK characters 0x4000 to 0x4fff) and Kanji5 -
Kanji9 each contains 1000 hex CJK characters.

These are the code pages needed to support English, Japanese, Chinese, and Korean.

To maintain a multi-language string table in WindowBuilder, do the following: In WindowBuilder, create a
project. Under Configure|Languages, define how many languages are required and what they are
named. Next create the Unicode font(s). Click on the Fonts tab and use Project|Add Font. Select the
Composite option to create one large font from several smaller fonts. Select the Reduce option to have
WindowBuilder create a reduced PegFont which contains only those characters actually used in the
string table, instead of all 30,000 characters contained in the total composite font. Enter a name for the
composite font. When Composite Font is checked, the button changes to say component fonts. Clicking
on this button will display a table that allows defining which sub-fonts will be included in the composite
font. In this demo, the Add button was used to add all of the individual fonts defined above.

Under Project|String Table, all strings of the application can then be entered and edited. When done,
Project|Update|Strings will generate the strings source files (by default, files wbstring.hpp and
wbstring.cpp). These files enumerate all string Ids and the encoded Unicode strings and must be
compiled with the application.

Part IV RTPEG-32 341

Chapter 5 Utility Programs

Chapter 5
Utility Programs

RTPEG-32 is delivered with three host tools to aid developing embedded GUIs. These programs are
described in this section.

Window Builder
Window Builder is a rapid prototyping and design tool used to quickly create windows and dialogs.
Window Builder is a Win32 application program and will run under Windows 95/98/NT/2000. Window
Builder is actually a PEG application program to guarantee that all GUI objects are displayed in Window
Builder by the same code as on your target.

Project Files
Window Builder project files have the extension ".wbp". The project file maintains information about the
source files, target system, images, strings and fonts, etc. used by the application. You can save your
work at any time, and later re-open the project file and modify your target screens.

All project file path information, such as the location of image files referenced by your project, is main-
tained in a relative path format. This means that Window Builder project files can easily be copied from
one computer to another as long as all related font and image files are maintained in the same sub-di-
rectory structure. If Window Builder does not find a required image or font file using the relative path
information, it always attempts to find the file in the directory containing the Window Builder project.

Output Files
The goal of Window Builder is to produce C++ source files, ready to compile and run on the target
system. These source files may be one of three types: C++ class definitions, image file data structures,
or string table data. For most .cpp source files, Window Builder also creates a corresponding header file.
These header files contain class prototypes, message definitions, control IDs, string IDs, and other defi-
nitions required for the application software to compile and run.

Each top-level module in a Window Builder project will generate one C++ source module and one corre-
sponding header file. These files contain the PegWindow derived classes that constitute the application
screens. The source code created by Window Builder contains both the object initialization code
required to create the window or dialog under construction, and the message handling functions
required to process any signals enabled for individual controls. While it is your job to insert the actual
signal handling code, Window Builder creates a framework with the individual signal case statements.

If you use BMP, GIF, or JPG images in your project, Window Builder will also produce a single image
source file containing all images added to the project.

Project Window

The Window Builder environment contains three main windows: the Project window (upper left), the
Preview window (lower left), and the Target window on the right. The Project window is used to modify
global configuration settings, maintain the source files included in the open project, and instruct Window
Builder to perform various operations affecting the entire application program. The Preview window
displays images and fonts that you have added to your project and allows you to drag those images and
fonts to various target objects. The Target window provides true WYSIWYG emulation of the target
system display screen.

All global project information is maintained in Window Builder Project window. A project consists of any
number of source files and associated classes, along with fonts, images, and strings used. While it is
possible to use multiple project files for a single system, this is discouraged since in this case there is no
way for Window Builder to prevent the duplication of source code or data.

Internally, the Project window directly corresponds to and continuously updates the Window Builder
project file with extension .wbp (Window Builder Project). The Project window contains a command
menu and a PegNotebook control described in the following sections.

342 On Time RTOS-32

Window Builder

Project | New/Open/Save/Close

These commands create, open, save, or close a project file.

Project | Add Module

This command adds a new source module to the current project. One or more source modules must be
added to a new project before you can edit it with Window Builder. The Source page of the notebook
must be selected for this command to be active.

Project | Add Image

This command adds a new image to the current project. After an image has been added, it can be used
to fill the client area of various controls. The source for the image must be a .BMP (Windows Bitmap) or
.GIF (Compuserve .GIF) file.

Window Builder uses RTPEG-32’s run-time image conversion classes that are included with the library
to read, decompress and process these images. When you update your output image file, these images
will be saved in C++ data array format.

The Image page of the notebook must be selected for this command to be active.

Project | Add Font

This command is used to add a custom font. Once a font is added, it can be applied to any text-related
object simply by dragging the font from the Preview window to the object that should be assigned the
custom font. The input for adding a font should be a C++ font file created with PegFontCapture.

The Fonts page of the notebook must be selected for this command to be active.

Project | Update | Source

This command instructs Window Builder to update the currently selected source and include files to
reflect the changes in the current project. Please refer to section Source Code Generation later in this
chapter for details.

Project | Update | Images

This command instructs Window Builder to re-process all input image files, and save the resulting
PegBitmap information to the C++ image file in the source directory. Note that the output image file is
completely regenerated each time an image update is performed.

The process of generating the output image file can be quite complex and take up to a few minutes,
depending on the target screen color resolution.

If the target system supports 256 or more colors, Window Builder will scan each image in the project,
create an optimal palette for displaying those images, remap the image colors back to the optimal
palette, RLE compresses each image, save the custom palette, and save each newly-encoded image
file in C++ style source data structures.

For 16 color targets, the Update Images command is slightly less complex. In this mode, Window
Builder dithers each image to a fixed orthogonal 16-color palette, RLE compresses the images for which
this saves memory, and saves the resulting bitmaps in C++ style source data structures. For 2 and 4
color targets, the Update Images command simply saves each image in the selected format.

Project | Update | Strings

This command instructs Window Builder to re-create the string data table and associated string ID
header file. Note that this file is completely regenerated each time an Update Strings command is
issued.

For Unicode enabled systems, this command does far more than simply write out all strings as C++
string arrays. Rather, Window Builder performs the following operations:

• Scans string tables for all languages, creating the global table of required glyphs.

• Re-scans all fonts used by the application, saving only the required glyphs.

Part IV RTPEG-32 343

Chapter 5 Utility Programs

• Re-encode string information using new encoding of glyph indexes.

• Create C++ wide-string arrays using newly encoded character strings.

Project | String Table

This command brings up the string table edit window. This window allows you to define the literal strings
and string IDs used for each language in the system. The string table is further described in section
String Table.

Configure | Directories

This dialog window allows you to specify the complete path for your source files, include files, and image
files. The Source Files directory indicates where the source files generated by Window Builder will be
saved. The Header Files directory indicates where the header files generated by Window Builder will be
saved. This directory can be the same directory as the source files directory, if desired.

The Image directory indicates where the source image files are to be found. Note that all of your source
images must be saved in a common directory. This is where Window Builder will look for your image
files in order to convert them into the PegBitmap source code format. All converted images are saved in
a single output file located in the source files directory. The name of this single output file is specified in
the Image File Name field.

The String Filename field allows you to specify the name of the Window Builder output file that will
contain your project string data. There are actually two output files for string information; one contains
the literal string table, and the other is a header file containing the string IDs for each string. Both of
these files will have the filename specified in the String Filename field; however, the literal string table
will have the extension .cpp and will be saved in the Source Files directory, while the associated header
file will have extension .hpp and will be saved in the Header Files directory.

The Backup directory indicates where Window Builder will save backup copies of files before updating
them. Backups are created for all source, image, string, font, and project files. To disable file backups,
set the Backup directory to a NULL string. It is not recommended that you disable file backups.

Configure | Target

The target’s screen resolution and color dpeth can be set here. For a target with more than 256 colors,
specify 256 colors.

Configure | Default Fonts

This command allows you to inform Window Builder of the default font settings you would like to use.
These settings default to the standard settings provided in the RTPEG-32 library. If you modify the
default setting, Window Builder must be informed of this to prevent the generation of unnecessary
‘SetFont()’ function calls. If you are using custom fonts for some or all of the default fonts, you must first
install these fonts before you can configure them using this command. Installing new fonts into your
project is described in a section Fonts Page.

Configure | Languages

This command invokes a dialog window that allows you to specify the number of languages supported
by the system software and the character encoding used for string storage. This in effect determines the
layout of the String Table that will be generated by Window Builder, and also determines how strings will
be entered when new objects are created that display text or string data.

You will be prompted to enter a name for each supported language. These language names will be
saved as an enumeration in the string data file. For example, you might configure your system to
support 3 languages, English, German, and Dutch. The first language name is the default language at
application startup.

If your application does not require multiple language support, or if you for any reason do not wish to
maintain your string data in the Window Builder string table, you can de-select the Enable String Table
checkbox on the language configuration page.

344 On Time RTOS-32

Window Builder

Configure | Style

This command invokes a dialog window that allows you to enter several lines of ASCII text that will be
included in the source file headers generated by Window Builder. You can also modify various style
settings which control the format of the source code generated by Window Builder.

Configure | Remote

With this option, Window Builder can be instructed to display the complete target screen in a separate
window on the Windows desktop in addition to the smaller window in the target preview pane. If you
select Test Mode Only, the remote target screen will be updated only when you select View | Test in the
target window menu. Contiguous causes the remote screen to be updated automatically while you edit.

Source Page
Window Builder organizes the application program possibly containing hundreds of unique application
windows into unique modules. Each module corresponds to one window or dialog and produces one
source file and one include file.

The Source page of the Project window notebook control contains a PegTreeView depicting each of the
modules included in the current project. Each top-level node of the PegTreeView control represents a
top level class constructed with Window Builder. If you expand a top-level node, you will see the corre-
sponding source and header file associated with that top level class. If you select a source module by
left clicking with the mouse, the Target window will display the objects defined within that source
module.

The Target Window always operates on the selected module. If no module is selected, none of the
Target Window editing commands are operational. You can at any time create a new module by
selecting the Project | Add Module command.

The Filename field allows you to specify the output filename for the source file Window Builder will
generate for this new module. Any valid filename may be entered into this field. You do not need to
specify an extension, as Window Builder will automatically write both a .cpp and a .hpp file for this
module.

The ClassName field allows you to specify a name for the PegWindow derived class you are creating,
i.e. the name of the class which will define the window or screen you are developing.

The Parameters field allows you to specify any user-defined parameters you would like to pass to the
class constructor (in addition to the parameters Window Builder will always pass to the constructor). If
you wish to pass extra parameters, you should type them on this line exactly as they should appear in
the constructor prototype, i.e. Type-Name, Type Name, etc. for each parameter.

The Startup Window checkbox specifies that this window will be the first displayed when your application
executes. When this checkbox is selected, Window Builder automatically writes the PegAppInitialize
function in this module such that this window is created and added to PegPresentationManager during
program startup.

The Base Class field allows you to specify which RTPEG-32 library class will be the base class for your
new Window. This will usually be PegDialog, but could also be PegWindow, for example.

The Overrides group is used to tell Window Builder which function of the base class will be overridden
by the class you are defining. Only two options are supported by Window Builder (although you can, of
course, add your own function overrides to the completed class). These are the Message function and
the Draw function. The default setting of this field indicates that you will override the Message() function
(to catch signals from child controls) but will not override the Draw() function. This is the most common
situation.

The Absolute Position checkbox allows you to use an alternate form for the class definition. Normally,
Window Builder produces a class that accepts a left-top corner position as the first two incoming para-
meters. The window and all child controls are positioned relative to this left-top position. If desired, you
can produce a class that is absolutely postioned, i.e. there is no left-top incoming parameters and the
window and child controls use absolute pixel positioning.

Part IV RTPEG-32 345

Chapter 5 Utility Programs

When you have completed entering in the required information, a new object of the selected type is
created and displayed in the Target window, and the new source file is added to the source page tree
view control.

To remove a source module and its associated objects from your project, select the source module in
the tree control and press the Delete key on your keyboard. Following confirmation, the source module
is removed from the current project. Note that the actual source files corresponding to the selected node
are not deleted. Window Builder simply removes all information about the source file from the current
project.

To modify the parameters associated with a source module after the module has been created, you can
right-click with the mouse on the module in the Source notebook page. This will bring up a dialog
window allowing you to change the module name, file name, and other module parameters.

Note that you are not allowed to delete sub-nodes from the PegTreeView displayed within the source
page of the notebook. This is accomplished by individually deleting objects from within the Target
window as described below.

Images Page

The Images Notebook page lists the BMP, GIF, and JPG image files included in the current project.
Images are imported into a project by using the Project | Add Image command on the menu bar while
viewing the Images notebook page.

Images are deleted by selecting the image in the Image notebook page and pressing the Delete key.
Any objects that had been using a deleted image are re-configured to use a default bitmap.

When an image is selected with the mouse or keyboard on this notebook page, a preview of the image
is shown in the preview window. The image can be applied to a bitmap-based control by dragging the
image from the preview window to the target control.

When you assign an image to certain types of objects by clicking on the image and dragging it onto the
object, Window builder will ask you if you would like to re-size the object to fit the image. If you select
yes, the target object is re-sized such that the image fits neatly within the object. If you select no, the
image is centered within the client area of the target object and the target object size is not modified. For
other object types, resizing is done without prompt since this is the only mode of operation supported by
that object type.

Fonts Page
The Fonts page is very similar to the Images page. This page lists the fonts that have been added to the
project and allows you to drag-and-drop fonts onto specific objects.

In a new project, two fonts are listed on the Fonts page. These are the System font and the Menu font.
These fonts are part of the RTPEG-32 library and are always available for use. Note that you cannot
delete these fonts from a project.

You can add any number of additional fonts to a project and apply them to any text-display control. You
must pre-generate the fonts you will add to your project by using the FontCapture utility program.
Window Builder is able to read the C++ source files produced by FontCapture and create PegFont data
structures in memory using these source input files.

The operation of adding a new font to a project varies depending on the language configuration settings.
If the current project is configured to use only ASCII characters without the String Table, adding a new
font is simply a matter of choosing a font file produced by the FontCapture program.

Composite Fonts and Reduced Fonts

If the project is configured to support multiple languages and Unicode, the operation of adding and
defining a font becomes more complex. This is due to several factors, primarily the large number of
characters (> 30,000) which may be required for the support of multiple languages.

346 On Time RTOS-32

Window Builder

The Font Name field assumes the name of the source font for standard (i.e. non-Composite, non-Re-
duced) fonts. For Composite or Reduced fonts, Window Builder will produce a completely new PegFont
from the input font data when the String Table file is generated. In this case, you can assign any name
to the new font by typing into the Font Name field.

Composite Fonts are fonts collections, produced and managed by Window Builder, containing multiple
sub-fonts produced by the FontCapture program. Composite fonts are needed to overcome limitations in
the character set or alphabet included in most TrueType or BDF font files. In many cases you will find it
is impossible to obtain one single TrueType or BDF font that contains all of the characters required by
your application program. For example, one TrueType font may contain the Latin and Cyrillic characters,
while another contains Kanji and Hangul. It is very rare to find a single font that contains characters for
many different alphabets.

In order to avoid re-assigning the font associated with every PEG object when a language change is
made, it is desirable to have a single font (or multiple fonts of different sizes, each containing the same
character set) that contains all of the characters used by your application program. This is the reason for
Composite fonts. You can combine any number of sub-fonts into one SuperFont potentially containing
all the characters from every sub-font.

The true power of Composite Fonts is realized when combined with the Reduce Font option. This option
instructs Window Builder to produce a new PegFont wherein only those characters actually used by your
application strings are included in the new PegFont. This information about which characters to include
is obtained by examining all strings found in the project String Table (described below). By using the
Reduce Font option, you can save a tremendous amount of ROM storage for your fonts for languages
with very large alphabets, such as Asian languages. If you select the Composite Font option, you can
then select the Component Fonts button to edit a table which defines each sub-font that will be included
in the composite font.

For each sub-font that you add to your composite font, the range of characters used from the sub-font
will default to the full range of characters contained in the sub-font. Since it is possible that several sub-
fonts may contain overlapping characters, you may need to edit the First Char/Last Char ranges
displayed in this table so that each sub-font provides a non-overlapping range of characters to the final
composite font.

When you have completed defining the sub-fonts that will make up your composite font, you simply
close this table by pressing the Done button, and after naming your composite font click the OK button
on the Font properties dialog.

You can return and re-edit your Composite font settings at any time by right-clicking on the font name in
the Font tree display. Note, however, that while you can change the component font list for a Composite
font, you cannot change a previously added non-Composite font into a Composite font, nor can you
change a Composite font into a normal font. Instead, you must delete the font from your project and
newly add the font using the desired settings.

Target Window
The Window Builder Target window displays as accurately as possible a representation of the target
system display screen.

When you create objects within the target window, you are actually defining new instances of RTPEG-32
objects. These objects are dynamically constructed and added to the Target Window, and operate just
as any normal RTPEG-32 objects. This is important to remember. As you create your windows and
dialogs within Window Builder, you are creating a working RTPEG-32 program. You can at any time
interact with the objects you have created, just as the end user of your system software will interact with
the final system.

This also causes some confusion sometimes when you first begin working with Window Builder. For
example, consider the case where you have created a new modal dialog window, and you set the dialog
system status to be non-movable. Your intention, of course, is that the end-user will not be able to move
the dialog window. However, you will not be able to reposition the dialog window from within Window
Builder either! In order to move the dialog window, you will have to temporarily set the system status to
be movable, move the dialog to the desired position, and then reset the system status to the desired
value.

Part IV RTPEG-32 347

Chapter 5 Utility Programs

As you work within the Target window, the internal copy of the Window Builder project file is updated to
reflect all of your changes. The source code files for your project are not updated until the Project |
Update | Source command is invoked.

The target window becomes active when a source module is selected in the project window. If no source
files are included in your project, you must first create a new source module before you will be able to do
editing in the target window. When you create a new source module, a default object of the type defined
in the new source module is generated and is the initial object displayed in the target window.

Target Window Status Line

The Target window status bar helps you in positioning and sizing the objects you create and place on
the Target screen. The first status bar field indicates the type of object that has been selected. The next
field indicates the top-left pixel position of the selected object(s). The next field indicates the width and
height of the selected object(s). The last field on the status line indicates the current pointer position
when the pointer is over the Target window. This pointer position is relative to the top-left corner of the
target screen, which is position 0,0.

Selecting Objects in the Target Window

Almost all selection and editing of objects in the Target window is done using the mouse. When you click
on an object in the Target window, a dark border is drawn around the object to indicate that the object
has been selected. You can re-size any object by dragging the dark border with the left mouse button
held down until the desired size is obtained.

You can move an object by either dragging a selected object with the mouse, or by using the keyboard
arrow keys.

Multiple objects can be selected by holding the Ctrl key down while right-clicking on additional objects.
When multiple objects are selected, the selection box expands to contain all selected objects.

The target window menu commands always operate on the currently selected object. You should select
an object or group of objects before selecting one of the menu commands described below.

Add Menu

The Add Menu brings up sub-menus of various control an window objects. Selecting an object adds it to
the selected current object. In this case, the currently selected object would usually be the top-level
window or dialog, or possibly a PegGroup.

Note that adding a Vertical Scroll or Horizontal Scroll adds a client area scroll bar. This is a user-defined
scroll bar rather than a scroll bar which acts to scroll the window client area. Normal non-client-area
scroll bars are added by adjusting the window properties.

Edit | Copy

Copies the selected object or objects, including all status and style flags. Only one object can be
selected when the Edit | Copy command is issued; however, that object can have any number of
children. When an object such as a PegGroup is copied, and the PegGroup has children, the Group and
all of the group’s children are copied.

When this command is selected, Window Builder automatically changes the selection box to contain the
parent of the current object. This allows you to quickly copy and paste an object into the objects parent,
which is the most common operation. You can select an object, copy it, and then select an entirely
different object to paste the copy into.

Edit | Paste

This command pastes an exact copy of the copied objects into the center of the selected object. Window
Builder automatically selects the parent of the copied object as the target for the paste command. You
can override this operation by selecting any other parent before selecting the paste command.

348 On Time RTOS-32

Window Builder

Edit | Properties

This command invokes a properties dialog for the selected object. One and only one object must be
selected in order for this menu command to be active. You can also invoke the edit properties dialog
window by right-clicking with the mouse on the selected object.

The properties dialog is context sensitive depending on the type of object which has been selected. In
general, you can adjust the border style, system status flags, and style flags for a given object by
selecting each page of the properties dialog notebook control. Many object types have additional
settings which can be controlled using the properties dialog.

The properties dialog is also where you specify the text string associated with many object types such
as PegPrompt or PegString. While you can directly type text into a PegString object, this does not set
the initial text value displayed by the string. The initial text displayed is determined by the String ID asso-
ciated with the object in the object properties dialog. The same is true for PegTextBox objects.

For text-based control types, the properties dialog includes a notebook page with a table labeled
Extended that allows you to select the string ID associated with an object. This string ID is a member of
the string table maintained by Window Builder. You can view the string table by selecting the drop-down
list of the ID field.

If you have disabled the use of the Window Builder string table in the Project | Configure | Language
dialog, the String page of the properties notebook allows you to directly enter the ASCII string used to
initialize a control.

Layout Menu

This group of commands is used to evenly align any number of child controls. Before activating this
command, one or more child controls should first be selected using the method described above. The
above group of commands can then be used to align the group of objects as desired.

View | Test Mode

This command places the target window in test mode. In test mode, all of the Window Builder windows
are hidden, leaving only your newly created window or dialog on the screen. While in this mode, your
new window or dialog will operate exactly as on the final target system, although any message
processing code you have added to the window or dialog will not be operational from within Window
Builder.

While in test mode, you will not be able to select and edit objects. You can exit edit mode by closing the
window or dialog under test, or by pressing the Stop button placed in the lower right hand corner of the
screen.

View | Maximize

The maximized view is similar to Test Mode, but it only hides the project and preview windows,
enlarging the available view area for the target screen. The menu is still available, and the image can be
edited.

Note that you can also maximze Window Builder itself to get more space for the Target window.

String Table
If you have enabled the use of string tables in the Window Builder Project | Configure | Language dialog,
Window Builder will maintain a table containing all strings for all languages used by the application. In
this environment, all PegTextThing derived classes are constructed using StringID information, rather
than literal strings. This allows your system software to easily convert between different supported
languages.

The String Table is composed of an array of literal strings, a two-dimensional array of string pointers,
and an enumeration of string ID values. String ID values are just indexes selecting the correct row from
the two-dimensional table. Each table column is associated with one of the supported languages. If the
application supports only one language, the String Table is simply a single list of literal strings, an array
of string pointers, and an associated String ID enumeration.

Part IV RTPEG-32 349

Chapter 5 Utility Programs

The correct string table column is selected by the current language, which is maintained in a static
member variable of the PegTextThing class. This variable should be loaded with one of the enumerated
language names when the active language is selected by calling the PegTextThing::SetLanguage()
function. The default language is the first language configured in the Configure | Languages dialog box.

The string table is saved to the filename specified in the Configure | Directories dialog. The enumeration
of the language names and the string table IDs is saved in the corresponding String Table header file.
Each source file that uses the String Table must include the String Table header file in order to resolve
the string IDs and language names. This include is added to each source file generated by Window
Builder.

The String Table is edited by selecting the Project | String Table command on the Project window menu
bar.

The left-hand side of the String Table Editor window displays a PegSpreadSheet object containing each
of the strings used in your system. Each row of the table corresponds to a StringID, and each column of
the table corresponds to a supported language. The enumerated language names are displayed as the
table column headers.

The String Table can be displayed in a two-column or three-column format. You can change the format
by right-clicking over the spreadsheet and selecting the desired format in the pop-up menu. You can
also sort the string table entries by using the right-click pop-up menu. This menu provides commands to
shift the selected entry up or down in the string table.

The first language listed on your language configuration page is your project’s Reference Language.
This language will usually be English, but may be any language desired. The reference language is
important because this is the language you are working in when you work in the target window. This is
also the language which is always displayed when you view the table in three column mode.

String Table Edit Fields

The right-hand side of the String Table Editor window displays a series of fields for editing the selected
string. The first field, the ID field, is where you can modify the string ID name, which is the name asso-
ciated with each string ID. This name will be included in your string file as an enumerated list, and you
will use this name in your application software when you want to refer to a particular string. You can edit
this name simply by typing on the keyboard.

You can select the font to use while working in the string table using the drop-down list box labeled Font.
The selected font is displayed in the grid in the lower-right portion of the screen. This grid allows you to
select characters while editing the current string.

The second field on the right side of the String Table Editor window is the string literal edit window. This
field displays the string literal value using any of the fonts which are part of your project.

There are three methods for editing strings displayed in the string literal edit window: First, if the current
language alphabet is supported by your keyboard, you can simply type the string value. Second, you
can simply click on characters displayed in the font viewer window. As you click on the characters, they
are inserted into the current string at the current insertion point. Finally, you can type the JIS (Japanese
Industrial Standard) or Unicode encoding value in hexadecimal for the character you wish to insert. For
people who know the encodings for common characters, this is faster than finding the characters in the
font display window.

As you edit the selected string, the width of the string (in pixels) is displayed in the Width field.

The Notes button brings up a small note editor window. Notes are useful for including additional informa-
tion about each string, usually for the benefit of translators who will translate your English or reference
language strings into strings for the other languages.

The reference language is also important in the event that a translation is not required or available for
certain strings in your application. Empty (NULL) strings in any other language are replaced with the
corresponding (untranslated) string of the reference language.

350 On Time RTOS-32

Window Builder

Merging String Tables

The Merge button on the String Table Editor window invokes a series of dialogs that walk through the
merge process. In order to understand the reason for the merge operation, we need to examine the life-
cycle of a typical multi-language project development.

1. The system developers define the initial string table. The total number of languages and the
language names are defined using the Configure | Languages dialog.

2. The String ID names and the Reference Language (English) strings are initialized for all strings in
the application using the String Table Editor.

3. The Window Builder Project file, along with the WindowBuilder executable program, are distributed
to translators who will each fill in one column of the string table. These translators may reside at
the same location, but could also be located all around the globe.

4. The translators return WindowBuilder project files to you, and the returned project files each have
one or more additional columns of the string table filled in with translated strings.

The problem should now be obvious: The Merge operation will merge strings for selected languages
from a second project file into the current project file. The process is actually very simple as you are
guided step-by-step through the merge process. When WindowBuilder performs the merge, it looks for
matching string ID names in the secondary project. For each matching string ID name, if the selected
language in the secondary project has a non-NULL string value, that string value is copied into the
current project for that specific string ID and language.

Source Code Generation
The final goal of running Window Builder is to produce the C++ source code you will use to display your
application screens. You will need to edit and add your own program logic to the source files produced
by Window Builder. Most significantly you will need to add program logic to catch signals generated by
your child controls. You may also need to make any number of other additions and changes to the
source files produced by WndowBuilder.

At the same time, you will want to be able to run Window Builder again and again to modify your screens
and update the source files without losing any of your hand-coded changes. This is not difficult to do as
long as you understand how Window Builder updates your source files and follow a few simple rules.

When you instruct Window Builder to produce/update the source files using the Project | Update |
Source command, Window Builder first looks to see if the source file already exists. If it does, Window
Builder enters Merge Mode. In Merge Mode, Window Builder is very careful not to lose any of your
custom modifications. The rules are this: Window Builder will find and re-write the section of the source
file delimited by the start of the constructor and the comment line which reads:

/* WB End Construction */

To avoid losing your changes, never make any manual edits between the start of the class constructor
and this comment delimiter.

Window Builder also searches for the Message() member function, if present, and updates this function
to contain any new SIGNAL cases not already present. Window Builder will NOT remove case state-
ments from your Message function, even if the control which generated a specific SIGNAL is no longer a
child of the window. In short, deleting obsolete sections from your source files is your responsibility; in
the interest of safety Window Builder will not delete source lines from your Message function.

Any and all code outside of the class constructor and Message function is maintained without modifica-
tion during the source code merge process. That is, any other editing that you have done will be
preserved entirely during the source file update process.

Child Object Pointer Control

You can control the type and name of the pointer (if any) used when each child object of the top-level
window is created. Controlling how pointers are used is done by adjusting the basic properties, using the
properties dialog, for each child control. There are four types of pointers used by Window Builder during

Part IV RTPEG-32 351

Chapter 5 Utility Programs

code generation: Member pointers, Automatic Named pointers, Automatic Temporary pointers, and
Implicit pointers. We will describe each type below and describe how you can control the use of pointers
in the generated source code.

Implicit Pointers

An implicit pointer is used by Window Builder when no references to an object are made after the object
has been created and you have not chosen to create a member or automatic pointer. In this case,
Window Builder does not need to keep the address of the newly created child in any variable, and
therefore uses an in-line, implicit pointer to pass the child’s address to the Add() function. The following
is an example of source code produced by Window Builder that uses an implicit pointer:

Add(new PegPrompt(ChildRect, "Text"));

Note that the return value from the new operator is not saved, but is passed directly to the Add()
function. When no other pointer type is needed, this is the default pointer style used by Window Builder.

Temporary Pointers

This type of pointer is used by Window Builder when reference to an object is required after it has been
created, but you have not requested an automatic or member pointer to be created. In this case,
Window Builder will create a temporary automatic pointer to hold the address of the child object
instance. The temporary pointer is called Automatic because it is created on the execution stack, i.e.
space for the pointer is allocated automatically by the compiler on the stack, and the space is destroyed
when the function (in this case the class constructor) returns.

A common example of this might be a PegGroup container added to the top level window. During code
generation, Window Builder needs to maintain the address of the PegGroup instance while creating and
adding child controls to the group. Window Builder will default to using a temporary pointer for this
purpose, which produces the following source code:

PegThing * pChild1;

pChild1 = new PegGroup(...); // keep temp pointer to object
pChild1->Add(..); // add second-generation children to object
pChild1->Add(..); // ditto
Add(pChild1); // add object to top-level window

Window Builder will always use the generic names pChildx for temporary automatic pointers. Window
Builder will reuse the temporary pointers for new objects if needed and available during code generation.
In some cases, multiple temporary pointers are required simultaneously, in which case Window Builder
will create and use as many temporary object pointers as needed.

Automatic Named Pointers

Similar to automatic temporary pointers, Automatic Named pointers are created on the execution stack
and only exist during the class contructor. Named pointers are created by typing a name into the Pointer
Name field in the object properties dialog basic properties page and unchecking the Member Pointer
box.

Member Pointers

A member pointer is a pointer to a child object which is maintanied as a member variable of the parent
window class. This pointer is initialized in the class constructor and used at all times to reference the
child object. You can instruct Window Builder to create a member pointer for a child object by checking
on the Member Pointer checkbox in the properties dialog and typing a name in the Pointer Name field.

352 On Time RTOS-32

Image Convert

Image Convert
Image Convert (program Pimagcon) is a utility program that can be used to convert .BMP, .GIF, and
.JPG files into binary or source code formats supported by RTPEG-32.

Input files can be 1, 2, 4, 8, 16, or 24 bit-per-pixel formats. Likewise, Image Convert can generate 1, 2,
4, 8, 16, or 24 bit-per-pixel image files. During the image conversion process, the palette used to encode
the output image can be saved in source format, suitable for use in calling the PegScreen SetupPalette()
function.

The actual operation of Image Convert strongly depends on the selected output format. Image Convert
may perform color reduction, dithering, RLE compression, and transparency encoding for all input file
types. In addition, for 8-bpp output formats, Image Convert adds optimal palette generation.

While Image Convert can output PegBitmap structures in many formats, this is of little use if the
PegScreen driver being used on the target is not capable of properly displaying the bitmaps in the
format in which they are saved. For example, while Image Convert can save PegBitmap structures using
2-bpp encoding, this format should only be used if your derived PegScreen driver class understands and
can properly display images saved in 2-bpp format. The PegScreen derived interface classes provided
with On Time RTOS-32 support both 8-bpp bitmap encoding and the native encoding corresponding to
the color depth of the target display.

All of the options that can be selected on the Image Convert dialog window control the output of Image
Convert. The format and data content of the input file(s) is determined by Image Convert by reading and
parsing the input file header information.

If the target supports 256 or more colors, Image Convert can also perform advanced palette reduction
and optimization, allowing the creation and use of any number of color palettes, each of which is
optimized for the images displayed in the application. This option is best utilized along with batch image
processing (described below), which allows a custom palette to be created for optimal display of multiple
images. The input files for list processing can be any combination of the supported file types, and can
even have different internal formats in terms of the color resolution associated with each input file.
Image Convert utilizes an improved form of Heckbert’s Median Cut algorithm for color reduction.

Input File
The input file string allows you to select the source image file. You can either type in the name of the file,
or you can use the Browse button to select a file from your computer.

Only one file path\name can be entered in the Input File string field. If you want to process multiple input
images at one time, you should enter the image names in an ASCII command file and select the
command file as the input file. This is described in more detail in the section Batch Conversion.

The basic input file type is determined by Image Convert based on the input filename extension. For MS
or OS/2 Bitmap files, the filename extension should be .BMP. For GIF files, the filename extension
should be .GIF, and for JPEG files the filename extension should be .JPG. To process multiple input
files, the filename extension should be .CMD, which is interpreted as a command file.

Image Convert verifies that the file is truly of the type indicated by the file extension by attempting to
read the file header information and verifying that the file header makes sense for the indicated file type.
An error is reported if the file header information and filename extension do not correspond.

Output File
The output file string field allows you to specify where and to what file name Image Convert will save the
generated output file. Image Convert also uses this filename as the name of the final PegBitmap object.
For this reason, you should enter the filename in exactly the form you want the resulting bitmap to be
named, including upper and lower case characters. Image Convert pre-fixes the letters gb to the bitmap
name, and post-fixes the letters Bitmap. For example, the following output name:

C:\mybitmaps\House.cpp

will result in the final bitmap being named gbHouseBitmap. This is the name you will use in your source
code when referring to the bitmap. To use this bitmap on a PegBitmapButton button, for example, you
would then do something similar to the following in your source code:

Part IV RTPEG-32 353

Chapter 5 Utility Programs

extern PegBitmap gbHouseBitmap;

void MyWindow::MyWindow(...)
{
 Add(new PegBitmapButton(20, 20, &gbHouseBitmap));
 ...
}

The naming convention for the resulting PegBitmap structures is slightly different when batch
processing, which is described later.

Compression
Image Convert can optionally apply a simple RLE compression technique to the output data. The effec-
tiveness of this compression depends on many factors. If the input image is a computer generated
image with few colors, RLE compression can be very effective. If the image was produced with a
RAY-tracing package or from an actual photograph, RLE compression is less successful.

When RLE compression is enabled, Image Convert is required to save the output data in 8-bpp format,
regardless of what format was selected in the Output Colors field. This means that for 1-bpp, 2-bpp, and
4-bpp input images, turning on RLE compression forces Image Convert to first expand the image to
8-bpp format, and then apply RLE compression. Depending on the exact image file, this can actually
cause the final output file to be larger than if compression is not used.

For this reason, selecting RLE compression is actually only a suggestion to Image Convert. If RLE
compression is effective at reducing image size, the compression is performed. If compression does not
reduce the output image size, RLE compression is omitted. This decision is made automatically by
Image Convert during the conversion process. Therefore, the only reason to disable RLE compression is
if the PegScreen derived screen driver does not support RLE encoded PegBitmap formats. The
PegScreen drivers provided with On Time RTOS-32 do support RLE encoding.

RLE compression is almost always beneficial if you are using 8-bpp bitmap encoding, especially for very
large images. Compression ratios typically vary from 10:1 to 3:2, depending again on the source of the
image being processed.

The use of dithering on the output bitmap has a negative impact on RLE compression effectiveness.
Therefore, you should disable the Dither option if data size is the most important consideration in your
application. This forces Image Convert to do a best match color mapping of input to output colors.

Palette Options
Image Convert can apply various color optimization and dithering methods when converting the input
images to PegBitmap encoded data structures. The input images can be any combination of 2, 4, 16,
256, or true-color (i.e. 24-bpp) images. Image Convert will convert the images to the best possible repre-
sentations on the target system.

If the images contain a higher number of colors than are available on the target display, Image Convert
will reduce the number of colors in the source image. This reduction will either perform a best-match
remapping or a dithering algorithm, depending on whether or not the dithering option is selected.

Fixed Orthogonal

The Fixed Orthogonal palette option instructs Image Convert to use a pre-defined palette covering the
rainbow of colors available for 16 or 256 color targets. This is the only palette option when running with
fewer than 256 colors. When targeting 256-color operation, you must choose between the fixed pre-de-
fined system palette (the Fixed Orthogonal palette) or an optimal system palette created for the images.

Generate Optimal

The Generate Optimal palette option is only available if the target supports 256 color (i.e. 8-bpp) output.
This is the opposite of using a Fixed Orthogonal palette. When this option is selected, Image Convert
will create a custom palette for use with the input images. The custom palette will be saved at the top of
the output file, and will be named PegCustomPalette. The custom palette is simply an array of 256*3
unsigned characters, which is passed to the PegScreen::SetupPalette function when you want to use
the custom palette.

354 On Time RTOS-32

Image Convert

Using a custom palette when running in 256-color or higher modes provides the best possible image
display. Since the resulting palette is generally modified extensively as compared to the palette that was
included in the input images, the input images are automatically re-encoded by Image Convert to use
the newly created palette. This all happens transparently when the Generate Optimal option is selected
in the Image Convert dialog.

The custom palette created by Image Convert is always named PegCustomPalette, and is found at the
top of the C++ output file generated by Image Convert. This palette always starts with the 16 standard
colors, and is followed by up to 240 colors selected to produce the best possible image display for your
input images. The custom palette is simply an array of unsigned characters containing the Red, Green,
and Blue components of each color. This array of RGB values should be programmed into the video
controller palette registers prior to displaying the associated bitmap(s). This palette can be directly
passed to the PegScreen::SetupPalette() function, as shown below:

PegScreen()->SetupPalette(PegCustomPalette, 256);

It is also possible to use multiple custom palettes. When multiple custom palettes are used, it is the
responsibility of the application level software to install the correct custom palette before the correspon-
ding images are displayed. For systems that display ‘one window at a time’, it is a simple matter to install
the correct palette when each window is displayed. For other systems, it can be complex to use multiple
palettes, and one optimal palette is generally preferred.

Floyd-Steinburg Dither

The Floyd-Steinburg Dither option instructs Image Convert to dither the images when re-encoding them
to the target palette. Dithering can be used in any of the output color depths, with or without a custom
palette. When an optimal palette is created for multiple images, the actual colors contained in the final
palette may not exactly match the original image colors. Likewise, when Image Convert is outputting
bitmaps for 16-color targets using input images that contain 256 or more colors, Image Convert must
translate those original colors into the best possible representation using only the 16-color palette.

The dithering option tells Image Convert how to convert the original image colors to the new system
palette colors. If dithering is selected, Image Convert will pick colors such that the average value in each
multi-pixel area is equal to the average value of the original input colors for the same multi-pixel area. If
dithering is disabled, Image Convert will simply translate each pixel into its nearest color in the target
palette.

Save As
The Output Format option specifies whether Image Convert should generate C++ source code or binary
data. If the target system has means for file I/O, you can greatly reduce the RAM or ROM storage
requirements for your bitmaps by saving them as binary files, and retrieving them from files or Win32
resources at run-time.

When C++ source data structures are generated, Image Convert writes a normal ASCII file that can be
opened and modified with any editor. This ASCII file contains the bitmap data array, along with the
corresponding PegBitmap structure definition. If an optimal palette is generated, the C++ file will also
contain the custom palette.

When binary format is selected, Image Convert generates a binary data file containing one or more
PegBitmap data structures and bitmap data definitions. The binary file starts with an 8 byte header as
shown below:

// Header, one occurrence per binary image file:

char cVersion[4] // four byte version string, "1.00"
UCHAR uReservedA // 1 byte reserved
UCHAR uHavePalette // 1 byte palette flag
UCHAR uReservedB[2] // 2 unused bytes

The uHavePalette byte of the header signals the presence or absence of a color palette in the binary
file. If the binary file contains a custom palette, uHavePalette will be non-zero and the custom palette
immediately follows the file header, and can be declared as shown below:

Part IV RTPEG-32 355

Chapter 5 Utility Programs

// Palette, max one occurrence per binary image file

UCHAR Palette[256*3] // only present when custom palette is generated.

Following the short header and optional palette data are the bitmap header and bitmap data fields. The
bitmap header and data fields are repeated for each image contained in the file. Each bitmap is
contained in the binary file as shown below:

// repeated for each bitmap in file:

Char cName[28] // bitmap name left justified
UCHAR uType // 1 byte, PegBitmap.uType
UCHAR uBitsPerPix // 1 byte, PegBitmap.uBitsPerPix
WORD wWidth // 2 bytes, PegBitmap.wWidth
WORD wHeight // 2 bytes, PegBitmap.wHeight
WORD wReserved // 2 bytes, unused
LONG lSize // 4 bytes, size of data array in bytes
UCHAR uData[lSize] // bitmap data values

For each bitmap, lSize bytes of bitmap data immediately follow the bitmap header information. When
multiple PegBitmaps are generated using batch conversion, each successive bitmap header immedi-
ately follows the previous bitmap data. There are no padding or alignment bytes inserted between
bitmaps. For multi-byte fields such as wWidth and wHeight, byte swapping may be required when
reading the bitmap header data depending on the endian type of the CPU and the method used to read
the bitmap data value. Image Convert always writes mulitibyte values MSB (most significant byte) first.
Byte swapping is not required for the actual bitmap data, as this section always contains only single-byte
values.

Reading a bitmap or series of bitmaps from a binary file can be accomplished with the pseudo-code
shown below. Several variations of this example could also be used:

UCHAR * ReadBitmap(FILE * pSrc, PegBitmap &Bitmap)
{
 UCHAR uTemp[30];
 UCHAR *pPalette;
 LONG lDataSize;

 fread(uTemp, 1, 8, pSrc); // read in the header

 // ** check here for correct version string **

 if (uTemp[5]) // does file contain a palette?
 {
 pPalette = new UCHAR[256 * 3];
 fread(pPalette, 1, 256*3, pSrc); // read the palette
 }
 else
 pPalette = NULL;

 fread(uTemp, 1, 28, pSrc); // read image name

 // ** verify image name **

 fread(&Bitmap.uType, 1, 1, pSrc);
 fread(&Bitmap.uBitsPerPix, 1, 1, pSrc);
 fread(&Bitmap.wWidth, 1, 2, pSrc);
 fread(&Bitmap.wHeight, 1, 2, pSrc);
 fread(uTemp, 1, 2, pSrc); // skip unused bytes
 fread(&lDataSize, 1, 4, pSrc); // get data size
 Bitmap.pStart = new UCHAR[lDataSize]; // get RAM for bitmap data
 fread(Bitmap.pStart, 1, lDataSize, pSrc);
 return pPalette;
}

Note that if the binary file contains multiple bitmaps, the application software could also pass to ReadBit-
map() the name of the image file to load. In that case, ReadBitmap would loop through the binary
images until the correct bitmap name is found.

356 On Time RTOS-32

Image Convert

Transparency
The Transparency field can be used to specify a transparent color in the input image. This field only
applies to .BMP files, as GIF and JPEG files encode transparency information internal to the input file. In
all cases, the transparent color will be saved as index 255 in the output PegBitmap, since index 255 is
always interpreted as transparent by the PegScreen bitmap functions. Transparency forces the output
PegBitmap structure to use 8-bpp encoding, since the default transparent color value is 255. This is true
even if the source image contains only 2, 4, or 16 colors. If the source image is encoded using less than
8 bits-per-pixel, Image Convert will expand the image to 8 bits-per-pixel format when transparency is
enabled.

.BMP files do not inherently support transparency. To use image transparency, the source image(s)
must be created such that all areas that should be displayed transparently are painted with an otherwise
unused color. You must then inform Image Convert which color should be interpreted as transparent.
There are two methods of specifying the transparent color:

Specify RGB Value:

If the source images are 24-bpp (true-color) images, you must specify an actual RGB value to use as
the transparent color. If you select the ‘RGB’ button, you should enter the Red, Green, and Blue values
in the string fields which are displayed. You can determine the correct values through examination with a
paint program.

Use Upper-Left Color:

When this method is selected, Image Convert will assume that the upper left corner pixel is in the trans-
parent color. This method can only be used with 16 and 256 color input images.

Output Colors
The output colors field allows you to specify how the generated PegBitmap structures will be encoded,
and tells Image Convert how many colors are available on the target system. PegBitmap structures can
be encoded using 1, 2, 4, 8, 16, or 24 bits-per-pixel.

If transparency or RLE compression are enabled, the resulting PegBitmap structures are saved using
8-bpp encoding, regardless of the selection in the Output Colors field.

The PegScreen driver classes provided with On Time RTOS-32 all support 8-bpp encoding (enabling
the use of transparency), RLE encoding, and the native encoding format corresponding to the output
color depth.

Batch Conversion
Image Convert can be used to perform list or batch conversion of multiple images. This is helpful in
many cases and absolutely essential when the goal is to create an optimal palette for multiple images.
Batch conversion is selected by specifying an input file with a filename extension of .CMD, which
indicates that the source file is actually a command file, rather than an individual image file.

Command files are simply lists of input images, along with optional comments. They do not instruct
Image Convert in terms of the type of conversion to perform. This is still done by selecting the appro-
priate options in the Image Convert dialog.

The command file should be an ASCII command file, with one command per line. Each command line
should contain a single input image path and filename, and the output image name. The source file and
output image names can be separated by any combination of space, comma, and tab characters. The
output image name is the name to be used by the application when passing the image address to one of
the PegScreen bitmap display functions.

When performing batch conversion, all of the resulting output images are saved in one output file, along
with the custom palette if a custom palette has been generated.

Very large command files are often easier to maintain by entering comments within the file to indicate
where groups of bitmap files are used. Comment lines are indicated by a single ’#’ character in the first
column of a line.

Part IV RTPEG-32 357

Chapter 5 Utility Programs

The following is an example of a typical command file:
#
This is a comment line
Each command line specifies one input file,
and the name of the resulting PegBitmap structure.
#
\graphics\bitmaps\stop.bmp StopSign
\graphics\bitmaps\go.bmp GoSign
#
note that .bmp and .gif files can be processed
within the same .cmd file
#
\graphics\targa\yield.gif YieldSign

In the above example, the goal is to produce three PegBitmaps and a single optimal palette for use with
these three images. The source images are stop.bmp, go.bmp, and yield.gif.

The resulting PegBitmaps will be named gbStopSignBitmap, gbGoSignBitmap, and gbYieldSignBitmap,
respectively.

Image Convert will process each of the input files using the options selected in the Image Convert
dialog, and will save all output to the single file specified in the ’Output File’ field of the conversion
dialog.

Font Capture
Font Capture (program Pfontcap.exe) is a Windows utility program to generate additional fonts for use
by an application. Font Capture generates C++ files containing font information, character widths, and
character data. This information is stored in a PegFont data structure, allowing easy use of the new
fonts in applications.

After starting Pfontcap, the Source Font group allows selecting the source font type. Font Capture
supports the conversion of MS Windows TrueType fonts or Adobe Postscript .BDF fonts. With
TrueType, the Font... button can be used to invoke a Windows dialog to select from the installed
Windows fonts. If BDF is selected, the Font... button changes to File..., allowing to select the .BDF file.
Please note that some fonts installed on your computer may carry licensing terms limiting their use
outside the Windows operating system.

The Range group allows you to specify the range of character glyphs that will be encoded in the output
font. When the ASCII option is selected, the range of characters is fixed to ASCII-0 through ASCII-127,
which is the normal range for single language applications.

Font Capture also allows you to specify a custom range of characters to be encoded. When you select
the Custom option, the Configure option becomes active, allowing you to fully define the range of glyphs
that will be recorded in the output file.

In the simplest case, a particular font is only used to display a certain range of characters. For example,
you may define one font that will be used only for displaying numbers. In this case, you do not need or
want to encode the entire ASCII character range in the output file. Instead, you can enter a limited
character range by selecting the Custom button, and entering the range of characters in the Range
Configuration dialog in hexadecimal. The First Char and Last Char fields allow you to define the start
and ending characters to be encoded. For non-Unicode systems, range 0..FFh (256) is recommended.

The Output Format group allows selecting between normal bitmapped font output and outlined font
format.

The Outline checkbox can be used to generate a font with an added single pixel wide outline of each
glyph. Font Capture encodes Outline fonts in a 2-bpp format, where bitmap value 0 indicates the pixel
should be the foreground color, bitmap value 1 indicates that the pixel should be in the outline color, and
bitmap value 2 indicates that the pixel should be either the background color or transparent, depending
on the PegColor.uFill value passed to the text drawing function.

358 On Time RTOS-32

Font Capture

The Solid and Add Space checkboxes are modifiers for the outline font generation mode. The Solid
checkbox causes the font outline to appear somewhat heavier than the default outline. The Solid choice
is beneficial when working with large fonts. The Add Space option adds a single pixel of spacing
between each generated character when generating an outline font. This is beneficial when working with
very small outlined fonts.

The field Current Font displays the currently selected font name and size. Note that the height informa-
tion will normally be larger than the actual point size selected, since this field includes both the ascent
and descent values of the selected font, which is a more accurate indication of true font height.

Output File is where you tell Font Capture the name and location of the file created during the capture
process. You would usually set this to the same location as your other application source files, and use
a name that will help you remember which font is stored in the file.

Font Name is the name of the newly created PegFont. This field is case sensitive, so the font names
MyFont and myfont are not identical, exactly like any other variable names in a C++ program.

The Sample Text field is displayed in the currently selected font, allowing you to review your selection
before capturing the font to a file.

The Capture! button causes Font Capture to display each character of the selected font, and scan that
character to generate the .cpp output file.

Using Custom Fonts

Using fonts generated with FontCapture is very simple. Every object that supports text output has a
member function called SetFont(PegFont *). Therefore, after constructing an object that should use the
new font, you simply call that object’s SetFont function, passing a pointer to your new font. For
example, assume that you told Font Capture to generate a new font called MyNewFont, by typing this in
the font name field of Font Capture. In this case, the following code fragment illustrates the process of
altering the font used:

extern PegFont MyNewFont;

PegTextButton * pButton = new PegTextButton(10, 10, 100, MESG1, "NewFont");
PButton->SetFont(&MyNewFont);

Likewise, if you have overloaded a Draw() function for a window or other object, and you are drawing
text on the screen, you can simply pass the pointer to your new font to any of the PegScreen text infor-
mation or output functions.

Part IV RTPEG-32 359

Index Index

Index
#define, 23
#defineN, 23
#else, 23
#endif, 23
#error, 23
#if, 23
#ifsection, 23
#include, 23

$, 42

.DEF files, 124

_beginthread, 198, 229
_endthread, 199, 229
_thread variables

see TLS data

16550, 209

386, 9, 14
protected mode, 14
real mode, 14
virtual 8086 mode, 14

387, 37, 112, 131, 168, 221

64-bit integers, 202

80387
see 387

A20, 37, 48
abort, 167
access

to pages, 17
values, 24

active protocol, 207
addresses, 17
addressing

sectors, 251
Align command, 26
aligned access, 250
allocation unit

see cluster
AMD Élan SC400, 110

demo program, 114
AMD Élan SC520, 110

demo program, 114
AMD SC520

configure for, 227
API

C, 282
C++, 282
mixing, 282
RTFiles-32, 254
RTTarget-32 native, 67
Win32, 281

APIs
alternate, 196
RTKernel-C, 196
Win32, 197

application
header, 28

Application Image Report, 43
argc, 34
argv, 34
Assign, 24
assignment

of drive letters, 254
attribute, 263
auto init, 163
automatic library protection

see library protection

baud rate
debugger, 49
Monitor, 39

bin files, 20
BinFile

command, 40
BIOS

booting, 46
CMOS RAM, 287, 289, 290
data area, 118
extension, 46
graphics mode, 38
parameter block, 252, 289
PCI, 88
PnP, 90

BIOSBOOT.EXE, 29
BIOSDemo, 113
BIOSVector

Locate command, 30
bitmaps, 353
Blocked

task state, 160
BlockedGet, 169
BlockedPut, 169
BlockedReceive, 169
BlockedSend, 169
BlockedWait, 169
BOOT.EXE, 29
boot code, 45

options, 37
Report in LOC file, 43

boot record, 252, 275, 276
BootCode

Locate command, 29
BootData

Locate command, 29
bootdisk

creating, 83
BootDisk

program, 45
BOOTFLAGS

command, 37
booting, 45

BIOS, 46
from MS-DOS, 47
reboot, 71
reset, 46

Bootprog, 113

BootVector
Locate command, 29

Borland C/C++
compiling, 136
debug symbols, 137
IDE, 137

Borland Delphi
compiling, 141

breakpoint
hardware, 55

buffer
cache, 278
configuration, 283

buffers, 255
for serial ports, 210

C++, 237
C++ streams, 282
C/C++ API, 282
C/C++ run-time system, 119
C0RTT.OBJ, 136, 138, 139
cache, 255, 278

read-ahead, 256
calibrate

high-res timer, 202
calling

ring 0, 76
Centronics port, 84
chaining programs, 74
character encoding, 334
character I/O, 67
CharNextA, 102
CharToOemA, 102
CharUpperA, 102
CharUpperBuffA, 102
child, 311
CHS, 250, 251
ClassDemo, 115
clear screen, 215
CLI, 187
CLKHRTPC, 219, 220
CLKMicroSecsToTicks, 204
CLKMilliSecsToTicks, 204
CLKPC, 219
CLKSecondsToTicks, 204
CLKSetResolution, 204
CLKSetTimerIntVal, 204
CLKTicksToMicroSecs, 204
CLKTicksToMilliSecs, 204
CLKTicksToSeconds, 204
clock, 203

overflow, 172
reading the, 173
resolution, 172
setting the, 172

CloseHandle, 99, 102, 197, 25
closing files, 272
cluster, 250 - 252
CMOS RAM

access, 79
of BIOS, 287, 289, 290

360

Index Index

code page, 81, 334
code position, 171, 172
code sharing, 160
codes

returned by RTFiles, 307
color, 312
color display, 38
COM port

configuration on host, 49
I/O functions, 85
settings on target, 39

COM ports, 205
COMAllocateBuffers, 210
COMDemo, 226
COMDisableInterrupt, 210
COMEnableFIFO, 209
COMEnableInterrupt, 210
COMError, 212
COMHasFIFO, 209
COMLineStatus, 211
Commandline command, 34
commit, 259, 261, 272
COMModemControl, 212
COMModemStatus, 212
communication

between tasks, 160
compact

flash disk, 280
CompareStringA, 102
CompareStringW, 102
compiling

Borland C/C++, 136
Delphi, 141
Microsoft C/C++, 137
Watcom C/C++, 139

COMPort
command, 39

COMPortInit, 209
compression, 19, 32
Compression Report, 43
COMReceivePolled, 211
COMSendBlock, 210
COMSendBlockTimed, 210
COMSendChar, 210
COMSendCharPolled, 211
COMSendCharTimed, 210
COMSetBoardType, 208
COMSetIOBase, 208
COMSetIRQ, 208
COMSetModemStatusHook, 211
COMSetProtocol, 209
COMWaitSendBufferEmpty, 211
configuration

of RTFiles-32, 283
of RTKernel-32, 162
of RTTarget-32, 66
RTTARGET.INI, 49

configuration files, 21
Configuration Report, 42
configure

PCI cards, 88
PnP cards, 90

Console
file system, 128

console I/O, 100
contiguous file, 261
control

GUI, 311
conversion

clock device, 204
finetime, 202, 203
ticks, 205

cooperative
scheduling, 158, 159, 233

coordinates
screen, 312

Copy
Locate command, 32

core file system, 254
CPL, 17, 37, 117
CPL 0

calling, 76
CPU

see 386
CPU load, 217
CPU time, 163, 171, 172
CPU386, 223
CPU386F, 223
CPUMoni, 217
CPUMonitorStart, 217
CPURelativeLoad, 217
CreateDirectoryA, 102
CreateEvent, 200
CreateEventA, 102
CreateFile, 100
CreateFileA, 102
CreateFileW, 102
CreateMutex, 200
CreateMutexA, 102
CreatePegScreen, 338
CreatePegScreen_VESA_16, 337
CreatePegScreen_VESA_24, 337
CreatePegScreen_VESA_32, 338
CreatePegScreen_VESA_8, 337
CreatePegScreen_VGA_4, 338
CreateProcessA, 102
CreateSemaphore, 200
CreateThread, 102, 198
critical error, 273
Critical Section, 236

Win32, 164, 200
cross debugging, 8, 49, 62
cross development, 8
Current, 169

task state, 160
cursor, 100
custom drivers

for RTFiles-32, 302, 304
cyclic task, 236

data files, 256
data security, 299
data tables

RTFiles-32, 254, 283
date, 101
DBGShell, 62
deadlock, 169, 239

Debug Monitor, 51
see Monitor

debug symbols, 19
Borland C/C++, 137
Microsoft Visual C++, 139
Watcom C/C++, 140

Debug Version, 191, 228
example using, 226

DebugBreak, 102
debugger

configuration, 49
running the, 51

debugging, 49, 62, 278
DecompCode

Locate command, 32
DecompData

Locate command, 33
DEF files, 124
Delay, 41
Delaying, 169

task state, 160
DeleteCriticalSection, 102, 200
DeleteFileA, 102
deleting files, 266
Delphi

compiling, 141
demo programs, 109, 226, 297, 83
descriptors, 14, 15
DestroyWindow, 102
device, 250, 251

disk drivers, 287
files, 256
list, 250, 254, 284, 30

Device
memory type, 24

device driver
raw I/O, 257

DeviceIOControl, 102
Dialog, 340
DigiBoard

serial ports, 207
directory, 253, 264

files, 256
root, 253

DisableThreadLibraryCalls, 102
discardable entities, 9, 19, 33
DiscardSectors, 304
disk

booting, 45
drivers, 287
formatting, 270
info, 268
label, 270
mounting, 254
PCMCIA, 96

DiskBuffer
Locate command, 30

diskette
see floppy disk

DiskOnChip
driver, 285, 291

display, 38, 68
distributables, 142
DLL, 101, 122, 125

361 On Time RTOS-32

Index Index

and threads, 102
DEF files, 124
resolving references, 35
with threads, 75

DLL command, 26
DLLDemo, 112
DLLDemo2, 112
DLLDemo3, 112
DLM, 125

demo program, 112
DMA

for floppy driver, 287
DOS

booting from, 47
emulation, 98

DOSDateTimeToFileTime, 102
downloading, 46

avoiding repeated, 119
RTRun, 46

DPMI
emulation, 98

Draw
method, 328, 329

drive, 250
mounting, 254

drive letter
assignment, 254
skipping, 286

driver
example, 304, 306
flags, 163
flash, 294, 305
floppy disk, 287
IDE, 290
keyboard, 80
M-Systems DOC, 291
NULL device, 296
RAM disk, 293
RTFiles-32 custom, 302, 304
RTFiles-32 demo, 297
screen, 312, 337
SRAM, 292
system, 254, 283

drivers, 243
disk, 287
of RTKernel-32, 218

drives, 252
DrvDemo, 297
DRVRT32, 225
DTR/DSR, 206
DuplicateHandle, 99, 102, 197, 25
Duration, 172
Dynamic Link Report, 43

email, 3
embedded system, 8
EmuDemo, 112
emulation

DOS, 98
DPMI, 98
floating point, 131
Win32, 98

EndM, 23
endthread, 199

EnterCriticalSection, 103, 200
entity, 9
EnumCalendarInfoA, 103
EnumSystemLocales, 103
EnumThreadWindows, 103
environment, 34
EPROM

programming, 40
error codes, 258, 272, 307
error handler, 273
error handling

Win32, 197
error messages, 43, 143, 245
errors

of serial ports, 212
Event

Win32, 164, 200
events, 158
examples, 4, 12

demo programs
MBDemo, 178
MSGDemo, 182
SemaDemo, 175

exception handling, 102
exceptions, 18, 78

13, 15
14, 17

EXE File Report, 43
executable file, 8
exit, 167

function, 165
ExitProcess, 103
ExitThread, 103
ExitThread (Win32), 199
EXLED, 114
extended memory, 73
extended partition, 252
extending files, 261

FAPIDemo, 297
FAT, 250, 251

12, 252
16, 252
32, 252
copies, 253

FatalAppExit, 103
file

attribute, 263
closing, 272
committing, 272
contiguous, 261
deleting, 266
extending, 261
finding, 265, 281
flushing, 272
handles, 258
info, 262
instance, 250
name, 267
opening, 273
renaming, 266
table, 279
temporary, 266
time, 263

unique, 266
File

Locate command, 33
file allocation table

see FAT
file I/O, 33

Win32, 100
file system, 127

console, 128
parallel port, 128
RAM files, 128

file system core, 254
file table, 283
filebuf, 282
files

data, 256
directory, 256
logical drive, 256
physical device, 256
special, 256

FileTimeToDosDateTime, 103
FileTimeToLocalFileTime, 103
FileTimeToSystemTime, 103
FillConsoleOutputAttribute, 103
FillConsoleOutputCharacterA, 103
FillRAM command, 25, 116
FindClose, 103
FindFirstFileA, 100, 103
finding files, 265, 281
FindNextFileA, 100, 103
FindResourceA, 103
FindResourceExA, 103
FineTime, 202

arithmetic, 202
fixed memory manager, 106
fixup, 8
Fixup Table Report, 43
flags

driver, 163
kernel, 163
task, 166

flash disk, 279, 280
driver, 285, 291, 294, 295, 305

FlashDemo, 297
flat memory model, 15
floating point, 163, 166, 221

demo program, 112
emulation, 131

floppy disk, 45
DMA buffer, 287
driver, 285, 287
motor timeout, 288
read-ahead buffer, 288

FLT387, 221
FLTEMUMT, 221
FLTNULL, 221
FLTPII, 221
FlushConsoleInputBuffer, 103
FlushFileBuffers, 103
flushing files, 272
focus, 317
Font Capture, 358
fonts, 334, 358
format, 270, 275, 276

362

Index Index

FormatMessageA, 103
FPU, 37
FreeEnvironmentStringsA, 103
FreeEnvironmentStringsW, 103
FreeLibrary, 101, 103
FreeResource, 103
FTAdd, 202
FTCalibrate, 202
FTDivide, 202
FTElapsedMicroSecs, 203
FTElapsedMilliSecs, 203
FTElapsedSeconds, 203
FTIntMultDiv, 202
FTMicroSecsToTime, 203
FTMilliSecsToTime, 203
FTMultiply, 202
FTReadTime, 203
FTSecondsToTime, 203
FTSetResolution, 202
FTSubtract, 202
FTTimeToMicroSecs, 203
FTTimeToMilliSecs, 203
FTTimeToSeconds, 203
function keys, 215

garbage collection
flash disk, 280

Gauge, 340
GDT, 14, 15
general protection fault, 15
GetACP, 103
GetActiveWindow, 103
getch, 213
GetCommandLineA, 103
GetCommandLineW, 103
GetConsoleCursorInfo, 103
GetConsoleMode, 103
GetConsoleScreenBufferInfo, 103
GetCPInfo, 103
GetCurrentDirectoryA, 103
GetCurrentProcess, 103
GetCurrentProcessId, 103
GetCurrentThread, 103
GetCurrentThread (Win32), 199
GetCurrentThreadId, 103, 198
GetDateFormatA, 103
GetDiskFreeSpaceA, 103
GetDiskGeometry, 304
GetDriveTypeA, 103
GetEnvironmentStrings, 103
GetEnvironmentStringsW, 103
GetEnvironmentVariableA, 103
GetExitCodeProcess, 103
GetExitCodeThread (Win32), 199
GetFileAttributesA, 103
GetFileSize, 103
GetFileTime, 103
GetFileTitleA, 103
GetFileType, 103
GetFullPathNameA, 103
GetKeyboardType, 103
GetLargestConsoleWindowSize, 103
GetLastError, 103
GetLocaleInfoA, 103

GetLocaleInfoW, 103
GetLocalTime, 101, 103
GetLogicalDrives, 103
GetModuleFileNameA, 103
GetModuleFileNameW, 103
GetModuleHandleA, 101, 103
GetNumberOfConsoleInputEvents, 103
GetNumberOfConsoleMouseButtons,
103
GetOEMCP, 103
GetProcAddress, 101, 103
GetProcessHeap, 103
GetShortPathNameA, 103
GetStartupInfoA, 103
GetStdHandle, 103
GetStringTypeA, 103
GetStringTypeExA, 103
GetStringTypeW, 103
GetSystemDefaultLangID, 103
GetSystemDefaultLCID, 103
GetSystemInfo, 103
GetSystemMetrics, 103
GetSystemTime, 101, 103
GetTempFileNameA, 103
GetThreadContext, 103
GetThreadLocale, 103
GetThreadPriority, 200
GetTickCount, 103, 118
GetTickCount (Win32), 199
GetTimeFormatA, 103
GetTimeZoneInformation, 103
GetUserDefaultLCID, 103
GetVersion, 103
GetVersionExA, 103
GetVolumeInformationA, 103
global data, 160
global descriptor table, 14
GlobalAlloc, 103
GlobalFree, 103
GlobalHandle, 103
GlobalLock, 103
GlobalMemoryStatus, 103
GlobalReAlloc, 103
GlobalUnlock, 103
glossary, 8, 250
GMode command, 38
GPF, 15
graphics, 38, 73, 129, 54
GUI, 310

run under Windows, 320

handle
see task

handles, 159, 258
Win32, 99, 197, 281

hard disk
booting, 45

hardware
breakpoint, 55

hardware configuration
of serial ports, 207

hardware interrupt
see interrupt

headings

task list, 171
heap

for RTKernel-32, 221
real-time, 188

heap manager
RTTHeap, 107

hex file, 20
hierarchy

RTPEG-32, 319
high resolution time, 202
host, 8

COM port configuration, 49
hotline, 2
http, 3
Halt

instruction, 37, 71
Header

Locate command, 28
Heap

Locate command, 31
HeapAlloc, 103
HeapCompact, 103
HeapCreate, 103
HeapDestroy, 103
HeapFree, 103
HeapReAlloc, 103
HeapSize, 103
HeapValidate, 103
Hello, 111
Hello2, 111
HelloFiles, 297
HelloGUI, 115
HelloSc400, 114
HelloSc520, 114
HexFile

command, 40
High Resolution Timer, 220
Hostess card

serial ports, 207
HRTNULL, 220
HRTPC, 220
HRTPENT, 220
HRTSC520, 220

I/O address
of serial ports, 208

I/O sensitive, 17
i386

see 386
IDE

Borland C/C++, 137
driver, 285, 290

IDE disk
PCMCIA, 96

Idle Task, 160
ids

of RTPEG-32 objects, 326
IDT, 15, 18
IgnoreMsg command, 36
ILINK32, 136
Illegal, 170
image, 9
image conversion, 353
Image Convert, 353

363 On Time RTOS-32

Index Index

Image Report, 43
information

about disks, 268
information messages, 143

ignoring, 36
INI file, 49
Init command, 34
InitCode, 41
initialize

target hardware, 41
InitializeCriticalSection, 103, 200
inport, 70
input focus, 317
installation, 3
instance

file, 250
Intel

hex files, 40
inter-task communication, 160
InterlockedDecrement, 103
InterlockedExchange, 103
InterlockedIncrement, 103
Internet, 3
interrupt, 18

21h, 98
31h, 98
CPU time, 163
demo program, 111
disabling of, 187
driver, 219
enabling of, 187, 188
end of, 187
handler, 231
handling, 183, 219
high-level handler, 184
hooked, 164
IRQ, 184
latency, 157, 241
list, 186
low-level handler, 184
priorities, 186
reset target, 117
RTDisableInterrupts, 70
RTDisableIRQ, 70
RTEnableInterrupts, 70
RTEnableIRQ, 69
RTInstallISR, 69
RTIRQEnd, 70
RTRestoreInterrupts, 70
RTRestoreVector, 69
RTSaveAndDisableInterrupts, 70
RTSaveVector, 68
RTSetIntVector, 69
RTSetTrapVector, 69
stack, 164, 184, 185
timer, 118
vectors, 184
wait for, 71

interrupt controller, 37
interrupt handling

RTKernel-32 example, 226
RTTarget-32 example, 111

interrupts, 117
introduction

mailboxes, 160
message passing, 160
semaphores, 160

Invalidate, 329
IOPL, 17
iostream, 282
IRQ

definition, 184
of serial ports, 208
of target COM port, 39

IRQRT32, 219
IsBadCodePtr, 104
IsBadReadPtr, 104
IsBadWritePtr, 104
IsValidCodePage, 104
IsValidLocale, 104

KBGetCh, 213
kbhit, 213
KBInit, 213
KBKeyAvailable, 213
KBKeyPressed, 213
KBPutCh, 213
kernel drivers, 218, 243
kernel tracer, 163, 188

buffer size, 189
KERNEL32.DLL, 98, 101
keyboard, 37, 66, 100, 101, 212

change driver, 80
code page, 81
reset target, 117
RTPEG-32, 318
RTSetKeyboard, 80

label
set disk, 270

language
of keyboard, 80

LBA, 250, 251
LCMapStringA, 104
LCMapStringW, 104
LDT, 14, 15
LeaveCriticalSection, 104, 200
LIBPROT, 230
libraries

order of, 134
reentrance, 228

library protection, 175, 229
licensing terms, 5
line status register, 88, 211
linear addresses, 17
linear flash disk

driver, 294
LINK

Microsoft’s, 137
Link command, 35, 43
Link Report, 43
linker

DEF files, 124
linking, 134

with LINK, 138
with TLINK32, 136
with wlink, 139

list flags, 170

list of files, 279
listing file, 42
Loader, 113
loading

program, 74
LoadLibrary (Win32), 126
LoadLibraryA, 101, 104
LoadLibraryExA, 104
LoadResource, 104
LoadStringA, 104
LOC file, 42
local descriptor table, 14
LocalAlloc, 104
LocalFileTimeToFileTime, 104
LocalFree, 104
LocalReAlloc, 104
locate, 8, 43

RTLoc, 19
Locate command, 27

BIOSVector, 30
BootCode, 29
BootData, 29
BootVector, 29
Copy, 32
DecompCode, 32
DecompData, 33
DiskBuffer, 30
File, 33
Header, 28
Heap, 31
Nothing, 33
NTSection, 28, 116
PageTable, 31
Section, 27, 116
Stack, 30

LockResource, 104
logical drive, 250, 252

files, 256
low-level handler, 184
LowLevelFormat, 304
lstrcmpA, 104
lstrcmpiA, 104
lstrcpyA, 104
lstrcpynA, 104
lstrlenA, 104

M-Systems
DOC driver, 285

Macro, 23
mailbox

clearing, 179
deleting, 179
example, 178, 226
introduction, 178
large data types, 235
name, 179

main
arguments, 34

Main Task, 160
priority, 165

MakeDef, 124
demo program, 112

MakeDLM, 125
MAP file, 42

364

Index Index

MAPDemo, 112
mass storage device, 251
master boot record, 252, 275
MediaChanged, 304
MEMCHEAP, 222
memory, 17

access, 24
defining, 24, 25
device, 24
installed, 73
management, 67, 75, 106, 107
mapping, 76
RAM, 24
real-time allocation, 188
remapping, 25, 116
ROM, 24
types, 24
uncommitted, 9, 106
Win32, 99

memory driver
for RTKernel-32, 221

memory management, 17
memory mapping

demo program, 112
memory model

flat, 15
memory pool, 188
memory requirements

of tasks, 166
memory technology driver

see MTD
MEMSTCH, 222
MEMSTH, 222
MEMW32, 222
Message

RTPEG-32 Handler, 328
message passing

example, 182, 226
function, 181
large data types, 235

Message Reports, 43
MessageBoxA, 104
messages, 143, 245, 247, 272, 327

ignoring, 36
informational, 247
RTPEG-32, 313

MetaWINDOW, 129
demo program, 115

methods
as tasks, 237

MetWorld, 115
MFC, 115
Microsoft C/C++

compiling with, 137
Microsoft Visual C++

debug symbols, 139
Microsoft Visual Studio, 62
milliseconds, 101
MMU, 17
MMX, 221
modal, 312
modem

PCMCIA, 96
modem control register, 88

modem status register, 88, 211, 212
Module, 9
Monitor, 51

COM port settings, 39
reserving memory for, 26
resetting target, 117

monochrome display, 38
MountDevice, 303
mounting

disks, 254, 267
mouse, 100, 101
MoveFileA, 104
MS-DOS

booting from, 47
MTD, 294, 305

example, 306
MTD driver, 295
MultiByteToWideChar, 104
multitasking, 102, 128

cooperative, 158, 233
introduction, 157
non-preemptive, 158, 233
preemptive, 158, 233
real-time, 157
time sharing, 157

Mutex
Win32, 164, 200

mutual exclusion, 236

name
mailbox, 179
semaphore, 175
task, 166

NoAccess, 24
non-preemptive

see cooperative
Notebook, 340
Nothing

Locate command, 33
NS16550, 209
NS486SXF, 111

demo program, 114
NSHello, 114
NTSection

Locate command, 28, 116
NULL device

driver, 296
NULL pointer, 118
numeric syntax, 21

object-oriented, 237
occupied resources, 177
OemToCharA, 104
off-screen drawing, 331
online, 3
OpenEvent, 201
opening files, 273
OpenMutex, 201
OpenSemaphore, 201
optimization

file I/O, 298
options

boot code, 37
RTLoc, 19, 21

OUTB, 41
OUTD, 41
outport, 70
Output

command, 40
OutputDebugStringA, 104
OUTW, 41
overflow

RTKernel-32 clock, 172
stack, 118

page fault, 17
Page Table Detailed Report, 43
Page Table Summary Report, 43
PageTable

compression, 33
Locate command, 31, 116

paging, 17, 116
page table report, 43
page table size, 31

palette, 312
panic stack, 184, 186
parallel port, 84

file system, 128
parameter block, 252

of BIOS, 289
parent, 311
partition, 250

extended, 252
info, 269
table, 250, 252, 275

partition table, 275
passive protocol, 207
PC Card, 91
PCCard, 113
PCCardMT, 114
PCI BIOS, 88

example, 113
PCMCIA, 91

disk, 96
example, 113, 114
SRAM card driver, 292
UART, 96

PE file, 8
PeekConsoleInputA, 104
PEG, 310
PegDemo, 340
PegExecute, 322
PegFont, 334
PegInitialize, 321
PegMessage, 313
PegMessageQueue, 313
PegPresentationManager, 317
PegScreen, 312, 328, 337
PegThing, 318
Pegw32.lib, 320
Pentium

configure for, 226
Pentium III, 221
performance, 226, 241, 278
physical addresses, 17
physical device, 250

files, 256
PIC, 37

365 On Time RTOS-32

Index Index

plug-and-play, 90, 91
PM_ADD, 327
PM_CLOSE, 327
PM_CURRENT, 327
PM_DESTROY, 327
PM_DIALOG_NOTIFY, 327
PM_DRAW, 327
PM_EXIT, 327
PM_HIDE, 327
PM_KEY, 318, 327
PM_LBUTTONDOWN, 327
PM_LBUTTONUP, 327
PM_MAXIMIZE, 327
PM_MINIMIZE, 327
PM_NONCURRENT, 327
PM_PARENTSIZED, 327
PM_POINTER_ENTER, 327
PM_POINTER_EXIT, 327
PM_POINTER_MOVE, 327
PM_RBUTTONDOWN, 328
PM_RBUTTONUP, 328
PM_RESTORE, 328
PM_SHOW, 327
PM_SIZE, 328
PM_TIMER, 328
PMBOOT.EXE, 29
PnP BIOS, 90

example, 113
polling, 231, 233, 234
ports

I/O, 195
parallel, 84
reading, 70
serial, 205
writing, 70

preemptions, 163, 191
preemptive

scheduling, 158, 159, 233
preprocessor, 23
printer port, 84
priority, 159, 164, 237

base, 166
default, 165
enquiring, 170
execution, 166
inheritance, 174
interrupt, 186
resource, 166
Win32, 197, 199

privilege level, 17, 37, 76
processor

see 386
program

command line, 34
entity, 9
environment, 34
header, 28
termination, 165, 272

protected mode, 14
protection, 17, 116 - 118
protector

library protection, 229
protocols

serial ports, 206

PSF_ACCEPTS_FOCUS, 324
PSF_ALWAYS_ON_TOP, 324
PSF_CURRENT, 324
PSF_MOVEABLE, 324
PSF_NONCLIENT, 324
PSF_SELECTABLE, 324
PSF_SIZEABLE, 324
PSF_VIEWPORT, 324
PSF_VISIBLE, 324
PulseEvent, 201
Pwindbl, 342

RaiseException, 104
RAM, 24

file system, 128, 301
remapping, 25

RAM disk
driver, 285, 293

RAMFile, 33
raw I/O, 257, 276
read-ahead

cache, 256
floppy disk driver, 288

ReadConsoleInputA, 104
ReadConsoleInputW, 104
ReadFile, 100, 104
Readme, 2
ReadOnly, 24
ReadProcessMemory, 104
ReadSectors, 303
ReadWrite, 24
Ready, 169

task state, 160
real-time, 128

definition, 158
file I/O, 299
introduction, 157
memory management, 188
systems, 157

real-time clock, 79, 80
real mode, 14
reboot, 71, 117
redistributables, 142
reentrance, 160

definition, 161
libraries, 229
run-time system, 228

RegCloseKey, 104
Region command, 24
regions

virtual, 116
RegOpenKeyExA, 104
RegQueryValueExA, 104
ReleaseMutex, 104, 201
ReleaseSemaphore, 201
Relocation Report, 43
remapping RAM, 25
remote debugging, 49
RemoveDirectoryA, 104
renaming files, 266
Reports

in LOC file, 42
ReqOpenKeyA, 104
Reserve command, 26

Reset
Ctrl-Alt-Del, 117

reset vector
booting, 46

ResetEvent, 201
resources, 174

display of, 171
management, 239
occupying, 177
priority, 174
rules, 174
task suspension, 174
task termination, 174

ResumeThread, 104
ResumeThread (Win32), 199
return codes, 258, 272, 307
ring

see privilege level
ring 0, 76
Robot, 340
ROM, 24
ROMable, 19, 32

demo program, 114
root directory, 253
Round-Robin, 173, 236
RS232, 85
RT_CLOSE_FIND_HANDLES, 281
RT_KEY_BY_INTERRUPT, 67, 101
RT_MOUSE_BY_INTERRUPT, 67, 101
RTB files, 73
RTBench, 226
RTBenchA, 227
RTBenchP, 226
RTBootPM, 74
RTBootRM, 74
RTCallRing0, 76
RTCharOutHandler, 67, 68
RTCloseCOMPort, 86
RTCMOSExtendHeap, 80
RTCMOSRead, 79
RTCMOSReadTime, 79
RTCMOSSetSystemTime, 80
RTCMOSSetTime, 101
RTCMOSWrite, 79
RTCMOSWriteTime, 79
RTCom, 205
RTCOMError, 88
RTD32, 49
RTDisableInterrupts, 70
RTDisableIRQ, 70
RTDisplayChar, 68
RTDisplayHex, 68
RTDisplayHexW, 68
RTDisplayInt, 68
RTDisplayString, 68
RTDLLThreadEvent, 75
RTEMU, 131
RTEnableInterrupts, 70
RTEnableIRQ, 69
RTExtendHeap, 78
RTF_ATTR_..., 259
RTF_CACHE_DATA, 259
RTF_COMMITTED, 259
RTF_CREATE, 259

366

Index Index

RTF_CREATE_ALWAYS, 259
RTF_DEVICE_LAZY_WRITE, 285
RTF_DEVICE_MOUNT_CONT., 254,
285
RTF_DEVICE_NEW_LOCK, 285
RTF_DEVICE_NO_MEDIA, 285
RTF_DEVICE_REMOVABLE, 285
RTF_DEVICE_RESOURCE_ERROR,
288, 291
RTF_DEVICE_SINGLE_FAT, 285
RTF_LAZY_DATA, 259
RTF_OPEN_DIR, 259
RTF_OPEN_NO_DIR, 259
RTF_OPEN_SHARED, 259
RTF_READ_ONLY, 259
RTF_READ_WRITE, 259
RTFBufferInfo, 278
RTFBufferStatistic, 278
RTFClose, 260
RTFCloseAll, 272
RTFCmd, 297
RTFCmdMT, 297
RTFCommit, 261
RTFCommitAll, 272
RTFCreateBootSector, 276
RTFCreateDir, 265
RTFCreateMasterBootRecord, 275
RTFCriticalErrorHandler, 273
RTFDATA.C, 283
RTFDefaultCriticalErrorHandler, 275
RTFDelete, 266
RTFDevice, 284, 287
RTFDeviceList, 284
RTFDiskInfo, 268
RTFDOSDirEntry, 262
RTFDrvDOC, 285
RTFDrvDOCData, 292
RTFDrvFlash, 285
RTFDrvFlashCompact, 280
RTFDrvFlashData, 295
RTFDrvFlashInfo, 279
RTFDrvFloppy, 285
RTFDrvFLPYData, 289
RTFDrvIDE, 285
RTFDrvNULL, 286
RTFDrvRAM, 285
RTFDrvSRAM, 285
RTFDrvSRAMData, 293
RTFDumpFileTable, 279
RTFErrorAction, 273
RTFErrorMessage, 272
RTFExpandName, 267
RTFExtend, 261
RTFFileInfo, 262
RTFFindClose, 266
RTFFindFirst, 265
RTFFindNext, 266
RTFFLPYTurnMotorOFF, 279
RTFFormat, 270
RTFGetAttributes, 263
RTFGetCurrentDir, 264
RTFGetDiskInfoEx, 268
RTFGetFileInfo, 262
RTFGetFileSize, 263

RTFGetPartitionInfo, 269
RTFHANDLE, 258
RTFiles-32, 83, 127

configuration, 283
with RTTarget-32, 301

RTFindPhysMem, 76
RTFMakeFileName, 267
RTFMakeTempFileName, 266
RTFOpen, 258, 273
RTFPartitionInfo, 269
RTFRawDiscardSectors, 277
RTFRawGetDiskGeometry, 277
RTFRawLowLevelFormat, 277
RTFRawMediaChanged, 277
RTFRawMount, 276
RTFRawRead, 276
RTFRawSetMedia, 276
RTFRawShutDown, 276
RTFRawWrite, 277
RTFRead, 260
RTFRemoveDir, 265
RTFRename, 266
RTFResetDisk, 267
RTFSeek, 260
RTFSetAttributes, 264
RTFSetCriticalErrorHandler, 273
RTFSetCurrentDir, 264
RTFSetDefaultOpenFlags, 273
RTFSetFileTime, 263
RTFSetVolumeLabel, 270
RTFShutDown, 272
RTFSK32.LIB, 284
RTFSplitPartition, 275
RTFSRTT.LIB, 283
RTFTruncate, 262
RTFWrite, 260
RTGetExtMem, 73
RTGetMetaWEvents, 131
RTGetMode, 73
RTGetMouseEvents, 101
RTGetVideoRAMAddr, 73
RTHalt, 71
RTHaltCPL3, 71
RTHandleInfo, 99
RTIn, 70, 195
RTInD, 70
RTInitCOMPort, 86
RTInstallISR, 69
RTInW, 70, 195
RTIP-32, 1
RTIRQEnd, 70
RTK_MAX_PRIO, 165
RTK_MIN_PRIO, 165
RTK_NO_TASK, 167
RTK32_VER, 197
Rtk32api.txt, 124, 125
RTKAlloc, 194
RTKAllocMemPool, 188
RTKAllocUserData, 168
RTKCallIRQHandlerFar, 185
RTKClearMailbox, 179
RTKClearStatistic, 172
RTKClearTraceBuffer, 189
RTKCreateMailbox, 179

RTKCreateSemaphore, 175
RTKCreateTask, 238
RTKCreateThread, 165
RTKCurrentTaskHandle, 169
RTKDeallocTerminatedTasks, 194
RTKDebugVersion, 191
RTKDelay, 173, 236
RTKDelayUntil, 173
RTKDeleteMailbox, 179
RTKDeleteSemaphore, 176
RTKDemo, 226
RTKDisableInterrupts, 187
RTKDisableIRQ, 187
RTKDisableTrace, 189
RTKDOS.H, 196
RTKDumpTrace, 190
RTKDuration, 172
RTKEnableInterrupts, 188
RTKEnableIRQ, 187
RTKEnableTrace, 189
RTKernel-32, 284, 288, 302

alternate APIs, 196
clock, 172
Debug Version, 191, 228
initialization, 165
module, 162
scheduler, 158
task, 159
termination, 165

RTKernel-C for DOS, 196
RTKERNEL.H, 196
RTKernelInit, 165
RTKeybrd, 212
RTKeyLanguage, 80
RTKeyTable, 80
RTKFatalError, 194
RTKFree8087, 168
RTKFreeBuffer, 188
RTKGet, 180
RTKGetBuffer, 188
RTKGetCond, 180
RTKGetIRQHandler, 184
RTKGetLocalData, 169
RTKGetMinStack, 170, 171
RTKGetTaskPrio, 170, 171
RTKGetTaskStack, 170, 171
RTKGetTaskState, 169, 171
RTKGetTime, 173
RTKGetTimed, 181
RTKGetUserData, 169
RTKInt, 226
RTKIRQEnd, 187
RTKIRQInfo, 186
RTKIRQTopPriority, 186
RTKListTitles, 171
RTKLoadSymbols, 172
RTKLPSemas, 230
RTKMessages, 179
RTKMtdCFI2_x, 295
RTKNextCond, 181
RTKOpenSemaphore, 176
RTKPreemptionsOFF, 192
RTKPreemptionsON, 191, 192
RTKProtect8087, 168

367 On Time RTOS-32

Index Index

RTKProtectLibrary, 230
RTKPulse, 174, 177
RTKPut, 180
RTKPutCond, 180
RTKPutFront, 180
RTKPutFrontCond, 180
RTKPutFrontTimed, 181
RTKPutTimed, 181
RTKReceive, 182
RTKReceiveCond, 183
RTKReceiveTimed, 183
RTKResetEvent, 178
RTKResourceOwner, 176
RTKRestoreIRQHandlerFar, 185
RTKResume, 167
RTKRTLCreateThread, 166
RTKSaveIRQHandlerFar, 185
RTKScheduler, 192
RTKSemaInfo, 176
RTKSemaType, 175
RTKSemaValue, 176
RTKSend, 182
RTKSendCond, 183
RTKSendTimed, 183
RTKSetEvent, 174
RTKSetIRQHandler, 184
RTKSetIRQStack, 185
RTKSetMessageHandler, 192
RTKSetPriority, 168
RTKSetTaskStartStopHook, 194
RTKSetTaskSwitchHook, 192
RTKSetTime, 172
RTKSetTraceBufferSize, 189
RTKSetUserData, 168
RTKSignal, 174, 177
RTKStackCheck, 191
RTKStopTracing, 189
RTKSuspend, 167
RTKTaskInfo, 170

headings, 171
RTKTaskState, 169
RTKTerminateTask, 167, 238
RTKTime, 172
RTKTimeSlice, 173
RTKToWin32Handle, 198
RTKTraceAll, 189
RTKTraceBuffer, 189
RTKTraceHeader, 190
RTKTraceNames, 190
RTKUserTrace, 190
RTKWait, 174, 177
RTKWaitCond, 177
RTKWaitTimed, 178
RTKWin32ToRTKHandle, 198
RTLineStatus, 88
RTLoadRTBFile, 73
RTLoc, 19

Align command, 26
BinFile command, 40
command line, 19
COMPort command, 39
config. files, 21
DLL command, 26
FillRAM command, 25

GMode command, 38
HexFile command, 40
LOC file, 42
Locate command, 27
locate process, 43
options, 19, 21
Output command, 40
Region command, 24
Reserve command, 26
VideoRAM command, 38
Virtual command, 25

RTLocateSection, 71
RTLockHeap, 75
RtlUnwind, 104
RTMakeBootDisk, 83
RTMapMem, 77
RTMetaWInit, 131
RTModemControl, 88
RTModemStatus, 88
RTNewEvents, 101
RTOut, 70, 195
RTOutD, 70
RTOutW, 70, 195
RTPCCardPresent, 93
RTPCEnableIRQ, 96
RTPCGetFirstTuple, 94
RTPCGetFunctionID, 93
RTPCGetNextTuple, 94
RTPCGetTupleData, 94
RTPCInit, 92
RTPCIsATA, 96
RTPCIsUART, 96
RTPCMapATA, 97
RTPCMapIOWindow, 95
RTPCMapMemoryWindow, 95
RTPCMapUART, 96
RTPCPowerUp, 93
RTPCSetConfigRegister, 95
RTPCShutDown, 93
RTPCUnmapCIS, 95
RTPCUnmapSocket, 96
RTPEG-32, 310
RTPrintByte, 85
RTPrinterInit, 84
RTPrinterSetIOBase, 84
RTPrinterStatus, 85
RTProcessEvents, 101
RTRaiseCPUException, 78
RTReboot, 71
RTReceiveBufferCount, 87
RTReceiveChar, 88
RTReceiveCharTimed, 88
RTReleaseVirtualAddress, 77
RTReserveVirtualAddress, 77
RTRestoreBootSector, 84
RTRestoreInterrupts, 70
RTRestoreVector, 69
RTRun, 46
RTRunProgram, 74

example, 113
RTS/CTS, 206
RTSaveAndDisableInterrupts, 70
RTSaveVector, 68
RTSectionName, 73

RTSendBlock, 87
RTSendBlockTimed, 87
RTSendBufferCount, 87
RTSendChar, 87
RTSendCharTimed, 87
RTSetCodepageTranslation, 81
RTSetDisplayHandler, 67
RTSetFlags, 67
RTSetIntVector, 69
RTSetKeyboard, 80
RTSetKeyboardTables, 80
RTSetTrapVector, 69
RTSignalEvent, 101
RTT_BIOS_FindClassCode, 89
RTT_BIOS_FindDevice, 89
RTT_BIOS_GenSpecialCycle, 90
RTT_BIOS_GetInterruptRouting, 89
RTT_BIOS_Installed, 89
RTT_BIOS_ReadConfigData, 90
RTT_BIOS_SetPCIInt, 90
RTT_BIOS_WriteConfigData, 90
RTT_PNP_CallPnPBIOS, 91
RTT_PNP_Installed, 91
RTT32.LIB, 66
Rtt32api.txt, 124
RTT32DLL.DLL, 123
RTTarget-32, 283, 288

library, 66
native API, 67
version, 105
with RTFiles-32, 301

RTTARGET.H, 67
RTTARGET.INI, 49
RTTarget32Flags, 66
RTTBOOT, 47, 48
RTTCOM, 85

demo program, 112
RTCloseCOMPort, 86
RTCOMError, 88
RTInitCOMPort, 86
RTLineStatus, 88
RTModemControl, 88
RTModemStatus, 88
RTReceiveBufferCount, 87
RTReceiveChar, 88
RTReceiveCharTimed, 88
RTSendBlock, 87
RTSendBlockTimed, 87
RTSendBufferCount, 87
RTSendChar, 87
RTSendCharTimed, 87

RTTextIO, 213
RTTHeap, 107, 222, 229
RTTickFactor, 101
RTUnlockHeap, 76
RTWait, 71
RTWaitEvent, 101
run-time system, 119

reentrance, 228
running without, 111, 119, 136, 138,
139

running
program on target, 45

368

Index Index

the debugger, 51

scheduler, 158
calling the, 192
rules, 158

scheduling
preemptive, 192

screen, 213
driver, 337

screen driver, 312
screen I/O, 67, 68
screen memory, 38
scrolling, 335
searching files, 265, 281
secondary FAT, 253
Section

Locate command, 27, 116
sector, 250, 251

aligned access, 250
security, 299
seek, 260
segment

registers, 14
selectors, 14
semaphore

binary, 174
counting, 174
demo program, 226
events, 174
example, 175
function, 173
name, 175
resource, 174
Win32, 200

SerDemo, 112
serial I/O

demo program, 112, 226
serial port

PCMCIA, 96
serial ports, 85, 205
SerInt, 111
Set command, 34
SetConsoleCtrlHandler, 104
SetConsoleCursorInfo, 104
SetConsoleCursorPosition, 104
SetConsoleMode, 104
SetConsoleScreenBufferSize, 104
SetConsoleWindowInfo, 104
SetCurrentDirectoryA, 104
SetEndOfFile, 104
SetEnvironmentVariableA, 104
SetEnvironmentVariableW, 104
SetEvent, 104, 201
SetFileAttributesA, 104
SetFilePointer, 104
SetFileTime, 104
SetHandleCount, 104
SetLastError, 104
SetLocalTime, 101, 104
SetStdHandle, 104
SetSystemTime, 101, 104
SetThreadLocale, 100, 104
SetThreadPriority (Win32), 199
SetUnhandledExceptionFilter, 104

SetVolumeLabelA, 104
shut down, 272
ShutDown, 303
shutdown mode, 71
SHGetFileInfoA, 104
sibling, 311
signals

RTPEG-32, 315
size of file, 263
SizeofResource, 104
Sleep, 104
Sleep (Win32), 199
software interrupt, 18
source level debugging, 49
source position, 171, 172
special files, 256
speed

file I/O, 298
Spread, 340
SRAM

driver, 285, 292
SRCNULL, 223
SRCTDS, 223
SSE, 221
stack, 164

checking, 166, 191, 239
enquiring, 170
interrupt, 164, 185
overflow, 118
panic, 184
task, 160, 164, 166

Stack
Locate command, 30

status flags
RTPEG-32, 324

STI, 188
storage device, 251
streams, 282
style flags

RTPEG-32, 325
subdirectory, 253
support, 2
Suspended, 166, 167, 169

task state, 160
SuspendThread (Win32), 199
symbol table, 172
SysAllocStringLen, 104
SysDemo, 112
SysFreeString, 104
SysRead, 24
SysReAllocStringLen, 104
SYSRT32, 218
SYSSTD, 218
SysStringLen, 104
System, 24
system driver, 254, 283
system tick, 101
system time, 80, 101, 283, 28
SystemTimeToFileTime, 104

Table, 340
table of files, 279
target, 8
task

communication, 160
CPU time, 171, 172
creation, 165, 166, 238
cyclic, 236
definition, 157, 159
function, 165
handle, 159, 166
Idle, 160
list, 170
Main, 160
memory needs, 166
name, 166
parameter, 166
priority, 159, 164, 170
stack, 160, 164, 166, 170
state, 160, 169
suspension, 174
synchronization, 157
TaskHandle, 166
termination, 167, 174, 238
timer, 236

task switch
activating, 159
blocking, 159
coprocessor, 168
hook, 192
number of, 171
time slice, 159
types, 159

TaskState, 169
TCP/IP

see RTIP-32
technical support, 2
temporary files, 266
Terminal, 340
Terminated, 170
TerminateProcess, 104
TerminateThread (Win32), 199
terminating tasks, 229
termination, 165, 272

of tasks, 167
terms

RTPEG-32, 311
terms used, 8, 250
TF_MATH_CONTEXT, 166
TF_NO_MATH_CONTEXT, 166
TF_SUSPENDED, 166
thread

see task
definition, 157

thread id
Win32, 197

Thread Local Storage
see TLS data

threads, 76
Threads, 226
throughput

file I/O, 298
TIElapsedAndMark, 205
TIElapsedTime, 205
TIFineTimeToSeconds, 205
time, 101, 172, 202

measuring, 203
system time, 80

369 On Time RTOS-32

Index Index

time of day, 283, 284
time of files, 263
time sharing, 157, 236
time slicing, 159, 165, 236

cooperative, 173
RTKTimeSlice, 173

Timed
task state, 160

TimedGet, 169
TimedPut, 169
TimedReceive, 169
TimedSend, 169
TimedWait, 169
timer, 37, 204

chaining, 219
interrupt, 118
task, 236
tick, 101, 172, 203
tick interval, 204, 205

Timer
RTPEG-32, 332

timer units
of clock device, 203

TimerInit, 205
TimeSlice, 159, 173
TISecondsToTicks, 205
TISetTimerInterval, 205
TITicksToSeconds, 205
TLINK32, 136
TLS, 102
TLS data, 9

Borland C/C++, 136
Microsoft Visual C/C++, 138

TlsAlloc, 104
TlsFree, 104
TlsGetValue, 104
TlsSetValue, 104
tracer

see kernel tracer
traps, 18
TreeView, 340
truncate, 262
TS_BLOCKED_GET, 169
TS_BLOCKED_PUT, 169
TS_BLOCKED_RECEIVE, 169
TS_BLOCKED_SEND, 169
TS_BLOCKED_WAIT, 169
TS_CURRENT, 169
TS_DEADLOCKED, 169
TS_DELAYING, 169
TS_ILLEGAL, 170
TS_READY, 169
TS_SUSPENDED, 169
TS_TERMINATED, 170
TS_TIMED_GET, 169
TS_TIMED_PUT, 169
TS_TIMED_RECEIVE, 169
TS_TIMED_SEND, 169
TS_TIMED_WAIT, 169

Turbo Vision
demo program, 114

TVDemo, 114
types

of RTPEG-32 objects, 325

UART, 205
PCMCIA, 96

uncommitted memory, 9, 106, 107
UnhandledExceptionFilter, 104
UnhookWindowsHookEx, 104
Unicode, 80, 99, 197, 320, 340
unique files, 266
UnlockFile, 104
user events

kernel tracer, 190
USER32.DLL, 101

V24, 85
V86 mode, 14
VariantClear, 104
VariantCopy, 104
VariantCopyInd, 104
VC, 62
VCL, 115
vector font, 335
version

of RTTarget-32, 105
VESA, 38
VESA_16, 337
VESA_24, 337
VESA_32, 338
VESA_8, 337
VESATEST.COM, 39
VGA, 38
VGA_4, 338
VGASCRN, 338
VideoRAM command, 38
viewports, 334
virtual 8086 mode, 14
virtual addresses, 17
Virtual command, 25
virtual heap, 107
virtual regions, 116

example, 114
VirtualAlloc, 104
VirtualFree, 104
VirtualProtect, 104
VirtualQuery, 104
Visual C/C++

see Microsoft C/C++
Visual Studio, 62
volume, 250

W32apimt.txt, 125
W32Bench, 227
wait

for interrupt, 71
WaitForSingleObject, 104, 201

warning messages, 43, 143
ignoring, 36

Watcom C/C++
compiling with, 139
debug symbols, 140

WClearScreen, 215
WCloseWindow, 215
WCursorOFF, 216
WCursorON, 216
WCursorXY, 216
WDefineFunctionKey, 215
WFrame, 215
WGetS, 216
WGotoXY, 216
WideCharToMultiByte, 104
Win32

adding functions, 105
API, 98, 197, 281
Critical Section, 200
emulation, 98, 301
error handling, 197
Event, 200
handles, 99, 197, 281
Mutex, 200
priorities, 197
priority, 199
semaphore, 200
thread, 198
thread id, 197

Win32api.txt, 124
window

GUI, 311
Window Builder, 342
windows

on screen, 213
Windows

emulation of RTPEG-32, 320
WNewWindow, 215
WOpenWindow, 215
World Wide Web, 3
Wprintf, 217
WPutC, 216
WPutS, 216
WriteConsoleA, 104
WriteConsoleInput, 101
WriteConsoleInputA, 104
WriteConsoleOutputA, 104
WriteConsoleW, 104
WriteFile, 100, 104
WriteSectors, 303
WSetColor, 216
WSetCursor, 216
WSetScreenSize, 214
WSetUserInput, 214
WSetVideoRAMAddress, 214
wsprintfA, 104

XON/XOFF, 206

370

Table of Contents

Welcome to On Time RTOS-32 ... 1

Hardware and Software Requirements ... 2
This Manual .. 2
Technical Support ... 2

Support Web Page and Mailing Lists ... 3
Installation .. 3
Licensing Terms and Liability .. 5

Part I RTTarget-32 ... 6
Features of RTTarget-32 .. 7
Terms and Definitions ... 8

Chapter 1 Running Win32 Programs without Win32 10
Benefits of Running without Windows .. 10
Benefits of Running with Windows .. 11
Preparing a Program for RTTarget-32 ... 11
Locating a Program ... 11
Cross Debugging a Program ... 12
A Complete Example ... 12

Chapter 2 The i386 Microprocessor ... 14
Real-Address Mode .. 14
Virtual 8086 Mode ... 14
Protected Mode ... 14

16-Bit Protected Mode ... 15
32-Bit Protected Mode ... 15
Descriptors and Descriptor Tables .. 15
Privilege Levels .. 17
Paging ... 17
Virtual, Linear, and Physical Addresses .. 17
Exceptions and Interrupts .. 18

Chapter 3 RTLoc: Locating a Program ... 19
Invoking RTLoc .. 19
RTLoc Options ... 19

Options Command .. 21
Configuration Files .. 21

Specifying Numeric Values ... 21
Preprocessor Directives .. 23
Macros ... 23

Defining the Target Hardware .. 23
Region Command ... 24
Virtual Command ... 25
FillRAM Command .. 25

Defining Program Location ... 26
DLL Command .. 26
Align Command ... 26
Reserve Command .. 26
Locate Command ... 27

Section ... 27
NTSection .. 28
Header .. 28

Revision 3.07.00 (c) 1996,2000 On Time Informatik i

Table Of Contents

BootCode ... 29
BootData ... 29
BootVector .. 29
BIOSVector .. 30
DiskBuffer ... 30
Stack .. 30
Heap .. 31
PageTable ... 31
Copy .. 32
DecompCode .. 32
DecompData ... 33
File .. 33
Nothing .. 33

Defining Program Options ... 34
Set Command .. 34
Commandline Command .. 34
Init Command ... 34
Link Command ... 35
IgnoreMsg Command ... 36

Defining Boot Code Options ... 37
BOOTFLAGS Command ... 37
VideoRAM Command ... 38
GMode Command .. 38
COMPort Command ... 39

Creating Output Files ... 39
Output Command ... 40
HexFile Command .. 40
BinFile Command ... 40

Initializing Target Hardware ... 41
OUT Commands ... 41
Delay Command ... 41
InitCode Commands ... 41

The LOC File ... 42
The Locate Process in Detail ... 43

Chapter 4 Running a Program on the Target .. 45
Booting from Disk .. 45

Program BootDisk ... 45
Booting from a BIOS Extension .. 46
Booting from the CPU Reset Vector ... 46
Downloading .. 46

Program RTRun .. 46
Booting from MS-DOS ... 47

Program RTTBOOT ... 48

Chapter 5 Cross Debugger RTD32 .. 49
File RTTARGET.INI ... 49
Prerequisites for Cross Debugging .. 51
The Debug Monitor ... 51
Differences from Borland’s TD32 ... 51
A Quick Example .. 52
Debugger Reference ... 52

RTD32 Command Line ... 52
Navigating in RTD32 ... 53
Expressions ... 53

ii On Time RTOS-32

Table Of Contents

Menu Commands .. 54
File .. 54
Edit ... 54
View ... 54
Run ... 54
Breakpoint ... 55
Data ... 56
Options .. 56
Window ... 57
Help .. 57

Debugger Windows ... 58
Source Module ... 58
Inspect ... 58
Watch .. 58
Breakpoints ... 58
Stack .. 58
Log ... 58
Variables ... 58
File .. 58
CPU .. 58

Code Pane ... 59
Register Pane ... 59
Stack Pane .. 60

Register .. 60
Numeric Processor ... 60
Dump ... 60
Execution History .. 60
Class Hierarchy ... 60
Global Descriptor Table .. 60
Interrupt Descriptor Table .. 60
Clipboard .. 60

Keyboard Shortcuts .. 61

Chapter 6 Using Microsoft Visual Studio .. 62
Program DBGShell .. 62
Setting up a Project .. 62
Cross Debugging .. 64

Chapter 7 RTTarget-32 Library ... 66
RTTarget-32 Flags .. 66
RTTarget-32’s Native API .. 67

Function RTSetFlags .. 67
Function RTSetDisplayHandler ... 67
Function RTDisplayChar ... 68
Function RTDisplayString .. 68
Function RTDisplayInt ... 68
Function RTDisplayHex ... 68
Function RTDisplayHexW .. 68
Function RTSaveVector .. 68
Function RTRestoreVector ... 69
Function RTSetIntVector ... 69
Function RTSetTrapVector ... 69
Function RTInstallISR .. 69
Function RTEnableIRQ .. 69
Function RTDisableIRQ ... 70
Function RTIRQEnd ... 70

Part I RTTarget-32 iii

Table Of Contents

Function RTDisableInterrupts ... 70
Function RTEnableInterrupts .. 70
Function RTSaveAndDisableInterrupts ... 70
Function RTRestoreInterrupts ... 70
Functions RTIn, RTInW, RTInD .. 70
Functions RTOut, RTOutW, RTOutD ... 70
Function RTReboot ... 71
Function RTHalt ... 71
Function RTHaltCPL3 ... 71
Function RTWait .. 71
Function RTLocateSection ... 71
Function RTSectionName .. 73
Function RTGetExtMem ... 73
Function RTGetGMode .. 73
Function RTGetVideoRAMAddr .. 73
Function RTLoadRTBFile .. 73
Function RTRunProgram ... 74
Function RTBootRM and RTBootPM .. 74
Function RTDLLThreadEvent .. 75
Function RTLockHeap .. 75
Function RTUnlockHeap ... 76
Function RTCallRing0 .. 76
Function RTFindPhysMem .. 76
Function RTReserveVirtualAddress .. 77
Function RTReleaseVirtualAddress .. 77
Function RTMapMem ... 77
Function RTExtendHeap .. 78
Function RTRaiseCPUException .. 78
Function RTCMOSRead ... 79
Function RTCMOSWrite .. 79
Function RTCMOSReadTime ... 79
Function RTCMOSWriteTime .. 79
Function RTCMOSSetSystemTime ... 80
Function RTCMOSExtendHeap ... 80
Function RTSetKeyboard ... 80
Function RTSetKeyboardTables ... 80
Function RTSetCodepageTranslation ... 81
Function RTInitMouse .. 81
Function RTInitTextMouse ... 82
Function RTSetMousePos ... 82
Function RTMouseDone ... 82
Function RTTextMouseDone .. 82
Function RTMakeBootDisk .. 83
Function RTRestoreBootSector .. 84
Function RTPrinterSetIOBase .. 84
Function RTPrinterInit .. 84
Function RTPrinterStatus ... 85
Function RTPrintByte ... 85

Serial I/O Functions ... 85
Function RTInitCOMPort ... 86
Function RTCloseCOMPort .. 86
Function RTSendChar ... 87
Function RTSendCharTimed .. 87
Function RTSendBlock .. 87
Function RTSendBlockTimed .. 87

iv On Time RTOS-32

Table Of Contents

Function RTSendBufferCount .. 87
Function RTReceiveBufferCount ... 87
Function RTReceiveChar ... 88
Function RTReceiveCharTimed ... 88
Function RTCOMError ... 88
Function RTLineStatus ... 88
Function RTModemStatus .. 88
Function RTModemControl ... 88

PCI BIOS Functions .. 88
Function RTT_BIOS_Installed ... 89
Function RTT_BIOS_FindDevice .. 89
Function RTT_BIOS_FindClassCode ... 89
Function RTT_BIOS_GetInterruptRouting .. 89
Function RTT_BIOS_SetPCIInt .. 90
Function RTT_BIOS_GenSpecialCycle .. 90
Function RTT_BIOS_ReadConfigData .. 90
Function RTT_BIOS_WriteConfigData ... 90

Plug-and-Play BIOS Functions .. 90
Function RTT_PNP_Installed .. 91
Function RTT_PNP_CallPnPBIOS ... 91

PC Cards (PCMCIA) ... 91
Function RTPCInit .. 92
Function RTPCShutDown ... 93
Function RTPCCardPresent ... 93
Function RTPCPowerUp ... 93
Function RTPCGetFunctionID .. 93
Function RTPCGetFirstTuple ... 94
Function RTPCGetNextTuple ... 94
Function RTPCGetTupleData .. 94
Function RTPCSetConfigRegister .. 95
Function RTPCUnmapCIS ... 95
Function RTPCMapMemoryWindow .. 95
Function RTPCMapIOWindow ... 95
Function RTPCEnableIRQ ... 96
Function RTPCUnmapSocket .. 96
Function RTPCIsATA .. 96
Function RTPCIsUART .. 96
Function RTPCMapUART .. 96
Function RTPCMapATA .. 97

DOS Emulation .. 98
DPMI Emulation ... 98
Win32 Emulation ... 98

Win32 Handles .. 99
Function RTHandleInfo ... 99

Win32 Memory Management ... 99
Win32 File I/O .. 100
Win32 Console I/O .. 100

Console Input Event Management ... 100
Win32 Time Management ... 101
Win32 DLLs ... 101
Win32 Exception Handling .. 102
Win32 Thread Local Storage (TLS) .. 102
Win32 API Function Cross Reference ... 102
Adding other Win32 Functions .. 105

Part I RTTarget-32 v

Table Of Contents

RTTarget-32’s Memory Managers ... 106
Fixed Memory Manager .. 106
Virtual or Uncommitted Memory Manager ... 107

Alternate Heap Manager RTTHeap .. 107

Chapter 8 Demo Programs ... 109
Running Demos with Command Line Tools ... 109
Running Demos in Visual Studio 6.0 .. 109
Preparing a Standard PC to Act as a Target .. 110
Preparing a Standard PC to Act as a Target for GUI Demos 110
Preparing the AMD Élan SC400 Evaluation Board .. 110
Preparing the AMD Élan SC520 Evaluation Board .. 110
Preparing the NS486 Evaluation Board .. 111
Program Hello .. 111
Program Hello2 .. 111
Program SerInt ... 111
Program SerDemo .. 112
Program MAPDemo ... 112
Program EmuDemo .. 112
Program DLLDemo ... 112
Program DLLDemo2 ... 112
Program DLLDemo3 ... 112
Program SysDemo .. 112
Program Loader .. 113
Program BootProg .. 113
Program BIOSDemo .. 113
Program PCCard .. 113
Program PCCardMT ... 114
Program EXLED .. 114
Program HelloSc400 ... 114
Program HelloSc520 ... 114
Program NSHello ... 114
Program TVDemo ... 114
Program ClassDemo .. 115
Program MetWorld ... 115
Program HelloGUI ... 115

Chapter 9 Advanced Topics ... 116
Choosing a Locate Method .. 116

Locate Section or NTSection ... 116
Physical or Virtual Regions ... 116

Running with or without Paging .. 116
Running at CPL 0 or 3 ... 117
Installing Hardware Interrupt Handlers ... 117
Catching NULL Pointer Assignments ... 118
Catching Stack Overflows ... 118
Running with or without Run-Time System .. 119
Avoid Repeated Downloads .. 119
Switching between Configurations with and without Debug Monitor 120
Using Data Compression ... 121

Downloading and Cross Debugging ... 121
Applications Booted from Disk .. 121
Applications copied from ROM to RAM .. 122
Applications Running in ROM ... 122

Using DLLs through RTLoc ... 122
Using RTT32DLL.DLL ... 123

vi On Time RTOS-32

Table Of Contents

Linking RTT32.LIB into the EXE ... 123
Using a Custom RTTarget-32 System DLL .. 124
Utility MakeDef .. 124
Differences from Win32 .. 125

Loading DLLs through a File System .. 125
Advantages of DLMs .. 126
Disadvantages of DLMs ... 127

Installable File System ... 127
Multithread Applications ... 128
Using the MetaWINDOW Graphics Library .. 129

Prerequisites .. 129
Initialization .. 130
Limitations .. 130
Function RTMetaWInit .. 131
Function RTGetMetaWEvents ... 131

Using the 387 Emulator ... 131
Linking the Emulator in C/C++ Programs ... 132
Linking the Emulator in Delphi Programs .. 132
Emulator Licensing Terms ... 133

Appendix A Compiling and Linking with On Time RTOS-32 134
General Rules .. 134
Order of Libraries ... 134
Borland C++ .. 136
Microsoft Visual C++ ... 137
Watcom C/C++ .. 139
Borland Delphi ... 141

Appendix B Redistributable Components of RTTarget-32 142
Appendix C RTLoc Error, Warning, and Information Messages 143

Part II RTKernel-32 .. 155
Chapter 1 Multitasking, Real-Time, and RTKernel-32 157

What is Multitasking? .. 157
Time Sharing .. 157
Real-Time Systems .. 157
Cooperative and Preemptive Multitasking ... 158

Real-Time ... 158
RTKernel-32’s Scheduler ... 158
Task Switches ... 159
RTKernel-32 Tasks ... 159
Inter-Task Communications ... 160
Reentrance ... 161

Chapter 2 Module RTKernel-32 ... 162
RTKernel-32 Configuration ... 162

StructureSize .. 162
DriverFlags ... 163
UserDriverFlags .. 163
Flags ... 163
DefaultTaskStackSize .. 164
DefaultIntStackSize ... 164
MainPriority .. 164
DefaultPriority .. 164
HookedIRQs .. 164
TaskStackOverhead ... 164

Part II RTKernel-32 vii

Table Of Contents

TimeSlice .. 165
RTKernel-32 Initialization ... 165

Function RTKernelInit .. 165
RTKernel-32 Exit Function .. 165
Task Management ... 165

Function RTKCreateThread ... 165
Function RTKRTLCreateThread .. 166
Function RTKTerminateTask ... 167
Function RTKSuspend ... 167
Function RTKResume .. 167
Function RTKSetPriority ... 168
Function RTKProtect8087 ... 168
Function RTKFree8087 .. 168
Function RTKAllocUserData ... 168
Function RTKSetUserData ... 168
Function RTKGetUserData ... 169
Function RTKGetLocalData ... 169

Enquiring Tasks ... 169
Function RTKCurrentTaskHandle ... 169
Function RTKGetTaskState ... 169
Function RTKGetTaskPrio .. 170
Function RTKGetTaskStack .. 170
Function RTKGetMinStack ... 170
Function RTKTaskInfo .. 170
Function RTKClearStatistic ... 172
Function RTKLoadSymbols ... 172

Time .. 172
Function RTKSetTime ... 172
Function RTKGetTime ... 173
Function RTKDelay .. 173
Function RTKDelayUntil ... 173
Function RTKTimeSlice .. 173

Semaphores .. 173
Function RTKCreateSemaphore ... 175
Function RTKOpenSemaphore ... 176
Function RTKDeleteSemaphore .. 176
Function RTKSemaInfo ... 176
Function RTKSemaValue .. 176
Function RTKResourceOwner .. 176
Function RTKSignal .. 177
Function RTKPulse ... 177
Function RTKWait .. 177
Function RTKWaitCond .. 177
Function RTKWaitTimed .. 178
Function RTKResetEvent ... 178

Mailboxes ... 178
Function RTKCreateMailbox .. 179
Function RTKDeleteMailbox ... 179
Function RTKClearMailbox ... 179
Function RTKMessages ... 179
Function RTKPut .. 180
Function RTKPutFront .. 180
Function RTKGet ... 180
Function RTKPutCond .. 180
Function RTKPutFrontCond .. 180

viii On Time RTOS-32

Table Of Contents

Function RTKGetCond ... 180
Function RTKPutTimed .. 181
Function RTKPutFrontTimed ... 181
Function RTKGetTimed ... 181
Function RTKNextCond .. 181

Message Passing ... 181
Function RTKSend ... 182
Function RTKReceive .. 182
Function RTKSendCond ... 183
Function RTKReceiveCond .. 183
Function RTKSendTimed ... 183
Function RTKReceiveTimed ... 183

Interrupt Handling ... 183
Function RTKSetIRQHandler ... 184
Function RTKGetIRQHandler ... 184
Function RTKSaveIRQHandlerFar .. 185
Function RTKRestoreIRQHandlerFar .. 185
Function RTKCallIRQHandlerFar .. 185
Function RTKSetIRQStack ... 185
Function RTKIRQInfo ... 186
Function RTKIRQTopPriority .. 186
Function RTKEnableIRQ .. 187
Function RTKDisableIRQ ... 187
Function RTKIRQEnd ... 187
Function RTKDisableInterrupts ... 187
Function RTKEnableInterrupts .. 188

Real-Time Memory Management .. 188
Function RTKAllocMemPool ... 188
Function RTKGetBuffer ... 188
Function RTKFreeBuffer .. 188

The Kernel Tracer .. 188
Function RTKSetTraceBufferSize .. 189
Function RTKEnableTrace .. 189
Function RTKTraceAll .. 189
Function RTKDisableTrace ... 189
Function RTKStopTracing ... 189
Function RTKClearTraceBuffer ... 189
Function RTKUserTrace ... 190
Function RTKTraceHeader ... 190
Function RTKDumpTrace ... 190

Miscellaneous RTKernel-32 Operations .. 191
Function RTKDebugVersion ... 191
Function RTKStackCheck ... 191
Function RTKCanPreempt ... 191
Function RTKPreemptionsON ... 192
Function RTKPreemptionsOFF .. 192
Function RTKScheduler .. 192
Function RTKSetMessageHandler ... 192
Function RTKSetTaskSwitchHook ... 192
Function RTKSetTaskStartStopHook ... 194
Function RTKFatalError .. 194
Function RTKAlloc ... 194
Function RTKDeallocTerminatedTasks .. 194
Functions RTIn, RTInW, RTInD, RTOut, RTOutW, RTOutD 195

Part II RTKernel-32 ix

Table Of Contents

Chapter 3 Alternate APIs for RTKernel-32 .. 196
RTKernel-C 4.5 for DOS Compatible API .. 196
Win32 Thread Compatible API .. 197

Win32 Priorities ... 197
Win32 Handles .. 197
Win32 and RTKernel-32 Error Handling ... 197
Mixing RTKernel-32 and Win32 APIs .. 198

Function RTKWin32ToRTKHandle ... 198
Function RTKToWin32Handle ... 198

Function GetCurrentThreadId ... 198
Function CreateThread ... 198
Function ExitThread .. 199
Function TerminateThread .. 199
Function GetExitCodeThread ... 199
Function GetCurrentThread .. 199
Function Sleep .. 199
Function GetTickCount .. 199
Function SuspendThread ... 199
Function ResumeThread .. 199
Function SetThreadPriority ... 199
Function GetThreadPriority .. 200
Function InitializeCriticalSection ... 200
Function EnterCriticalSection .. 200
Function LeaveCriticalSection .. 200
Function DeleteCriticalSection ... 200
Function CreateEvent .. 200
Function CreateMutex ... 200
Function CreateSemaphore ... 200
Function OpenEvent .. 201
Function OpenMutex ... 201
Function OpenSemaphore ... 201
Function SetEvent ... 201
Function ResetEvent ... 201
Function PulseEvent ... 201
Function ReleaseMutex ... 201
Function ReleaseSemaphore .. 201
Function WaitForSingleObject .. 201

Chapter 4 Supplemental Modules ... 202
Module FineTime ... 202

Function FTSetResolution ... 202
Function FTCalibrate .. 202
Fine Time Arithmetic Functions .. 202
Function FTReadTime ... 203
Time Interval Measurements ... 203
Time Conversions .. 203

Module Clock .. 203
Function CLKSetResolution .. 204
Function CLKSetTimerIntVal ... 204
Time Conversions .. 204

Module Timer ... 204
Function TimerInit .. 205
Function TIElapsedTime .. 205
Function TIElapsedAndMark .. 205
Function TISetTimerInterval .. 205
Time Conversions .. 205

x On Time RTOS-32

Table Of Contents

Module RTCom ... 205
Protocols .. 206
Hardware Configuration ... 207

DigiBoard Cards (PC/4, PC/8, PC/16) .. 207
Hostess Cards (4, 8, or 16 Ports) .. 207
Other Interrupt Sharing Cards (2 to 32 Ports) .. 208

Function COMSetBoardType .. 208
Function COMSetIOBase ... 208
Function COMSetIRQ ... 208
Function COMPortInit ... 209
Function COMHasFIFO ... 209
Function COMEnableFIFO ... 209
Function COMSetProtocol .. 209
Function COMAllocateBuffers .. 210
Function COMEnableInterrupt .. 210
Function COMDisableInterrupt ... 210
Function COMSendChar ... 210
Function COMSendCharTimed .. 210
Function COMSendBlock .. 210
Function COMSendBlockTimed .. 210
Function COMWaitSendBufferEmpty ... 211
Function COMSetModemStatusHook .. 211
Function COMReceiveCharPolled ... 211
Function COMSendCharPolled .. 211
Function COMLineStatus ... 211
Function COMModemStatus .. 212
Function COMModemControl .. 212
Function COMError ... 212

Module RTKeybrd .. 212
Function KBInit ... 213
Function KBKeyPressed .. 213
Function KBGetCh .. 213
Function KBPutCh ... 213

Module RTTextIO ... 213
Function WSetVideoRAMAddress ... 214
Function WSetScreenSize ... 214
Function WSetUserInput ... 214
Function WDefineFunctionKey .. 215
Function WClearScreen ... 215
Function WNewWindow .. 215
Function WOpenWindow .. 215
Function WCloseWindow .. 215
Function WFrame ... 215
Function WGotoXY ... 216
Function WCursorXY ... 216
Function WCursorOFF ... 216
Function WCursorON .. 216
Function WSetCursor .. 216
Function WSetColor .. 216
Function WPutC .. 216
Function WPutS ... 216
Function WGetS .. 216
Function Wprintf .. 217

Module CPUMoni .. 217
Function CPUMonitorStart ... 217

Part II RTKernel-32 xi

Table Of Contents

Function CPURelativeLoad ... 217

Chapter 5 RTKernel-32 Drivers .. 218
System Interface ... 218

Driver SYSSTD ... 218
Driver SYSRT32 ... 218

Interrupt Handling ... 219
Driver IRQRT32 ... 219

Kernel Clock .. 219
Driver CLKPC ... 219
Driver CLKHRTPC ... 219

High Resolution Timer ... 220
Driver HRTNULL .. 220
Driver HRTPC .. 220
Driver CLKHRTPC ... 220
Driver HRTPENT .. 220
Driver HRTSC520 .. 220

Floating Point ... 221
Driver FLTNULL .. 221
Driver FLT387 .. 221
Driver FLTPII .. 221
Driver FLTEMUMT ... 221

Memory Management .. 221
Driver MEMCHEAP .. 222
Driver MEMSTH ... 222
Driver MEMSTCH .. 222
Driver MEMW32 ... 222

Source Code Positions ... 222
Driver SRCNULL .. 223
Driver SRCTDS .. 223

CPU ... 223
Driver CPU386F .. 223
Driver CPU386 ... 223

Overview of all Drivers .. 224
Preconfigured Driver Library DRVRT32.LIB .. 225

Chapter 6 Demo Programs ... 226
Program Threads ... 226
Program RTKDemo ... 226
Program RTKInt .. 226
Program COMDemo .. 226
Program RTBench ... 226
Program RTBenchP ... 226
Program RTBenchA ... 227
Program W32Bench .. 227

Chapter 7 Advanced Topics ... 228
RTKernel-32’s Debug Version ... 228
Reentrance of the C/C++ Run-Time Systems .. 228

Multithreaded Libraries .. 229
Replacements for Non-Reentrant Parts of the Run-Time System 229
Automatic Library Protection .. 229

How to Create Threads .. 231
Interrupt Handling ... 231

Structure of an Interrupt Handler .. 232
Avoid Polling .. 233

xii On Time RTOS-32

Table Of Contents

Preemptive or Cooperative Multitasking? ... 233
Advantages of Preemptive Scheduling .. 233
Advantages of Cooperative Scheduling .. 233

Waiting for Several Events ... 234
Avoid Large Data Types for Mailboxes and Message Passing 235
Mutual Exclusion ... 236
Avoid Time Slicing ... 236
Cyclic Tasks (Timer) ... 236
Priorities .. 237
Starting Objects’ Methods as Tasks .. 237
Creating and Terminating Tasks .. 238

Chapter 8 Typical Error Sources .. 239
Program Termination .. 239
Stack Errors .. 239
Resource Management .. 239
Deadlock ... 239

Appendix A Performance and Interrupt Response Times 241
Appendix B Task Switches in Cooperative Scheduling 242
Appendix C Writing Custom Kernel Drivers ... 243
Appendix D Error and Information Messages 245

Error Messages .. 245
Informational Messages ... 247

Part III RTFiles-32 ... 248
Terms and Definitions ... 250

Chapter 1 The FAT File System Structure .. 251
Sectors, Sector Addressing, and Clusters ... 251
Logical Drives and Partition Tables ... 252
The Boot Record ... 252
The File Allocation Table and Cluster Sizes .. 252
Directories and Files .. 253

Chapter 2 RTFiles-32 in Embedded Applications 254
Structure of an RTFiles-32 Program .. 254
RTFiles-32 APIs .. 254
Mounting Devices and Logical Drives .. 254
RTFiles-32 Buffers .. 255
File Types .. 256

Data Files ... 256
Directory Files .. 256
Logical Drive Files ... 256
Physical Device Files ... 256
Raw I/O .. 257

Chapter 3 RTFiles-32 Native API .. 258
Return Codes and File Handles ... 258
General File I/O ... 258

Function RTFOpen .. 258
Function RTFClose ... 260
Function RTFRead ... 260
Function RTFWrite .. 260
Function RTFSeek .. 260

Part III RTFiles-32 xiii

Table Of Contents

Function RTFExtend .. 261
Function RTFCommit .. 261
Function RTFTruncate ... 262

Information about Files .. 262
Function RTFGetFileInfo .. 262
Function RTFGetFileSize .. 263
Function RTFSetFileTime ... 263

File Attributes ... 263
Function RTFGetAttributes ... 263
Function RTFSetAttributes .. 264

Directories .. 264
Function RTFGetCurrentDir .. 264
Function RTFSetCurrentDir ... 264
Function RTFCreateDir ... 265
Function RTFRemoveDir ... 265

Finding Files .. 265
Function RTFFindFirst ... 265
Function RTFFindNext ... 266
Function RTFFindClose ... 266

File Name Operations .. 266
Function RTFRename ... 266
Function RTFDelete ... 266
Function RTFMakeTempFileName .. 266
Function RTFMakeFileName .. 267
Function RTFExpandName .. 267

Disk and Volume Management ... 267
Function RTFResetDisk .. 267
Function RTFGetDiskInfoEx ... 268
Function RTFGetPartitionInfo ... 269
Function RTFSetVolumeLabel .. 270
Function RTFFormat .. 270

Miscellaneous File Functions .. 272
Function RTFCommitAll .. 272
Function RTFCloseAll .. 272
Function RTFShutDown ... 272
Function RTFErrorMessage ... 272
Function RTFSetDefaultOpenFlags ... 273
Function RTFSetCriticalErrorHandler ... 273
Function RTFDefaultCriticalErrorHandler .. 275
Function RTFCreateMasterBootRecord ... 275
Function RTFSplitPartition ... 275
Function RTFCreateBootSector ... 276

Raw I/O Functions ... 276
Function RTFRawMount ... 276
Function RTFRawSetMedia .. 276
Function RTFRawShutDown ... 276
Function RTFRawRead ... 276
Function RTFRawWrite .. 277
Function RTFRawMediaChanged .. 277
Function RTFRawDiscardSectors ... 277
Function RTFRawGetDiskGeometry .. 277
Function RTFRawLowLevelFormat .. 277

Functions for Debugging ... 278
Function RTFBufferInfo .. 278
Function RTFDumpFileTable ... 279

xiv On Time RTOS-32

Table Of Contents

Device Dependent Functions ... 279
Function RTFFLPYTurnMotorOFF ... 279
Function RTFDrvFlashInfo .. 279
Function RTFDrvFlashCompact ... 280

Chapter 4 Alternate APIs for RTFiles-32 .. 281
Win32 Emulation ... 281

RTTarget-32 Win32 Handles ... 281
RTTarget-32 Flag RT_CLOSE_FIND_HANDLES .. 281

ANSI C Run-Time System Functions ... 282
C++ iostreams ... 282
Mixing Different APIs ... 282

Chapter 5 Configuring RTFiles-32 .. 283
RTFiles-32 Data Tables .. 283
The System Driver .. 283
Device List .. 284
Device Drivers ... 287

Floppy Disk Driver .. 287
DMA Buffer .. 287
RTFDevice.DeviceType .. 288
RTFDevice.DeviceNumber .. 288
RTFDevice.DeviceFlags ... 288
RTFDevice.Driver ... 289
RTFDevice.DriverData .. 289

IDE Hard Disk Driver .. 290
RTFDevice.DeviceType .. 290
RTFDevice.DeviceNumber .. 290
RTFDevice.DeviceFlags ... 290
RTFDevice.Driver ... 290
RTFDevice.DriverData .. 290

M-Systems DiskOnChip Driver .. 291
Memory Windows ... 291
RTFDevice.DeviceType .. 291
RTFDevice.DeviceNumber .. 292
RTFDevice.DeviceFlags ... 292
RTFDevice.Driver ... 292
RTFDevice.DriverData .. 292

PCMCIA SRAM Card Driver ... 292
RTFDevice.DeviceType .. 292
RTFDevice.DeviceNumber .. 292
RTFDevice.DeviceFlags ... 293
RTFDevice.Driver ... 293
RTFDevice.DriverData .. 293

RAM Disk Driver ... 293
RTFDevice.DeviceType .. 293
RTFDevice.DeviceNumber .. 293
RTFDevice.DeviceFlags ... 293
RTFDevice.Driver ... 293
RTFDevice.DriverData .. 293

Linear Flash Driver ... 294
RTFDevice.DeviceType .. 294
RTFDevice.DeviceNumber .. 294
RTFDevice.DeviceFlags ... 294
RTFDevice.Driver ... 295
RTFDevice.DriverData .. 295

Part III RTFiles-32 xv

Table Of Contents

MTD Drivers RTFMtdCFI2_8, RTFMtdCFI2_16, and RTFMtdCFI2_32 295
NULL Device Driver ... 296

RTFDevice.DeviceType .. 296
RTFDevice.DeviceNumber .. 296
RTFDevice.DeviceFlags ... 296
RTFDevice.Driver ... 296
RTFDevice.DriverData .. 296

Chapter 6 Demo Programs ... 297
Program HelloFiles ... 297
Program FAPIDemo .. 297
Program RTFCmd .. 297
Program RTFCmdMT ... 297
Program FlashDemo ... 297
Program DrvDemo .. 297

Chapter 7 Advanced Topics ... 298
Optimizing for Best Throughput ... 298
Optimizing for Best Data Security ... 299
Real-Time File I/O .. 299
Using RTFiles-32 with RTTarget-32 ... 301

Win32 API Emulation with RTFiles-32 and RTTarget-32 .. 301
Using RTFiles-32 with RTKernel-32 ... 302
Implementing Custom Device Drivers .. 302

Structure RTFDriver .. 303
Driver Device Data Structure .. 304
Device-Specific Flags ... 304

Implementing Custom System Drivers .. 304
Flash Memory Technology Drivers (MTDs) .. 305

Appendix A RTFiles-32 Error Codes .. 307

Part IV RTPEG-32 ... 310
Chapter 1 Overview .. 311

Windowing Interface Terminology ... 311
Window and Control .. 311
Parent, Child, Sibling .. 311
Base, Derived, Inherited .. 311
Modal Execution .. 312

Screen Coordinates ... 312
Palettes and Colors .. 312
Class PegScreen ... 312
Class PegMessageQueue ... 313

Messages ... 313
Message Flow and Routing ... 314
System Messages .. 314
User Defined Messages .. 314
Signals .. 315

Class PegPresentationManager ... 317
Event Driven Programming ... 317
Input Focus Tree .. 317
Keyboard Input Methods .. 318

Class PegThing .. 318
The Class Hierarchy .. 319
Unicode ... 320
Win32 Emulation Library ... 320

xvi On Time RTOS-32

Table Of Contents

Chapter 2 Programming with RTPEG-32 .. 321
Application Program Structure ... 321

Function PegInitialize ... 321
Function PegExecute ... 322

Rules Of Memory Ownership ... 322
Creating PegThings .. 322
Deleting/Removing PegThings .. 323
Obtaining a Pointer to PegPresentationManager ... 323
Finding an Object’s Parent .. 323
Finding an Object’s Children .. 323
System Status Flags ... 324
Style Flags .. 325
Determining the Position of an Object .. 325
Using Object Types ... 325
Using Object IDs .. 326
Messages ... 327
Overriding the Message() Method ... 328
Drawing to the Screen ... 328
Overriding the Draw() Method ... 329
Drawing to Memory ... 331
Using PegTimer .. 332
Viewports ... 334
Fonts ... 334

Default Fonts ... 334
The Vector Font .. 335

Scrolling .. 335

Chapter 3 Screen Drivers ... 337
Driver VESA_8 .. 337
Driver VESA_16 .. 337
Driver VESA_24 .. 337
Driver VESA_32 .. 338
Driver VGA_4 ... 338
Driver VGASCRN ... 338

Chapter 4 Demo Programs .. 339
Demo Cross Reference .. 339
Program PegDemo .. 340
Program Robot .. 340
Program Table ... 340
Program TreeView .. 340
Program Notebook ... 340
Program Spread .. 340
Program Gauge .. 340
Program Dialog ... 340
Program Terminal .. 340
Program Unicode ... 340

Chapter 5 Utility Programs .. 342
Window Builder ... 342

Project Files .. 342
Output Files ... 342
Project Window .. 342

Project | New/Open/Save/Close .. 343
Project | Add Module ... 343
Project | Add Image ... 343
Project | Add Font ... 343

Part IV RTPEG-32 xvii

Table Of Contents

Project | Update | Source ... 343
Project | Update | Images .. 343
Project | Update | Strings .. 343
Project | String Table ... 344
Configure | Directories ... 344
Configure | Target ... 344
Configure | Default Fonts ... 344
Configure | Languages .. 344
Configure | Style .. 345
Configure | Remote .. 345

Source Page ... 345
Images Page ... 346
Fonts Page ... 346

Composite Fonts and Reduced Fonts ... 346
Target Window .. 347

Target Window Status Line .. 348
Selecting Objects in the Target Window ... 348
Add Menu ... 348
Edit | Copy ... 348
Edit | Paste ... 348
Edit | Properties .. 349
Layout Menu ... 349
View | Test Mode ... 349
View | Maximize .. 349

String Table .. 349
String Table Edit Fields .. 350
Merging String Tables ... 351

Source Code Generation ... 351
Child Object Pointer Control ... 351

Implicit Pointers ... 352
Temporary Pointers .. 352
Automatic Named Pointers .. 352
Member Pointers .. 352

Image Convert ... 353
Input File .. 353
Output File ... 353
Compression ... 354
Palette Options ... 354

Fixed Orthogonal ... 354
Generate Optimal ... 354
Floyd-Steinburg Dither ... 355

Save As .. 355
Transparency .. 357
Output Colors .. 357
Batch Conversion ... 357

Font Capture ... 358
Using Custom Fonts .. 359

Index .. 360

xviii On Time RTOS-32

	Welcome to On Time RTOS-32
	Hardware and Software Requirements
	This Manual
	Technical Support
	Support Web Page and Mailing Lists

	Installation
	Licensing Terms and Liability

	Part I RTTarget-32
	Features of RTTarget-32
	Terms and Definitions
	Chapter 1 Running Win32 Programs without Win32
	Benefits of Running without Windows
	Benefits of Running with Windows
	Preparing a Program for RTTarget-32
	Locating a Program
	Cross Debugging a Program
	A Complete Example

	Chapter 2 The i386 Microprocessor
	Real-Address Mode
	Virtual 8086 Mode
	Protected Mode
	16-Bit Protected Mode
	32-Bit Protected Mode
	Descriptors and Descriptor Tables
	Privilege Levels
	Paging
	Virtual, Linear, and Physical Addresses
	Exceptions and Interrupts

	Chapter 3 RTLoc: Locating a Program
	Invoking RTLoc
	RTLoc Options
	Options Command

	Configuration Files
	Specifying Numeric Values
	Preprocessor Directives
	Macros

	Defining the Target Hardware
	Region Command
	Virtual Command
	FillRAM Command

	Defining Program Location
	DLL Command
	Align Command
	Reserve Command
	Locate Command
	Section
	NTSection
	Header
	BootCode
	BootData
	BootVector
	BIOSVector
	DiskBuffer
	Stack
	Heap
	PageTable
	Copy
	DecompCode
	DecompData
	File
	Nothing

	Defining Program Options
	Set Command
	Commandline Command
	Init Command
	Link Command
	IgnoreMsg Command

	Defining Boot Code Options
	BOOTFLAGS Command
	VideoRAM Command
	GMode Command
	COMPort Command

	Creating Output Files
	Output Command
	HexFile Command
	BinFile Command

	Initializing Target Hardware
	OUT Commands
	Delay Command
	InitCode Commands

	The LOC File
	The Locate Process in Detail

	Chapter 4 Running a Program on the Target
	Booting from Disk
	Program BootDisk

	Booting from a BIOS Extension
	Booting from the CPU Reset Vector
	Downloading
	Program RTRun

	Booting from MS-DOS
	Program RTTBOOT

	Chapter 5 Cross Debugger RTD32
	File RTTARGET.INI
	Prerequisites for Cross Debugging
	The Debug Monitor
	Differences from Borland's TD32
	A Quick Example
	Debugger Reference
	RTD32 Command Line
	Navigating in RTD32
	Expressions
	Menu Commands
	File
	Edit
	View
	Run
	Breakpoint
	Data
	Options
	Window
	Help

	Debugger Windows
	Source Module
	Inspect
	Watch
	Breakpoints
	Stack
	Log
	Variables
	File
	CPU
	Code Pane
	Register Pane
	Stack Pane

	Register
	Numeric Processor
	Dump
	Execution History
	Class Hierarchy
	Global Descriptor Table
	Interrupt Descriptor Table
	Clipboard

	Keyboard Shortcuts

	Chapter 6 Using Microsoft Visual Studio
	Program DBGShell
	Setting up a Project
	Cross Debugging

	Chapter 7 RTTarget-32 Library
	RTTarget-32 Flags
	RTTarget-32's Native API
	Function RTSetFlags
	Function RTSetDisplayHandler
	Function RTDisplayChar
	Function RTDisplayString
	Function RTDisplayInt
	Function RTDisplayHex
	Function RTDisplayHexW
	Function RTSaveVector
	Function RTRestoreVector
	Function RTSetIntVector
	Function RTSetTrapVector
	Function RTInstallISR
	Function RTEnableIRQ
	Function RTDisableIRQ
	Function RTIRQEnd
	Function RTDisableInterrupts
	Function RTEnableInterrupts
	Function RTSaveAndDisableInterrupts
	Function RTRestoreInterrupts
	Functions RTIn, RTInW, RTInD
	Functions RTOut, RTOutW, RTOutD
	Function RTReboot
	Function RTHalt
	Function RTHaltCPL3
	Function RTWait
	Function RTLocateSection
	Function RTSectionName
	Function RTGetExtMem
	Function RTGetGMode
	Function RTGetVideoRAMAddr
	Function RTLoadRTBFile
	Function RTRunProgram
	Function RTBootRM and RTBootPM
	Function RTDLLThreadEvent
	Function RTLockHeap
	Function RTUnlockHeap
	Function RTCallRing0
	Function RTFindPhysMem
	Function RTReserveVirtualAddress
	Function RTReleaseVirtualAddress
	Function RTMapMem
	Function RTExtendHeap
	Function RTRaiseCPUException
	Function RTCMOSRead
	Function RTCMOSWrite
	Function RTCMOSReadTime
	Function RTCMOSWriteTime
	Function RTCMOSSetSystemTime
	Function RTCMOSExtendHeap
	Function RTSetKeyboard
	Function RTSetKeyboardTables
	Function RTSetCodepageTranslation
	Function RTInitMouse
	Function RTInitTextMouse
	Function RTSetMousePos
	Function RTMouseDone
	Function RTTextMouseDone
	Function RTMakeBootDisk
	Function RTRestoreBootSector
	Function RTPrinterSetIOBase
	Function RTPrinterInit
	Function RTPrinterStatus
	Function RTPrintByte

	Serial I/O Functions
	Function RTInitCOMPort
	Function RTCloseCOMPort
	Function RTSendChar
	Function RTSendCharTimed
	Function RTSendBlock
	Function RTSendBlockTimed
	Function RTSendBufferCount
	Function RTReceiveBufferCount
	Function RTReceiveChar
	Function RTReceiveCharTimed
	Function RTCOMError
	Function RTLineStatus
	Function RTModemStatus
	Function RTModemControl

	PCI BIOS Functions
	Function RTT_BIOS_Installed
	Function RTT_BIOS_FindDevice
	Function RTT_BIOS_FindClassCode
	Function RTT_BIOS_GetInterruptRouting
	Function RTT_BIOS_SetPCIInt
	Function RTT_BIOS_GenSpecialCycle
	Function RTT_BIOS_ReadConfigData
	Function RTT_BIOS_WriteConfigData

	Plug-and-Play BIOS Functions
	Function RTT_PNP_Installed
	Function RTT_PNP_CallPnPBIOS

	PC Cards (PCMCIA)
	Function RTPCInit
	Function RTPCShutDown
	Function RTPCCardPresent
	Function RTPCPowerUp
	Function RTPCGetFunctionID
	Function RTPCGetFirstTuple
	Function RTPCGetNextTuple
	Function RTPCGetTupleData
	Function RTPCSetConfigRegister
	Function RTPCUnmapCIS
	Function RTPCMapMemoryWindow
	Function RTPCMapIOWindow
	Function RTPCEnableIRQ
	Function RTPCUnmapSocket
	Function RTPCIsATA
	Function RTPCIsUART
	Function RTPCMapUART
	Function RTPCMapATA

	DOS Emulation
	DPMI Emulation
	Win32 Emulation
	Win32 Handles
	Function RTHandleInfo

	Win32 Memory Management
	Win32 File I/O
	Win32 Console I/O
	Console Input Event Management

	Win32 Time Management
	Win32 DLLs
	Win32 Exception Handling
	Win32 Thread Local Storage (TLS)
	Win32 API Function Cross Reference
	Adding other Win32 Functions

	RTTarget-32's Memory Managers
	Fixed Memory Manager
	Virtual or Uncommitted Memory Manager

	Alternate Heap Manager RTTHeap

	Chapter 8 Demo Programs
	Running Demos with Command Line Tools
	Running Demos in Visual Studio 6.0
	Preparing a Standard PC to Act as a Target
	Preparing a Standard PC to Act as a Target for GUI Demos
	Preparing the NS486 Evaluation Board
	Program Hello
	Program Hello2
	Program SerInt
	Program SerDemo
	Program MAPDemo
	Program EmuDemo
	Program DLLDemo
	Program DLLDemo2
	Program DLLDemo3
	Program SysDemo
	Program Loader
	Program BootProg
	Program BIOSDemo
	Program PCCard
	Program PCCardMT
	Program EXLED
	Program HelloSc400
	Program HelloSc520
	Program NSHello
	Program TVDemo
	Program ClassDemo
	Program MetWorld
	Program HelloGUI

	Chapter 9 Advanced Topics
	Choosing a Locate Method
	Locate Section or NTSection
	Physical or Virtual Regions

	Running with or without Paging
	Running at CPL 0 or 3
	Installing Hardware Interrupt Handlers
	Catching NULL Pointer Assignments
	Catching Stack Overflows
	Running with or without Run-Time System
	Avoid Repeated Downloads
	Switching between Configurations with and without Debug Monitor
	Using Data Compression
	Downloading and Cross Debugging
	Applications Booted from Disk
	Applications copied from ROM to RAM
	Applications Running in ROM

	Using DLLs through RTLoc
	Using RTT32DLL.DLL
	Linking RTT32.LIB into the EXE
	Using a Custom RTTarget-32 System DLL
	Utility MakeDef
	Differences from Win32

	Loading DLLs through a File System
	Advantages of DLMs
	Disadvantages of DLMs

	Installable File System
	Multithread Applications
	Using the MetaWINDOW Graphics Library
	Prerequisites
	Initialization
	Limitations
	Function RTMetaWInit
	Function RTGetMetaWEvents

	Using the 387 Emulator
	Linking the Emulator in C/C++ Programs
	Linking the Emulator in Delphi Programs
	Emulator Licensing Terms

	Appendix A Compiling and Linking with On Time RTOS-32
	General Rules
	Borland C++
	Microsoft Visual C++
	Watcom C/C++
	Borland Delphi

	Appendix B Redistributable Components of RTTarget-32
	Appendix C RTLoc Error, Warning, and Information Messages

	Part II RTKernel-32
	Chapter 1 Multitasking, Real-Time, and RTKernel-32
	What is Multitasking?
	Time Sharing
	Real-Time Systems
	Cooperative and Preemptive Multitasking

	Real-Time
	RTKernel-32's Scheduler
	Task Switches
	RTKernel-32 Tasks
	Inter-Task Communications
	Reentrance

	Chapter 2 Module RTKernel-32
	RTKernel-32 Configuration
	StructureSize
	DriverFlags
	UserDriverFlags
	Flags
	DefaultTaskStackSize
	DefaultIntStackSize
	MainPriority
	DefaultPriority
	HookedIRQs
	TaskStackOverhead
	TimeSlice

	RTKernel-32 Initialization
	Function RTKernelInit

	RTKernel-32 Exit Function
	Task Management
	Function RTKCreateThread
	Function RTKRTLCreateThread
	Function RTKTerminateTask
	Function RTKSuspend
	Function RTKResume
	Function RTKSetPriority
	Function RTKProtect8087
	Function RTKFree8087
	Function RTKAllocUserData
	Function RTKSetUserData
	Function RTKGetUserData
	Function RTKGetLocalData

	Enquiring Tasks
	Function RTKCurrentTaskHandle
	Function RTKGetTaskState
	Function RTKGetTaskPrio
	Function RTKGetTaskStack
	Function RTKGetMinStack
	Function RTKTaskInfo
	Function RTKClearStatistic
	Function RTKLoadSymbols

	Time
	Function RTKSetTime
	Function RTKGetTime
	Function RTKDelay
	Function RTKDelayUntil
	Function RTKTimeSlice

	Semaphores
	Function RTKCreateSemaphore
	Function RTKOpenSemaphore
	Function RTKDeleteSemaphore
	Function RTKSemaInfo
	Function RTKSemaValue
	Function RTKResourceOwner
	Function RTKSignal
	Function RTKPulse
	Function RTKWait
	Function RTKWaitCond
	Function RTKWaitTimed
	Function RTKResetEvent

	Mailboxes
	Function RTKCreateMailbox
	Function RTKDeleteMailbox
	Function RTKClearMailbox
	Function RTKMessages
	Function RTKPut
	Function RTKPutFront
	Function RTKGet
	Function RTKPutCond
	Function RTKPutFrontCond
	Function RTKGetCond
	Function RTKPutTimed
	Function RTKPutFrontTimed
	Function RTKGetTimed
	Function RTKNextCond

	Message Passing
	Function RTKSend
	Function RTKReceive
	Function RTKSendCond
	Function RTKReceiveCond
	Function RTKSendTimed
	Function RTKReceiveTimed

	Interrupt Handling
	Function RTKSetIRQHandler
	Function RTKGetIRQHandler
	Function RTKSaveIRQHandlerFar
	Function RTKRestoreIRQHandlerFar
	Function RTKCallIRQHandlerFar
	Function RTKSetIRQStack
	Function RTKIRQInfo
	Function RTKIRQTopPriority
	Function RTKEnableIRQ
	Function RTKDisableIRQ
	Function RTKIRQEnd
	Function RTKDisableInterrupts
	Function RTKEnableInterrupts

	Real-Time Memory Management
	Function RTKAllocMemPool
	Function RTKGetBuffer
	Function RTKFreeBuffer

	The Kernel Tracer
	Function RTKSetTraceBufferSize
	Function RTKEnableTrace
	Function RTKTraceAll
	Function RTKDisableTrace
	Function RTKStopTracing
	Function RTKClearTraceBuffer
	Function RTKUserTrace
	Function RTKTraceHeader
	Function RTKDumpTrace

	Miscellaneous RTKernel-32 Operations
	Function RTKDebugVersion
	Function RTKStackCheck
	Function RTKCanPreempt
	Function RTKPreemptionsON
	Function RTKPreemptionsOFF
	Function RTKScheduler
	Function RTKSetMessageHandler
	Function RTKSetTaskSwitchHook
	Function RTKSetTaskStartStopHook
	Function RTKFatalError
	Function RTKAlloc
	Function RTKDeallocTerminatedTasks
	Functions RTIn, RTInW, RTInD, RTOut, RTOutW, RTOutD

	Chapter 3 Alternate APIs for RTKernel-32
	RTKernel-C 4.5 for DOS Compatible API
	Win32 Thread Compatible API
	Win32 Priorities
	Win32 Handles
	Win32 and RTKernel-32 Error Handling
	Mixing RTKernel-32 and Win32 APIs
	Function RTKWin32ToRTKHandle
	Function RTKToWin32Handle

	Function GetCurrentThreadId
	Function CreateThread
	Function ExitThread
	Function TerminateThread
	Function GetExitCodeThread
	Function GetCurrentThread
	Function Sleep
	Function GetTickCount
	Function SuspendThread
	Function ResumeThread
	Function SetThreadPriority
	Function GetThreadPriority
	Function InitializeCriticalSection
	Function EnterCriticalSection
	Function LeaveCriticalSection
	Function DeleteCriticalSection
	Function CreateEvent
	Function CreateMutex
	Function CreateSemaphore
	Function OpenEvent
	Function OpenMutex
	Function OpenSemaphore
	Function SetEvent
	Function ResetEvent
	Function PulseEvent
	Function ReleaseMutex
	Function ReleaseSemaphore
	Function WaitForSingleObject

	Chapter 4 Supplemental Modules
	Module FineTime
	Function FTSetResolution
	Function FTCalibrate
	Fine Time Arithmetic Functions
	Function FTReadTime
	Time Interval Measurements
	Time Conversions
	Function CLKSetResolution
	Function CLKSetTimerIntVal
	Time Conversions

	Module Timer
	Function TimerInit
	Function TIElapsedTime
	Function TIElapsedAndMark
	Function TISetTimerInterval
	Time Conversions

	Module RTCom
	Protocols
	Hardware Configuration
	DigiBoard Cards (PC/4, PC/8, PC/16)
	Hostess Cards (4, 8, or 16 Ports)
	Other Interrupt Sharing Cards (2 to 32 Ports)

	Function COMSetBoardType
	Function COMSetIOBase
	Function COMSetIRQ
	Function COMPortInit
	Function COMHasFIFO
	Function COMEnableFIFO
	Function COMSetProtocol
	Function COMAllocateBuffers
	Function COMEnableInterrupt
	Function COMDisableInterrupt
	Function COMSendChar
	Function COMSendCharTimed
	Function COMSendBlock
	Function COMSendBlockTimed
	Function COMWaitSendBufferEmpty
	Function COMSetModemStatusHook
	Function COMReceiveCharPolled
	Function COMSendCharPolled
	Function COMLineStatus
	Function COMModemStatus
	Function COMModemControl
	Function COMError

	Module RTKeybrd
	Function KBInit
	Function KBKeyPressed
	Function KBGetCh
	Function KBPutCh

	Module RTTextIO
	Function WSetVideoRAMAddress
	Function WSetScreenSize
	Function WSetUserInput
	Function WDefineFunctionKey
	Function WClearScreen
	Function WNewWindow
	Function WOpenWindow
	Function WCloseWindow
	Function WFrame
	Function WGotoXY
	Function WCursorXY
	Function WCursorOFF
	Function WCursorON
	Function WSetCursor
	Function WSetColor
	Function WPutC
	Function WPutS
	Function WGetS
	Function Wprintf

	Module CPUMoni
	Function CPUMonitorStart
	Function CPURelativeLoad

	Chapter 5 RTKernel-32 Drivers
	System Interface
	Driver SYSSTD
	Driver SYSRT32

	Interrupt Handling
	Driver IRQRT32

	Kernel Clock
	Driver CLKPC
	Driver CLKHRTPC

	High Resolution Timer
	Driver HRTNULL
	Driver HRTPC
	Driver CLKHRTPC
	Driver HRTPENT
	Driver HRTSC520

	Floating Point
	Driver FLTNULL
	Driver FLT387
	Driver FLTPII
	Driver FLTEMUMT

	Memory Management
	Driver MEMCHEAP
	Driver MEMSTH
	Driver MEMSTCH
	Driver MEMW32

	Source Code Positions
	Driver SRCNULL
	Driver SRCTDS

	CPU
	Driver CPU386F
	Driver CPU386

	Overview of all Drivers
	Preconfigured Driver Library DRVRT32.LIB

	Chapter 6 Demo Programs
	Program Threads
	Program RTKDemo
	Program RTKInt
	Program COMDemo
	Program RTBench
	Program RTBenchP
	Program RTBenchA
	Program W32Bench

	Chapter 7 Advanced Topics
	RTKernel-32's Debug Version
	Reentrance of the C/C++ Run-Time Systems
	Multithreaded Libraries
	Replacements for Non-Reentrant Parts of the Run-Time System
	Automatic Library Protection

	How to Create Threads
	Interrupt Handling
	Structure of an Interrupt Handler

	Avoid Polling
	Preemptive or Cooperative Multitasking?
	Advantages of Preemptive Scheduling
	Advantages of Cooperative Scheduling

	Waiting for Several Events
	Avoid Large Data Types for Mailboxes and Message Passing
	Mutual Exclusion
	Avoid Time Slicing
	Cyclic Tasks (Timer)
	Priorities
	Starting Objects' Methods as Tasks
	Creating and Terminating Tasks

	Chapter 8 Typical Error Sources
	Program Termination
	Stack Errors
	Resource Management
	Deadlock

	Appendix A Performance and Interrupt Response Times
	Appendix B Task Switches in Cooperative Scheduling
	Appendix C Writing Custom Kernel Drivers
	Appendix D Error and Information Messages
	Error Messages
	Informational Messages

	Part III RTFiles-32
	Terms and Definitions
	Chapter 1 The FAT File System Structure
	Sectors, Sector Addressing, and Clusters
	Logical Drives and Partition Tables
	The Boot Record
	The File Allocation Table and Cluster Sizes
	Directories and Files

	Chapter 2 RTFiles-32 in Embedded Applications
	Structure of an RTFiles-32 Program
	RTFiles-32 APIs
	Mounting Devices and Logical Drives
	RTFiles-32 Buffers
	File Types
	Data Files
	Directory Files
	Logical Drive Files
	Physical Device Files
	Raw I/O

	Chapter 3 RTFiles-32 Native API
	Return Codes and File Handles
	General File I/O
	Function RTFOpen
	Function RTFClose
	Function RTFRead
	Function RTFWrite
	Function RTFSeek
	Function RTFExtend
	Function RTFCommit
	Function RTFTruncate

	Information about Files
	Function RTFGetFileInfo
	Function RTFGetFileSize
	Function RTFSetFileTime

	File Attributes
	Function RTFGetAttributes
	Function RTFSetAttributes

	Directories
	Function RTFGetCurrentDir
	Function RTFSetCurrentDir
	Function RTFCreateDir
	Function RTFRemoveDir

	Finding Files
	Function RTFFindFirst
	Function RTFFindNext
	Function RTFFindClose

	File Name Operations
	Function RTFRename
	Function RTFDelete
	Function RTFMakeTempFileName
	Function RTFMakeFileName
	Function RTFExpandName

	Disk and Volume Management
	Function RTFResetDisk
	Function RTFGetDiskInfoEx
	Function RTFGetPartitionInfo
	Function RTFSetVolumeLabel
	Function RTFFormat

	Miscellaneous File Functions
	Function RTFCommitAll
	Function RTFCloseAll
	Function RTFShutDown
	Function RTFErrorMessage
	Function RTFSetDefaultOpenFlags
	Function RTFSetCriticalErrorHandler
	Function RTFDefaultCriticalErrorHandler
	Function RTFCreateMasterBootRecord
	Function RTFSplitPartition
	Function RTFCreateBootSector

	Raw I/O Functions
	Function RTFRawMount
	Function RTFRawSetMedia
	Function RTFRawShutDown
	Function RTFRawRead
	Function RTFRawWrite
	Function RTFRawMediaChanged
	Function RTFRawDiscardSectors
	Function RTFRawGetDiskGeometry
	Function RTFRawLowLevelFormat

	Functions for Debugging
	Function RTFBufferInfo
	Function RTFDumpFileTable

	Device Dependent Functions
	Function RTFFLPYTurnMotorOFF
	Function RTFDrvFlashInfo
	Function RTFDrvFlashCompact

	Chapter 4 Alternate APIs for RTFiles-32
	Win32 Emulation
	RTTarget-32 Win32 Handles
	RTTarget-32 Flag RT_CLOSE_FIND_HANDLES

	ANSI C Run-Time System Functions
	C++ iostreams
	Mixing Different APIs

	Chapter 5 Configuring RTFiles-32
	RTFiles-32 Data Tables
	The System Driver
	Device List
	Device Drivers
	Floppy Disk Driver
	DMA Buffer
	RTFDevice.DeviceType
	RTFDevice.DeviceNumber
	RTFDevice.DeviceFlags
	RTFDevice.Driver
	RTFDevice.DriverData

	IDE Hard Disk Driver
	RTFDevice.DeviceType
	RTFDevice.DeviceNumber
	RTFDevice.DeviceFlags
	RTFDevice.Driver
	RTFDevice.DriverData

	M-Systems DiskOnChip Driver
	Memory Windows
	RTFDevice.DeviceType
	RTFDevice.DeviceNumber
	RTFDevice.DeviceFlags
	RTFDevice.Driver
	RTFDevice.DriverData

	PCMCIA SRAM Card Driver
	RTFDevice.DeviceType
	RTFDevice.DeviceNumber
	RTFDevice.DeviceFlags
	RTFDevice.Driver
	RTFDevice.DriverData

	RAM Disk Driver
	RTFDevice.DeviceType
	RTFDevice.DeviceNumber
	RTFDevice.DeviceFlags
	RTFDevice.Driver
	RTFDevice.DriverData

	Linear Flash Driver
	RTFDevice.DeviceType
	RTFDevice.DeviceNumber
	RTFDevice.DeviceFlags
	RTFDevice.Driver
	RTFDevice.DriverData

	MTD Drivers RTFMtdCFI2_8, RTFMtdCFI2_16, and RTFMtdCFI2_32
	NULL Device Driver
	RTFDevice.DeviceType
	RTFDevice.DeviceNumber
	RTFDevice.DeviceFlags
	RTFDevice.Driver
	RTFDevice.DriverData

	Chapter 6 Demo Programs
	Program HelloFiles
	Program FAPIDemo
	Program RTFCmd
	Program RTFCmdMT
	Program FlashDemo
	Program DrvDemo

	Chapter 7 Advanced Topics
	Optimizing for Best Throughput
	Optimizing for Best Data Security
	Real-Time File I/O
	Using RTFiles-32 with RTTarget-32
	Win32 API Emulation with RTFiles-32 and RTTarget-32

	Using RTFiles-32 with RTKernel-32
	Implementing Custom Device Drivers
	Structure RTFDriver
	Driver Device Data Structure
	Device-Specific Flags

	Implementing Custom System Drivers
	Flash Memory Technology Drivers (MTDs)

	Appendix A RTFiles-32 Error Codes

	Part IV RTPEG-32
	Chapter 1 Overview
	Windowing Interface Terminology
	Window and Control
	Parent, Child, Sibling
	Base, Derived, Inherited
	Modal Execution

	Screen Coordinates
	Palettes and Colors
	Class PegScreen
	Class PegMessageQueue
	Messages
	Message Flow and Routing
	System Messages
	User Defined Messages
	Signals

	Class PegPresentationManager
	Event Driven Programming
	Input Focus Tree
	Keyboard Input Methods

	Class PegThing
	The Class Hierarchy
	Unicode
	Win32 Emulation Library

	Chapter 2 Programming with RTPEG-32
	Application Program Structure
	Function PegInitialize
	Function PegExecute

	Rules Of Memory Ownership
	Creating PegThings
	Deleting/Removing PegThings
	Obtaining a Pointer to PegPresentationManager
	Finding an Object's Parent
	Finding an Object's Children
	System Status Flags
	Style Flags
	Determining the Position of an Object
	Using Object Types
	Using Object IDs
	Messages
	Overriding the Message() Method
	Drawing to the Screen
	Overriding the Draw() Method
	Drawing to Memory
	Using PegTimer
	Viewports
	Fonts
	Default Fonts
	The Vector Font

	Scrolling

	Chapter 3 Screen Drivers
	Driver VESA_8
	Driver VESA_16
	Driver VESA_24
	Driver VESA_32
	Driver VGA_4
	Driver VGASCRN

	Chapter 4 Demo Programs
	Demo Cross Reference
	Program PegDemo
	Program Robot
	Program Table
	Program TreeView
	Program Notebook
	Program Gauge
	Program Dialog
	Program Terminal
	Program Unicode

	Chapter 5 Utility Programs
	Window Builder
	Project Files
	Output Files
	Project Window
	Project | New/Open/Save/Close
	Project | Add Module
	Project | Add Image
	Project | Add Font
	Project | Update | Source
	Project | Update | Images
	Project | Update | Strings
	Project | String Table
	Configure | Directories
	Configure | Target
	Configure | Default Fonts
	Configure | Languages
	Configure | Style
	Configure | Remote

	Source Page
	Images Page
	Fonts Page
	Composite Fonts and Reduced Fonts

	Target Window
	Target Window Status Line
	Selecting Objects in the Target Window
	Add Menu
	Edit | Copy
	Edit | Paste
	Edit | Properties
	Layout Menu
	View | Test Mode
	View | Maximize

	String Table
	String Table Edit Fields
	Merging String Tables

	Source Code Generation
	Child Object Pointer Control
	Implicit Pointers
	Temporary Pointers
	Automatic Named Pointers
	Member Pointers

	Image Convert
	Input File
	Output File
	Compression
	Palette Options
	Fixed Orthogonal
	Generate Optimal
	Floyd-Steinburg Dither

	Save As
	Transparency
	Output Colors
	Batch Conversion

	Font Capture
	Using Custom Fonts

	Index
	Table of Contents

