
State Machines and Statecharts

Bruce Powel Douglass, Ph.D. i-Logix

State machines and Statecharts
Bruce Powel Douglass, Ph.D.

Chief Evangelist
I-Logix

www.ilogix.com

1. State Machines: Basic Concepts

A finite state machine (FSM) is a mathematical model of a system that attempts to
reduce the model complexity by making simplifying assumptions. Specifically, it assumes

· The system being modeled can assume only a finite number of conditions,
called states.

· The system behavior within a given state is essentially identical.
· The system resides in states for significant periods of time.
· The system may change these conditions only in a finite number of well-

defined ways, called transitions.
· Transitions are the response of the system to events.
· Transitions take (approximately) zero time.

More precisely, a state is a distinguishable ontological condition that that persists for a
significant period of time1. Transitions are responses to events that move the system from
state to state. Consider a simple retriggerable one-shot timer. Such a timer is generally in
one of two possible states: idle and counting down. When the timer has counted down, it
issues a message (such as causing an interrupt leading to some system action), resets the
timer, and returns to the state of counting down. This model is shown below:

1 Some definitions used in this paper will differ from some other authors. If this doesn’t
bother you, then it doesn’t bother me.

State Machines and Statecharts

Bruce Powel Douglass, Ph.D. i-Logix

States here are shown as rounded rectangles. Transitions are directed lines beginning at
the starting state for the transitions and finishing at the target state. Transitions here have
names optionally followed by actions (i.e. functions or operations) executed when the
transition is taken.

This state machine consists of two states and three transitions. In the Idle state, the timer
isn’t counting down -- it sits patiently waiting for a Start Cmd. Once it receives a Start
Cmd, it transitions to the Counting Down state. As a result of the transition, two actions
are performed: The count value of the timer is set and the timer mechanism itself is
started. The model assumes that these actions take zero time. Naturally, they don’t take
exactly zero time, but relative to the timeframe that the timer is in the states, the time
required for these actions is essentially zero. The solid circle indicates the starting state
when the system first begins.

Once in the Counting Down state, the timer can respond to two transitions: a Timeout and
the receipt of a Stop Cmd. In the former case, the timer raises an interrupt, resets the
timer, and resumes the Counting Down state from the reset value. In the latter case, the
timer performs the stop timer action and enters the Idle state.

This kind of an FSM is called a Mealy FSM. A Mealy FSM associates actions with the
transitions between states. A Moore FSM associates actions with the states themselves
rather than the transitions. In general, Moore FSMs require more states to model the same
system since a Mealy FSM can use different transitions to the same state and execute

State Machines and Statecharts

Bruce Powel Douglass, Ph.D. i-Logix

different actions. A Moore FSM must use different states to represent conditions in which
different actions are performed. A Moore FSM for the timer is shown below:

You can see that an additional state is needed since the actions performed during the
Counting Down state differ from the actions performed on subsequent timer restarts.

Some theorists insist that the state of a system is defined by a snapshot of all attributes
(data values) contained within the system at any point in time. By such a definition, a
countdown timer, such as that shown here, which counts down using a 16-bit counter
would have 65,537 states (216 + 1) in the state model2. However theoretically pure such a
definition might be, it isn’t useful. The actions performed by the timer are essentially the
same (i.e. decrementing the value) within the Counting Down state, and it receives the
same transitions. The behavior of the counter can most profitably be decomposed into
two sets of conditions, which are Counting Down and Idle. Therefore, we will opt for the
more parsimonious description and use two or three states rather than tens of thousands.

Additionally, we will define 3 different kinds of system behavior -- stateless, continuous,
and state-driven -- and apply FSM methods to only the latter of these. A stateless system
is a simple system which never acts differently based on its past history. For example,

cos
p

2
returns the value 0 regardless of what value the cosine function was called with

2 Drawing this diagram is an exercise left to the reader.

State Machines and Statecharts

Bruce Powel Douglass, Ph.D. i-Logix

previously. It does not remember its call history, and therefore has no state. Other
systems, such as PID control loops and digital filters, have feedback loops which do
remember previous values, but they do not form distinct states. Instead, they can assume
an infinite number of values. We say such systems exhibit continuous behavior. Again,
some authors will point out that even control loops using real numbers use finite floating
point representations and are therefore FSMs. To answer this, we present two arguments.
The first is the same as is presented above -- namely, it does not behave in a
distinguishably different fashion, so it is not useful to consider an attribute having the
value 0.1 to have a different state than the same attribute having the value
0.100000000002. Secondly, even if it were appropriate, the actual system being modeled
(the “real world”) is not limited by finite floating point representation and does exhibit
truly continuous behavior. Since the point of a model is to represent the system, why
represent it as an FSM when it is fundamentally not?

1.1 Problems with Classical FSMs
It is difficult to represent complex systems with FSM models. The methods work well for
simple, state-driven systems, but don’t “scale up” to larger systems. This is unfortunate
because the more complex the system to be modeled, the greater our need for modelling
tools. The scalability of FSM stems from two fundamental problems: the flatness of the
state model and its lack of support for concurrency.

Almost all of our conceptual modelling techniques rest ultimately on the “divide and
conquer” strategy. That is, to solve a difficult problem we break it up into a set of smaller,
simpler problems. This is often achieved by constructing layers of abstraction. For
example, consider computer programming. All programming can be fully and completely
described by the states of all the transistors in the CPU. Electrical engineers building
CPUs must consider them in exactly this way. Moving up a level in abstraction, we can
consider the numerical op code being executed by the CPU as defining its state. Writing a
program would then be nothing more than arranging the op codes in the proper sequence,
a far, far simpler way to program than individually setting transistor states. Even better
than op codes is to use mnemonic names for the op codes, called assembly language.
Using instructions like,

LD A, 15
STA 0x0FFFE

rather than

0xC9
0x0F
0xC3
0x0FF
0x0FE

State Machines and Statecharts

Bruce Powel Douglass, Ph.D. i-Logix

programming is greatly simplified. Using a high level language simplifies this process
even further. The example here might be coded in C as

MyVar = 15;

What we have done is provided layers of abstraction to move the solution of the problem
away from the domain of the implementation (transistors) to the domain of the problem
(logic).

Flat state machines do not provide the means to construct layers of abstraction. All states
are equally visible and are considered to be at the same level of abstraction. Consider a
simple model of a car, which can be stopped, moving forward, or moving backwards. In a
lower abstraction level, the pistons of the engine are compressing the gas in the firing
chamber, expanding the gas in the firing chamber, filling the chamber with the gas/air
mixture, or emptying it of exploded gas mixture. If we do not arrange the states in a
hierarchical fashion, then we must consider “emptying gas chamber” at the same level of
detail as “moving forward” which it clearly is not. The state of “moving forward” in
principle contains all the states of the pistons.

Another serious problem with traditional state machines is its lack of support for
concurrency. This leads to a combinatorial explosion in the number of states to model.
Consider a simple system which can be thought of as in one of four states: Off, Startup,
Operational, and Error. Additionally, it can be running from either batteries or from
mains. The state model for this is shown below:

“Simple” Flat State Machine

Operational - Battery Operational - Mains

Startup - Battery Startup - Mains

Error - Battery Error - Mains

Off - Battery Off - Mains
mains on line

mains off line

mains on line

mains off line

mains on line

mains off line

mains on line

mains off line

Switch to On Switch to On

POST Complete POST Complete

Error Detected Error Detected

Error
Detected

Error
Detected

Error
Detected

Error
Detected

Switch to Off

Switch to Off

Switch to Off

Switch to Off

Switch to Off

Switch to Off

State Machines and Statecharts

Bruce Powel Douglass, Ph.D. i-Logix

Really, the fact that the system is in Operational state is totally independent of whether or
not it is running from battery or mains. However, since traditional FSMs have no notion
of independence, we must combine the independent states together. This yields states like
Operational-Battery and Operational-Mains. If we could model the FSM as two
independent parts, the diagram would be much simplified. This is called the
“combinatorial state explosion” because the modeling of multiple concurrent FSMs
requires the multiplication of the number of states in each to model all conditions. This
requires O(xn) states to model n state machines with an average of x states in each.
Logically, it should be possible to model such a concurrent system in O(xn) states, a
much simpler proposition.

2. Harel Statecharts
Harel statecharts3 are an attempt to overcome the limitations of traditional FSMs while
retaining their good features. Statecharts include both the notions of nested, hierarchical
states and concurrency while extending the notion of actions.

The essential syntax of statecharts is very much like Mealy-Moore FSMs:

3 Harel, David: Statecharts: A Visual Formalism for Complex Systems in “Science of
Computer Programming”, 8 (1987) 231-274.

State Machines and Statecharts

Bruce Powel Douglass, Ph.D. i-Logix

Harel statecharts are represented as rounded rectangles4. Directed lines indicate
transitions from state to state. Note that there are a number of differences between Harel
statecharts and traditional state diagrams. The most noticeable is the appearance of states
within states. The outer enclosing state is called a superstate. The inner states are called
substates. For example, state S2 contains two substates, U1 and U2. While the system is
in state S2, it must be in exactly one of the nested substates as well. The nested states may
be shown physically within the superstate, or the superstate may be depicted on another
diagram altogether. This allows CASE tools to provide hierarchical “zooming”
capabilities to control user visibility of detail.

Transitions may be drawn to the specific substate, such as transition T4, or may be drawn
to the containing superstate, such as transition T1. In this latter case, some rules must be
applied to determine which substate is entered. When there is ambiguity, an initial state
must be identified using the filled circle, just as in traditional FSMs. Additionally, a
history annotation may be included, as in state S2. When this icon is present, it indicates
that the default state is the last active substate for that superstate. If the last substate was
U2, and transition T2 is taken, when a subsequent transition T1 is made, substate U2 will
be reentered. When both an initial and history are indicated, then the initial state holds
true only for the first time the superstate is entered. Thereafter, the last active state is
used.

Transitions may be made to and from either a superstate or a substate. When a transition
is indicated to a superstate, then the initial or last active substate is entered, depending on
the annotations. When a transition is indicated from a superstate, it means that the
transition applies to all contained substates. This is a great help in simplifying diagrams
since a single transition from a superstate represents transitions from each of its contained
substates.

In Harel statecharts, behavior may be more elaborate than in Mealy-Moore FSMs.
Transitions can have actions, just as they do in Mealy FSMs. Additionally, states may
have both entry and exit actions as well as activities. Entry actions are operations that are
performed when the state is entered. Exit actions are performed when the state exits. This
is indicated in the state by the word “Throughout:”. Actions are still assumed to take an
insignificant amount of time, while activities are performed as long as the state is active.
This rich behavioral modeling allows efficient representation of a wide set of behaviors.

Because states can be nested, entry into a superstate will cause the execution of the
superstate’s entry actions as well as the entry actions of the substate it enters. Internal
transitions within the superstate do not reexecute the superstate’s entry actions, but do
cause execution of the exit actions for the substate being left as well as the entry actions
for the substate subsequently entered. When an exit is made from the superstate, the exit

4 The Harel notation from the Unified Modeling Language (rev. 0.8) is used here. It
differs slightly from that defined in Harel’s original work. Interested readers are referred
to Harel’s original work for more information.

State Machines and Statecharts

Bruce Powel Douglass, Ph.D. i-Logix

actions for both the terminating substate and the superstate are executed. The normal
order of execution is that entry actions of the superstate are performed first, followed by
the entry actions of the nested state. Exit actions are performed in reverse order -- the
substate exit actions are executed first, followed by those of the superstate. States may be
nested arbitrarily deeply and these rules apply recursively.

Transitions may have parameters and guards, as well as actions. Some authors model
events (occurrences which give rise to transitions) as having no data. We define events as
occurrences which cause transitions in an FSM and permit them to contain data. Events
are modeled as a particular type of message that cause state transitions. Another kind of
message is the data message, which does not cause state transitions. Either message type
may contain an arbitrary amount of information. This data may be shown within
parentheses exactly how is appears in a function parameter list.

It is possible to take different transitions from a given state based on the same event when
the event contains data used to discriminate the path. This is called a conditional
transition. The conditional icon is a diamond. Each transition emanating from the
conditional icon is marked with the specific value(s) which cause that transition to be
taken.

State Machines and Statecharts

Bruce Powel Douglass, Ph.D. i-Logix

Guards are conditions which must be met for the transition to be taken even when the
event causing the transition has occurred. Guards are shown in square brackets to
distinguish them from event data (which is shown in parentheses). A common guard is
that some other concurrent state machine must be in a certain state. This is normally
shown as [in(G)] indicating that the other state machine must be in state G for the
transition to be taken.

Actions may be either operations executed or other transitions initiated. Transitions
caused as a result of another transition occurring are called propagated transitions. This
allows transitions in one concurrent state machine to influence others. In UML 1.3,
sending an event is a kind of action and is included in the action list.

Transitions may not only be propagated from one state machine to another, but may also
be broadcast to all state machines simultaneously. Broadcast transitions are shown
expediently by using the same name in multiple concurrent state machines. This implies
that transitions names must be unique throughout the entire system. This can be achieved

State Machines and Statecharts

Bruce Powel Douglass, Ph.D. i-Logix

by either forcing a flat namespace or by using a relative distinguished naming (RDN)
strategy. An RDN strategy uses the state hierarchy to uniquely identify the nesting of
states by separating nesting levels with a period. For example, in the Basic Statechart
Syntax diagram above, transition Y2 could be referred to using its RDN as S2::Y2, since
it is nested within S2.

Concurrency in statecharts is shown using dashed lines, as shown above. The overall state
being modeled is S, and is broken up into three distinct, concurrent state machines, S1,
S2, and S3. Each of these is an independent state machine with its own initial state,
history, and behavior. In such a concurrent system it is important to note that while in S,
the system is in one state each from S1, S2, and S3 at the same time.

In this figure we see examples of both broadcast and propagated transitions. Transition
T1 appears in both S1 and S2, just as the transition T3 appears in both S2 and S3. Both of
these are broadcast to the concurrent state machines. Transition T3 is propagated from
transition T2 in state machine S1. When T2 occurs in S1, it causes T3 to appear in both
S2 and S3.

State Machines and Statecharts

Bruce Powel Douglass, Ph.D. i-Logix

A simple pacemaker provides an example of a Harel statechart. This pacemaker can
receive commands from a programming device to

· set pulse width, pulse amplitude, and pacing rate.
· transmit its current parameter settings.
· Set pacing parameters.
· Enable or disable pacing.

If the pacemaker is commanded to set parameters, the command is checked, and if valid,
the parameters are set for the next pacing cycle and an ACK is returned to the
programmer. If the pacemaker receives a command to transmit its pacing parameters, then
they are transmitted without an additional ACK. Any command which is illegal or invalid
results in the pacemaker transmitting a NAK.

At the same time, it paces the heart using a VVI pacing mode. In such a pacing mode, the
electrical activity in the ventricle is sensed. If an intrinsic heart beat is detected before the
timeout (which depends directly on the pacing rate) occurs, then the pacemaker resets the
timer and waits for the next beat. If a timeout occurs, then the sense hardware is turned
off (to protect it against current inrush), and an electrical pace is delivered to the
ventricle. After waiting a suitable period of time to allow the current to dissipate, known
as the refractory time, the sensor electronics are reenabled and the pacemaker again waits
for a heart beat or timeout event.

A Harel statechart for this pacemaker is shown below:

State Machines and Statecharts

Bruce Powel Douglass, Ph.D. i-Logix

Note that the communications system is an FSM which operates concurrently with the
pacing engine. It would be inappropriate to disable pacing while communication occurs.
The two FSMs are synchronized by the Set Parameters transition. It is initiated by the
Good Set Cmd received by the communications subsystem, and results in a propagated
transition Set Parameters in the pacing FSM.

2.1 State Transition Encyclopedia
As with both structured and object-oriented methods, not all information must be put on a
statechart. Although statecharts provide a means for putting entry and exit actions and
activities in a state icon, in complex systems this can make the diagram unreadable. The
same is true of transitions with elaborate parameters, guards, propagated transitions, and
actions. Further, most software processes for highly reliable systems must trace
requirements into code, and this is more difficult when the requirement is on a diagram
than when it is in text. For these reasons, the details of the states and transitions are often
captured in a state encyclopedia and the diagram itself is used to help navigate the textual
descriptions of the states and transitions. A typical state encyclopedia will have each state
and transition defined in a short specification as shown below:

State Machines and Statecharts

Bruce Powel Douglass, Ph.D. i-Logix

State Name: <name>
Applies to which objects: <object names>
Description: <text description>
Entry Actions: <comma separated action list>
Exit Actions: <comma separated action list>
Activities: <comma separated activity list>

Transition: <name>
Applies to which objects: <object names>
Description: <text description>
Source of event: <name of event>
Parameter list: <comma separated list of data parameters>
Guard conditions: <comma separated list of guards>
Propagated transitions: <comma separated list of transitions>
Actions: <comma separated action list>

3. State Tables
Another popular way to represent FSMs is with a state table. This table is usually
organized with the starting states along the left edge and the transitions along the top. The
contents of the cells are the target states, along with any unique actions taken with that
instance of the transition. Occasionally, one sees a state table with the initial state along
the left edge and the target state along the top with the contents of the cells being the
transition.

State tables are used instead of or in conjunction with state diagrams or statecharts. They
provide a space-efficient means for representing a large number of states and transitions.
More importantly, they provide a different view of the FSM. With a statechart, the overall
structure of the state space is clear and it is relatively simple to navigate a sequence of
state transitions. However, it is not equally clear when transitions are missing. In a state
table, the structure of the state space is more obscure, but missing transitions are much
more obvious. For this reason, some authors, such as Shlaer and Mellor, recommend that
both diagrams and tables are done.

Concurrent FSMs are typically represented using different tables, so that a given table is
within the same thread of execution. Just as with statecharts, transition names common to
multiple state tables indicate synchronization, either via broadcast or propagated
transitions. Because structure is less visible with state tables, it is even more important to
have an encyclopedia defining the states and transitions in detail.

An example state table is shown below for the pacemaker example:

Table 1: State Table for Pacemaker Communications
Reed
switch
closure

Reed
switch
opens

Bit
detected

Done
Receiving

Response
Ready

Done
Sending

Good
Request
Cmd

Bad Cmd Good Set
Cmd

State Machines and Statecharts

Bruce Powel Douglass, Ph.D. i-Logix

Off Idle
Idle Off Receiving Sending
Receiving Off Checking
Checking Off Sending Sending Sending
Sending Off Idle

Table 2: State Table for Pacing Engine
Pace Start
Cmd

Pace Stop
Cmd

Timeout Ventricular
Sense

Set
Parameters

Done

Off Waiting
Refractory Off Waiting
Waiting Off Pacing Waiting Waiting
Pacing Off Refractory

4. Scenarios and State Models
A state diagram provides a static view of the entire state space of a system. What it does
not show are typical paths through the state space as the system is used. These typical
paths are called scenarios. Scenarios may not visit all states in the system nor activate all
transitions, but they provide an order-dependent view of how the system is expected to
behave when actually used. This paper will provide two methods for showing scenarios
and illustrate how they tie in to the static state machine defined by state diagrams and
tables. The first is the timing diagram, which is best used when strict timing must be
shown. The other is the message Sequence Chart, which shows order but not strict timing.

4.1 Timing Diagrams
Electrical engineers have used timing diagrams for a long time. A timing diagram is a
simple representation with time along the horizontal axis and state along the vertical. Of
course, electrical engineers usually only concern themselves with two states: On and Off.
Software engineers can use timing diagrams just as easily on more elaborate state
machines to show the changes of state over time.

Software timing diagrams (or just “timing diagrams” for short) depict state as a horizontal
band across the diagram. When the system is in that state, a line is drawn in that band for
the duration of time the system is in the state. The time axis is linear, although special
notations are sometimes used to indicate long uninteresting periods of time. The simple
form of a timing diagram is shown below:

State Machines and Statecharts

Bruce Powel Douglass, Ph.D. i-Logix

Simple Timing Diagram

Time

S
ta

te

Off

Refractory

Waiting for
V Sense

Pacing

Pace Start Cmd

Ventricular
Sense

Timeout

Done

Timeout

This timing diagram shows a particular path through the pacing engine state machine.
The pacing engine begins in the Off state and remains there until it receives a command
to enter begin pacing. At this point, it jumps to the Waiting for V Sense state. The vertical
lines connecting states show that the timing for the transition is zero relative to the scale
of the timing diagram. Later, a ventricular sense is detected (as shown by the transition
annotation on the diagram) and the engine returns to the Waiting for V Sense state.
Sometime later, the timeout occurs and the engine enters the pacing state. In this state, the
engine is actively putting an electrical charge through the heart muscle. When the pacing
pulse width is complete, the system transitions to the Refractory state. Once this times
out, the system again enters the Waiting for V Sense state.

In this simple form, only a single object (or system) is represented. It is possible to show
multiple objects on the same diagram. By separating these with dashed lines, the different
(and possibly concurrent) objects can be clearly delineated. Propagated transitions can be
clearly marked with directed lines showing event dependency.

Other extensions to timing diagrams can be shown as well. The figure below shows the
complex syntax available for timing diagrams. Although it is only shown for a two-state
system, it applies to more elaborate state machines as well.

State Machines and Statecharts

Bruce Powel Douglass, Ph.D. i-Logix

Complex Timing Diagrams

Deadline

Rise
Time

Execution
Time

Dwell
Time

Slack TimeLeading
Jitter

Trailing
Jitter

Period

Initiation
Time

Fall
Time

For state processes that reoccur periodically, a number of state characteristics may be
shown. These include:

· period The time between initiations for the same state.
· deadline The time by which the state must be exited and a new state

entered.
· Initiation time The time required to completely enter the state (i.e. execute state

entry actions)
· execute time The time required to execute the entry and exit actions and the

required activities.
· dwell time The time the object remains in the state after the execute time

before the state is exited. Includes time for exit actions.
· slack time The time between the end of actions and activities and the

deadline.
· rise time The time required for the transition into the state to complete.
· fall time The time required for the transitions out of the state to complete.
· jitter Variations in the start time for a periodic transition or event.

When the transition time is not zero, it is shown using a slanted line indicating the time
that it takes to complete the transition. This is the rise and fall times for the transitions.

4.2 Message Sequence Chart
Message Sequence Charts (MSCs) are a more common way to show scenarios. MSCs use
vertical lines to represent the objects participating in the scenario and horizontal directed
lines to represent the messages sent from one object to another. Time flows from top to
bottom: that is, messages shown lower on the page take place later that ones above it.

State Machines and Statecharts

Bruce Powel Douglass, Ph.D. i-Logix

MSCs show only sequence, not absolute time. Since the time axis is not linear, most
methodologists permit the inclusion of textual timing annotations when absolute time is
particularly important.

We have extended MSCs in a few fundamental ways. First, we add small filled circles at
the originator object for broadcast messages. This allows clear distinction of which object
initiated a message that goes to multiple targets. Second, only some of the messages
drawn will cause a change in state (event messages). The target object is assumed to
remain in the same state until another state box appears on the line. We optionally add
state boxes on the object lines to show when the object undergoes a state change as a
result of receiving a message.

The same scenario is shown below using an MSC. Note that the presence of the other
objects (Timer and Ventricular Sensor) encourages us to add more messages which
naturally arise from looking at the problem somewhat differently.

Message Sequence Chart
TimerPacing

Engine
Venticular

Sensor

Waiting

Waiting

Pacing

Ventricular Sense

Timeout

Pulse Width Time

Timeout

Refractory Refractory Time

Timeout

Waiting

Pacing Rate Time

Pacing Rate Time

5. Implementing State machines

There are a number of ways to implement a state machine in software. The most common
is to provide a single scalar variable called a state variable and use this as the

State Machines and Statecharts

Bruce Powel Douglass, Ph.D. i-Logix

discriminator in a switch statement. Each case clause in the switch statement can
implement the various actions and activities. For example, consider the simple
retriggerable one-shot timer state machine presented earlier. It might result in C++ source
code something like this:

void FSM(int &timer_state, message msg) { // C programs would use int *timer_state
switch (timer_state) {

case IDLE_STATE:
switch (msg.msg_type) {

case START_CMD:
timer.countValue = msg.cmd
timer.start();
timer_state = COUNTING_STATE;
break;

default:
// do nothing
break;

}; // end switch msg
break;

case COUNTING_STATE:
switch (msg.msg_type) {

case TIMEOUT:
sw_interrupt(xx);
timer.start();
break;

case STOP_CMD:
timer.stop();
timer_state = IDLE_STATE;
break;

default:
// do nothing
break;

}; // end switch msg
break;

default:
cout << “Illegal state value “ << endl;
break;

}; // end switch
}; // end FSM function

Another approach is to write a function that accepts a state table and executes a transition
on it. This solution is somewhat more work initially, but more flexible and capable for
larger state machines. The secret to this approach is the structuring of the state table. It
must not only contain a potentially sparse state x transition array containing the new
target state, but also entry and exit actions for the states, activities for the states, and
actions and guards for the transitions. The exact structuring of the data will depend on the
problem being solved. Generally, the code looks something like this when implemented
in C++:

#include <stddef.h>

// crude, but it's simple
#define MAX_ACTIONS 10
#define MAX_STATES 10
#define MAX_TRANSITIONS 10

typedef int TstateID;
typedef int TtransitionID;
typedef void (*f_ptr)(); // pointer to a function taking no arguments

 // and returning no values

void DoNada(void) {
// do nothing

};

State Machines and Statecharts

Bruce Powel Douglass, Ph.D. i-Logix

class transition {
public:

TtransitionID ID;
TstateID targetState; // where we end up
f_ptr action[MAX_ACTIONS]; // up to 11 actions
transition(void) {

for (int j=0; j<MAX_ACTIONS; j++)
action[j] = &DoNada; // point to null func

};
};

class state {
public:

TstateID ID;
f_ptr entry_action[MAX_ACTIONS];
f_ptr exit_action[MAX_ACTIONS];
f_ptr activity[MAX_ACTIONS];
state(void) {

for (int j=0; j<MAX_ACTIONS; j++) {
entry_action[j] = &DoNada;
exit_action[j] = &DoNada;
activity[j] = &DoNada;

};
};

};

// In class stateTable, the first template value index is the number
// of states. The second is the number of transitions.
// The contents of each cell in the state table is a transition
// The currentState variable holds the ID of the current state
// which coincides with its index.

class stateTable {
public:

stateTable(int startState = 0): currentState(startState) { };
TstateID currentState; // current active state
TstateID cell[MAX_STATES][MAX_TRANSITIONS]; // contains ID of target state
state stateList[MAX_STATES];
transition transitionList[MAX_TRANSITIONS];

};

class FSM {
public:

void processFSM(stateTable s, int transitionID) {
int j;
if ((transitionID >=0) && (transitionID <MAX_TRANSITIONS)) {

if s.cell[s.currentState][transitionID] > 0 { // valid transition
// now, execute exit actions, transitions actions and
// entry actions
for (j = 0; j<MAX_ACTIONS; j++)

s.stateList[s.currentState].exit_action[j]();

// change current state
s.currentState = s.cell[s.currentState][transitionID];

// execute transition actions
for (j = 0; j<MAX_ACTIONS; j++)

s.transitionList[transitionID].action[j]();

// new state entry actions
for (j = 0; j<MAX_ACTIONS; j++)

s.stateList[s.currentState].entry_action[j]();
}; // end inner if

}; // end outer if
}; // end method processFSM

}; // end

int main(void) {
state a; // creates a state with up to 10 entry and exit

 // actions and 10 activities
transition b; // creates a transition with up to 5 actions

stateTable s; // creates a 5 state x 10 transition table

State Machines and Statecharts

Bruce Powel Douglass, Ph.D. i-Logix

return 0;
};

The FSM class may be then serve as a base class from which subclasses are derived.
Derived classes are then a specialized type of state machine which know how to process
state transitions. Alternatively, classes wanting to model state behavior may use the
facilities of a single centralized FSM object and pass state tables off to it for processing.

This particular set of classes takes the easy way out in several cases so as not to obscure
the code. Fixed sized actions lists are used, but several alternative approaches could be
used instead. Templates could make custom-sized classes. Probably best is to use a linked
list for the action lists because they only need to be sequentially accessed. Also, guards
are not checked, but they should be.

The processFSM method accepts a state table and a transition. It applies the state exit
actions, changes to the new states, executes the transitions actions, and then executes the
new state entry actions. It assumes that the function (action) pointers may be called freely
with no ill effects. The code also assumes that transitions all have unique IDs.

6. References
[1] Douglass, Bruce Powel Doing Hard Time: Developing Real-Time Systems with UML,
Objects, Frameworks and Patterns Addison-Wesley, 1999

[2] Douglass, Bruce Powel Real-Time UML: Developing Efficient Objects for Embedded
Systems Addison-Wesley, 1998

	State machines and Statecharts
	1. State Machines: Basic Concepts
	1.1 Problems with Classical FSMs

	2. Harel Statecharts
	2.1 State Transition Encyclopedia

	3. State Tables
	4. Scenarios and State Models
	4.1 Timing Diagrams
	4.2 Message Sequence Chart

	5. Implementing State machines
	6. References

