

Simulation Engineering

Jim Ledin

CMP Books
Lawrence, Kansas 66046

CMP Books

CMP Media LLC

1601 W. 23rd Street, Suite 200

Lawrence, KS 66046

USA

www.cmpbooks.com

Designations used by companies to distinguish their products are often claimed as trademarks. In
all instances where CMP Books is aware of a trademark claim, the product name appears in initial
capital letters, in all capital letters, or in accordance with the vendor’s capitalization preference.
Readers should contact the appropriate companies for more complete information on trademarks
and trademark registrations. All trademarks and registered trademarks in this book are the prop-
erty of their respective holders.

Copyright © 2001 by Jim Ledin, except where noted otherwise. Published by CMP Books, CMP
Media LLC. All rights reserved. Printed in the United States of America. No part of this publica-
tion may be reproduced or distributed in any form or by any means, or stored in a database or
retrieval system, without the prior written permission of the publisher; with the exception that the
program listings may be entered, stored, and executed in a computer system, but they may not be
reproduced for publication.

The programs in this book are presented for instructional value. The programs have been carefully
tested, but are not guaranteed for any particular purpose. The publisher does not offer any war-
ranties and does not guarantee the accuracy, adequacy, or completeness of any information herein
and is not responsible for any errors or omissions. The publisher assumes no liability for damages
resulting from the use of the information in this book or for any infringement of the intellectual
property rights of third parties that would result from the use of this information.

Acquisitions Editor: Berney Williams
Editors: Michelle O’Neal, Rita Sooby, and Robert Ward
Layout Production: Kristi McAlister
Cover Art Design: John Freeman

Distributed in the U.S. and Canada by:

Publishers Group West

1700 Fourth Street

Berkeley, CA 94710

1-800-788-3123

www.pgw.com

ISBN: 1-57820-080-6

Dedicated to the memory of my father,

John Ronald Ledin.

v

Table of Contents

Preface. ix

Chapter 1

Simulation Engineering 1

1.1 Introduction .1
1.2 Embedded Systems .2
1.3 Simulation .4
1.4 Complex Products .5
1.5 Short Development Cycle .7
1.6 Improved Quality .8
1.7 Lower Total Cost .9
1.8 Resistance Against Simulation .11
1.9 Simulation Planning .12

1.9.1 The Waterfall Development Model .12
1.9.2 The Iterative Development Model .13

1.10 Source Code and Examples .15
1.10.1 Dynamic System Simulation Library .15
1.10.2 Simulink Examples .18

1.11 Chapter Overview .19

Chapter 2

Modeling Dynamic Systems 21

2.1 Introduction .21
2.2 Dynamic Systems. .22

2.2.1 Continuous-Time Systems .22
2.2.2 Discrete-Time Systems. .27

2.3 Mathematical Modeling .28
2.3.1 Level of Model Complexity .30

vi

Table of Contents

2.4 Modeling Methods . 31
2.4.1 Physics-Based Modeling: A Simple Pendulum Example 31
2.4.2 Linearization of Nonlinear Models . 35
2.4.3 Empirical Modeling . 37

2.5 Rigid Body Motion in Three-Dimensional Space 53
2.5.1 Two-Dimensional Motion . 54
2.5.2 Three-Dimensional Motion . 55

2.6 Stochastic Systems . 64
Exercises . 69

Chapter 3

Non-Real-Time Simulation73

3.1 Introduction . 73
3.2 The User Interface . 74
3.3 Model Issues . 74
3.4 Configuration Management. 75
3.5 Integration Algorithms. 76

3.5.1 Euler Integration Algorithms . 77
3.5.2 Higher Order Implicit Integration Algorithms 79
3.5.3 Adams-Bashforth Integration Algorithms 80
3.5.4 Runge-Kutta Integration Algorithms . 82
3.5.5 Variable Step Size Integration Algorithms 83
3.5.6 Integration Errors . 84
3.5.7 Integration Algorithm Stability . 91
3.5.8 Stiff Systems . 93
3.5.9 Combined Discrete-Continuous Systems 94

3.6 Initial Conditions, Driving Signals, and Stopping Conditions 95
3.7 Data Collection and Storage . 96
Exercises . 98

Chapter 4

HIL Simulation .103

4.1 Introduction . 103
4.2 HIL Simulation Design . 105
4.3 Real-Time Simulation . 107
4.4 HIL Simulation Implementation . 108

4.4.1 Non-Real-Time Operations . 108
4.4.2 Short Integration Step Times . 110
4.4.3 Slow Model Algorithms. 111
4.4.4 Slow Simulation Processor. 112

4.5 Analog I/O Error Sources. 112
4.5.1 Aliasing . 113
4.5.2 DAC Zero-Order Hold . 116

Table of Contents

vii

4.6 Computing Hardware and I/O Devices .118
4.7 HIL Simulation Software Structure .119
4.8 Multiframing. .121

4.8.1 Multiframing in a Single Task with No Fast-Frame I/O.122
4.8.2 Multiframing in a Single Task with Fast-Frame I/O.124
4.8.3 Multiframing Using Multiple Tasks .126

4.9 Integrating and Debugging HIL Simulations .128
4.10 When to Use HIL Simulation. .131
Exercises .132

Chapter 5

Distributed Simulation 135

5.1 Introduction .135
5.2 TCP/IP. .137

5.2.1 TCP/IP Transport Protocols .139
5.3 Protocols for Distributed Simulation .141
5.4 Communication Latency and Jitter .143
5.5 The HLA Standard .145
5.6 Internet Game Protocols .149
5.7 Real-time Simulation Protocol. .149

5.7.1 RTSP Example Federation. .152
Exercises .170

Chapter 6

Data Visualization and Analysis 173

6.1 Introduction .173
6.2 Immediate Displays .174
6.3 Plotting Tools .177
6.4 Animation .178
6.5 Automated Analysis and Reporting .179
6.6 Data Analysis Techniques .181

6.6.1 Example Simulation .181
6.6.2 Graphical Techniques .184
6.6.3 Theil Inequality Coefficient .191
6.6.4 Example Application of the Theil Inequality Coefficient193

Exercises .201

Chapter 7

Verification, Validation, and Accreditation . . 203

7.1 Introduction .203
7.2 Verification and Validation .206

7.2.1 Informal Verification Techniques .206
7.2.2 Static Verification Techniques .209
7.2.3 Dynamic Verification and Validation Techniques211

viii

Table of Contents

7.3 Accreditation . 218
7.4 VV&A Plans and Reports . 219
Exercises . 221

Chapter 8

Simulation Throughout the

Development Cycle .223

8.1 Introduction . 223
8.2 Requirements Definition . 223
8.3 Preliminary Design. 226
8.4 Detailed Design . 227
8.5 Prototype Development and Testing . 229
8.6 Product Upgrades . 234
8.7 Fielded System Problem Analysis . 236
Exercises . 237

Chapter 9

Simulation Tools. .239

9.1 Desired Simulation Tool Characteristics . 240
9.2 Dynamic System Simulation Products . 241

9.2.1 C++/DSSL . 241
9.2.2 MATLAB/Simulink . 249
9.2.3 VisSim . 257
9.2.4 MATRIXX SystemBuild . 263
9.2.5 20-sim . 271

9.3 Other Software Tools . 280
9.3.1 DESIRE . 280
9.3.2 Dymola . 280
9.3.3 EASY5. 280
9.3.4 SD/FAST . 281
9.3.5 EngineSim . 281

9.4 Real-Time Simulation Computing Systems . 282
9.4.1 ADI Simsystem . 282
9.4.2 dSpace . 282

Exercises . 282

Glossary .285

Appendix A

Answers to Selected Exercises 293

Chapter 2 . 293
Chapter 3 . 294
Chapter 6 . 294

Index .295

21

2

Chapter 2

Modeling Dynamic

Systems

2.1 Introduction

To develop a simulation of an interesting and complex dynamic system, one must begin by
developing mathematical models of the system components and the interactions between the
system and its operational environment. A

mathematical model

 is an algorithm or a set of
equations and a set of related data values that together represent the significant behavior of a
system, process, or phenomenon.

Depending on the system to be modeled, the development of a representative set of math-
ematical models may be an easy task or it may require a great deal of work. In cases where
the system’s dynamics are not well understood, it will be necessary for the developer to design
and execute a series of experiments to collect data that can be used for model development.

This chapter introduces concepts involved in the mathematical modeling of dynamic sys-
tems and presents some of the basic techniques used in their development. The relevant prop-
erties of dynamic systems will be examined and I will provide examples of engineering
techniques for deriving mathematical representations of their behavior. The positive and neg-
ative attributes of commonly used modeling approaches will also be discussed.

22

Chapter 2: Modeling Dynamic Systems

2.2 Dynamic Systems

A

dynamic system

 has behavior that evolves over time. This behavior is commonly repre-
sented by

differential equations

 if the system is of the continuous-time type or by

difference
equations

 if the system is of the discrete-time type. I will use the phrase

dynamic equations

 to
indicate the set of differential or difference equations that describe a system’s behavior.

A system is

continuous-time

 if its dynamic equations are valid at all points in time. A

dis-
crete-time

 system has dynamic equations that are updated or used only at discrete points in
time. A dynamic system that is modeled using both difference equations and differential equa-
tions is called a combined discrete-continuous system, or simply a

combined system

.

2.2.1 Continuous-Time Systems

Some examples of continuous-time dynamic behaviors include:
• the translational and rotational motion of an aircraft,
• the orbital motion of a satellite,
• the response of a robotic arm to the motion of its actuators, and
• the response of an op-amp bandpass filter to its input signal.

The behavior of these systems can be represented mathematically by

differential equations

. A
differential equation contains an unknown function and one or more of the function’s deriva-
tives. The goal is to find the unknown function, which will determine the system behavior
over time.

Systems containing distributed parameters are described using

partial differential equa-
tions

, which contain partial derivatives. An example of a distributed parameter system is an
electrical transmission line, which has resistance and inductance distributed continuously
along its length. It is possible to approximate a distributed parameter system with a lumped
parameter model, which contains a finite number of discrete locations where energy can be
stored and dissipated. Lumped parameter models can be represented by

ordinary differential
equations

, which contain ordinary derivatives rather than partial derivatives.

Note: This book will consider the modeling of dynamic systems using ordinary differen-
tial equations rather than partial differential equations. Therefore, distributed parame-
ter systems will always be represented by lumped parameter models. When the phrase
“differential equation” appears, it will refer to an ordinary (rather than partial) differ-

ential equation.

It is often necessary to begin the simulation implementation process with a mathematical
model that is in a format

other

 than differential equations and transform it so that it becomes
a set of differential equations. In engineering analysis and design processes, continuous-time
dynamic systems are usually studied using one of three formats [1]. These are the

s

-plane, the
frequency response, and state–space representations. These formats are usually used to repre-
sent systems as

linear time-invariant models

. Linear time-invariant models and the three
model formats are discussed in the following sections.

Dynamic Systems

23

Linear Time-Invariant Models

Mathematically, a model is

linear

 if it satisfies the following condition. Start with two model
input signals

x

1

(

t

) and

x

2

(

t

), and their corresponding output signals

y

1

(

t

) and

y

2

(

t

). Create a
new input signal that is the sum

x

1

(

t

) +

x

2

(

t

) and apply it as an input to the model. If the
model output equals

y

1

(

t

) +

y

2

(

t

) for any arbitrarily selected

x

1

(

t

) and

x

2

(

t

), the model is lin-
ear. A model is

time-invariant

 if the dynamic equations that define its behavior do not change
as a function of time. A linear time-invariant model combines both of these properties.

The s-plane Format

The

s

-plane format is based on the Laplace transformation [2]. This technique is widely
applied in the areas of classical control system analysis and design, though it is used less often
in the simulation of nonlinear systems.

s

-plane models are typically used to represent linear
time-invariant models. These models possess desirable properties for system analysis and con-
trol system design.

Models in the

s

-plane format are often represented as

transfer functions

 consisting of a
ratio of polynomials in the complex variable

s

. A transfer function represents the ratio of out-
put to input in the

s

-domain. An example linear differential equation is shown in Equation
2.1 and its equivalent transfer function is given in Equation 2.2. Lowercase

x

 and

y

 indicate
the signals in the time domain and uppercase

X

 and

Y

 indicate the

s

-domain representation. A
single prime over a variable indicates a first derivative with respect to time. Two primes indi-
cate a second time derivative, and so on.

2.1

2.2

In many simulation environments, it is possible to model systems using differential equa-
tions but not transfer functions. For these environments, it is necessary to convert transfer
functions to differential equations. It is a straightforward procedure to convert from an

s

-
plane transfer function to an equivalent differential equation, assuming zero initial condi-
tions. The steps are:
1. Given a transfer function in the format of Equation 2.2, multiply through by both denom-

inators.
2. Wherever the variable

s

 multiplies a variable, replace that term with the derivative of the
same order as the power of

s

 that is multiplying it.
3. Change the uppercase

X

 and

Y

variables to lowercase.

Equation 2.3 shows the intermediate step in converting Equation 2.2 to Equation 2.1
where the multiplication through by the denominators in Equation 2.2 has taken place. The
next step is to replace the terms

s

2

Y

 and 1.8

sY

 by

ÿ

 and . Finally, the remaining upper-
case

X

 and

Y

variables are changed to lowercase variables and the result differential equation
is as shown in Equation 2.1.

2.3

y″ 1.8+ y ′ 100y+ 100x=

H s() Y
X
---- 100

s
2 1.8s 100+ +

------------------------------------= =

1.8 ẏ

s
2
Y 1.8sY 100Y+ + 100X=

24

Chapter 2: Modeling Dynamic Systems

The Frequency Response Format

The frequency response format describes a system’s behavior as its response in magnitude and
phase to a sinusoidal input signal at various frequencies. The frequency response of a system
can be determined empirically, which makes it useful for systems that are not understood well
enough to model using the equations of physics.

Figure 2.1 shows a frequency response representation of the transfer function in Equation
2.2. The magnitude and phase of the transfer function are displayed in the form of

Bode
plots

. Bode plots show the ratio of the magnitude of the output signal to the magnitude of the
input signal in

decibels

 and the phase lag of the output signal relative to the input signal in
degrees. The horizontal axis in both plots is the frequency of the input signal in radians per
second displayed on a logarithmic scale.

Figure 2.1 Bode plots of the response of Equation 2.2.

The decibel (or dB for short) is a way of expressing a ratio of two quantities. dBs are used
instead of simple ratios because very large and very small ratios can be described with num-
bers of reasonable size. Another reason is that two ratios can be multiplied or divided by add-
ing or subtracting their values in dB, which simplifies calculations. The mathematical
definition of gain in dB appears in Equation 2.4, where

z

 is the ratio of y to x in dB.

Dynamic Systems 25

2.4

The vertical bars around the quantity y/x in Equation 2.4 represent the absolute value of the
ratio. z will be negative if the magnitude of y is smaller than that of x. Using this formula, if y
is 1/1000 of x, z will equal –60 dB. Some other examples:
• If z is –1 dB, the ratio y/x is 0.89.
• If z is –6 dB, the ratio y/x is 0.50.
• If z is +6 dB, the ratio y/x is 2.0.

A frequency response cannot be used directly in a simulation. First, it must be transformed
into a format suitable for implementing a simulation model. Assuming the system represented
in the frequency response data is approximately linear, it is possible to develop an s-domain
model that has a frequency response approximating the measured data. One (tedious) way to
develop this model is by manually adjusting the coefficients of an s-domain model until its
frequency response matches the system’s frequency response to some degree.

Alternatively, the techniques of system identification [3] can be applied to develop a model
from experimental data. System identification uses a computer program to process the sam-
pled input signal and output signal from a test of the dynamic system. The system identifica-
tion algorithms adjust the model parameters until the output of the model matches the output
of the system as closely as possible. The model that results from system identification of a
continuous system will typically be linear and time-invariant, and will usually be in the s-
domain format. This approach will be discussed further in the section “System Identification”
on page 52.

The State–Space Format
The state–space representation models a system as a set of first-order linear differential equa-
tions using matrix methods. As an example, Newton’s law for a mass M moving in one
dimension x under the influence of a force F is shown in Equation 2.5. A state–space repre-
sentation of this second-order linear differential equation is shown in Equation 2.6. In this
representation, the variable x1 is the position of the mass and x2 is its velocity.

2.5

2.6

When working with linear time-invariant systems it is possible to transform state–space
models to equivalent transfer functions and vice versa. It is also possible to convert a state–
space model containing N first-order equations into a single Nth-order differential equation.
However, the state–space representation is ideal for simulation because the numerical algo-
rithms that we use for solving differential equations apply only to first-order equations.

The three system representation formats described rely on the assumption that the system
being modeled is linear and (often) time-invariant. These assumptions are only reasonable

z = 20log
10

y
x dB

Mx″ F=

x ′1
x ′2

0 1

0 0

x1

x2

0

1

F
M
-----+=

26 Chapter 2: Modeling Dynamic Systems

under specific conditions. For example, an aircraft can be represented as a linear time-invari-
ant system when it is in a steady-state cruise condition, where the velocity, altitude, and pitch
orientation are approximately constant over some period of time. Under these circumstances,
it is reasonable (and accurate) for many purposes to assume that the response of the aircraft
to the small control inputs used to maintain altitude, heading, and airspeed is linear.

It is not reasonable to expect a linear time-invariant model to be useful for simulating the
flight of the aircraft from the start of the takeoff run until it reaches cruising altitude because
the flight conditions change drastically in the transition from a low speed, low altitude take-
off environment to a high speed, high altitude cruise condition. A high fidelity simulation
model of this aircraft is necessarily nonlinear and time-varying to account for the changes in
dynamic behavior as different flight regimes are encountered. Nonlinear and time-varying
dynamic behavior can be modeled in a straightforward manner using differential equations,
as the next section will show.

The Differential Equation Format
Differential equations are the general format for representing dynamic systems. They contain
an unknown function and one or more of its derivatives. The order of a differential equation
is the order of the highest derivative appearing in it. The solution of a differential equation is
a function that satisfies the equation at all points and that also satisfies any associated bound-
ary conditions.

High fidelity dynamic equations representing real-world systems tend to be nonlinear and
time-varying. The formats for modeling dynamic systems discussed previously (s-plane, fre-
quency response, and state–space) are usually limited to linear time-invariant models. This is
because many engineering analysis and design techniques are available only for linear time-
invariant models and are not applicable to nonlinear models.

A standard technique for developing a linear system model is to perform a Taylor series
expansion of the nonlinear, time-varying dynamic equations about a stable operating point.
An example of a stable operating point is the aircraft in a steady-state cruise condition as dis-
cussed in the previous section. A variety of analysis techniques can be used with the linearized
system model.

Simulation uses a different approach for examining system behavior. A simulation can
model the behavior of a nonlinear, time-varying system just as easily as it can model a linear,
time-invariant system. The basic method used in simulation is to numerically compute esti-
mates of the solutions of the system’s dynamic equations. Although techniques exist for find-
ing exact analytic solutions of some categories of dynamic equations, this is usually not
possible unless the equations are linear and have mathematically simple input signals such as
a step function or a sine wave. Dynamic systems often have input signals that are not simple
in a mathematical sense. An example of a mathematically complex input function is the rota-
tional position of an automobile steering wheel as the driver travels along a road. For these
reasons, the approach most commonly used in dynamic system simulation is to perform
approximate numerical integration of the dynamic equations. The details of several algo-
rithms for numerical integration will be examined in Chapter 3.

Numerical integration algorithms operate on first-order differential equations only. This
means that if a dynamic equation contains second (or higher) derivatives, it must be trans-
formed into an equivalent set of first-order differential equations. This is a simple procedure.

Dynamic Systems 27

1. Solve for the highest order derivative. This places the equation into the form
x(n) = f (t, x, x´,..., x(n-1)) where x(n) is the nth-order time derivative.

2. Make the following substitutions for the function and its derivatives:
x1 = x, x2 = x´, x3 = x˝, and so on. This changes the equation into the form
x´n = f(t, x1, x2,..., xn), a first-order differential equation.

3. Write first-order differential equations for each of the variables x1 through xn-1 as follows:
x´1 = x2, x´2 = x3…, x´n-1 = xn.

Here’s an example. Equation 2.7 is a second-order nonlinear differential equation. The
result of solving Equation 2.7 for the highest derivative appears in Equation 2.8. Equation
2.9 is a set of two first-order differential equations that are equivalent to Equation 2.7. In
Equation 2.9, x1 is equal to the solution function x of Equation 2.7 and x2 is equal to the
derivative x´ in Equation 2.7. The variables x1 and x2 are referred to as state variables.

2.7 x˝ + 3x´2 + 5x = 1

2.8 x˝ = –3x´2 – 5x + 1

2.9 x´2 = –3x2
2 – 5x1 + 1

 x´1 = x2

In general, many different solution functions can satisfy a differential equation such as
Equation 2.7. Additional information in the form of boundary conditions must be provided
to identify the solution of interest. In dynamic system simulation, boundary conditions are
specified as initial conditions on the state variables. The initial conditions are the values of the
state variables at the start of simulation execution.

Equation 2.10 shows an example set of initial conditions at time zero that, combined with
Equation 2.9, uniquely specify the solution to the dynamic equation represented by Equation
2.7.

2.10 x2(0) = 0
 x´1(0) = 0

2.2.2 Discrete-Time Systems
If the output of a system is updated or used only at discrete points in time, the system can be
represented as a discrete-time system. A discrete-time system is described by a set of differ-
ence equations. One reason that this kind of modeling is of interest in the development of
dynamic embedded systems is that the behavior of an embedded computer control system is
well represented by a discrete-time model. This concept is applicable to embedded control
systems that sample their inputs at discrete points in time, perform processing, and then
update their outputs, with this cycle repeating at fixed time intervals.

In a general discrete-time system, the output at any time is some function of the current
system input, previous input values, and previous output values. As with continuous systems
described by differential equations in the previous section, difference equations can be linear
or nonlinear and time-invariant or time-varying.

28 Chapter 2: Modeling Dynamic Systems

In engineering analysis and design, linear time-invariant models of discrete-time system
are used in ways similar to the linear time-invariant models of continuous-time systems. For
simulation purposes, it does not matter if the difference equation is linear and time-invariant
or if it is nonlinear and time-varying. An example nonlinear difference equation is shown in
Equation 2.11. The subscripts in Equation 2.11 represent the sample number in the discrete
system’s input and output sequences. yn+1 is the system output value at the next time step, xn
is the current input value, xn–1 is the input value of the previous step, yn is the current output
value, and yn–1 is the output value of the previous step.

2.11

The order of a difference equation is determined by the oldest previous output value that
appears in the equation. Equation 2.11 is a second-order difference equation because yn–1
appears on the righthand side, which is two steps older than the equation output yn+1. If no
previous output values appear in the equation, the order of the difference equation is deter-
mined by the oldest previous input value instead.

Unlike the case of high order differential equations, there is no need to represent a high
order difference equation as a set of first-order equations for simulation purposes. However,
difference equations are similar to differential equations in that it is necessary to provide ini-
tial conditions to uniquely specify a solution. In Equation 2.11 — assuming that the system
begins operating at n = 0 — the initial conditions would be y0, y–1, and x–1.

2.3 Mathematical Modeling
A mathematical model is an algorithm or a set of equations that represents the interesting
behavior of a system. Experts with thorough knowledge of the system and its interaction with
the environment typically perform model creation tasks in development projects for complex
dynamic systems. The development of a model for a complex dynamic system is an iterative
process that involves significant effort to verify the correctness and accuracy of the resulting
implementation.

The process of model development begins with a specification of the requirements the
model must meet. The following are issues that must be addressed in developing a model of a
complex system.

What effects should be included in the model? A system may exhibit many different
kinds of behavior (for example, the motion of motors, vibration, wear of moving parts, etc.),
but not all of these behaviors need to be modeled to produce an effective simulation. Limiting
the effects modeled to only those that are truly necessary will make the model less complex
and easier to build, test, and maintain — as well as requiring less computational resources to
execute.

How detailed must the model be? In many cases, a simple model is all that is needed,
but if precise determination of system behavior is required, the model may need to be very
elaborate.

yn 1+
1
2
---xn

1
4
---xn 1–

1
8
---yn

2 1
16
------yn 1–

2+ + +=

Mathematical Modeling 29

What interactions between the system and the outside environment must be

modeled? For example, a communication satellite motion model must operate in conjunc-
tion with a model of the earth’s gravitational field, as well as with models of other relevant
phenomena such as solar pressure.

What techniques will be used to develop the model? A fundamental choice is whether
to use physics-based equations or measured data as the basis for the model. The answer to
this question is often obvious to those with expert knowledge of the system.

What data must be gathered to perform the modeling? For example, an aerody-
namic model of an aircraft may require extensive wind tunnel testing.

How much time and how many people are available to develop and test the

model? As model complexity increases, the development and test hours will increase as
well.

What computing resources are available for the model? A large model may consume
significant amounts of memory, disk space, and CPU time. However, given the capabilities of
current computers, this may not be a critical issue.

Will the model eventually be used in a hardware-in-the-loop (HIL) simulation? This
may place severe constraints on the execution time allowed for the model. Alternatively, a
complex model may require high performance computing hardware for use in an HIL simula-
tion, perhaps involving the use of multiple processors.

How can verification and validation be performed for the model implementation?

There must be reasonable ways of confirming that the model has been implemented cor-
rectly and that its behavior matches the system being modeled to an acceptable degree.

These issues should be addressed as part of planning for the simulation effort. The ques-
tions listed can be applied at the highest level of the entire system being simulated initially
and again as the system is broken down into subsystems and individual components to be
modeled. These questions are also useful in the development of additional models needed for
a complete simulation, such as the gravitational field and solar pressure models in the com-
munication satellite example above.

Although our focus is on the mathematical modeling of dynamic systems, note that the
models of system components and the operational environment will not always contain
dynamic behavior. For example, the motion of an aircraft in response to pilot control inputs
is represented by dynamic equations. However, the atmospheric properties (air temperature,
pressure, and density) at the aircraft’s location are often modeled as a set of equations that
depend only on the aircraft’s altitude. No dynamic behavior is involved in this atmosphere
model, only the determination of atmospheric attributes at a given aircraft altitude. The point
here is that not all models that go into a simulation will necessarily include dynamic behavior.

30 Chapter 2: Modeling Dynamic Systems

2.3.1 Level of Model Complexity
The required level of complexity in a mathematical model can be determined by finding
answers to the first two questions in the previous section, i.e., which effects to model and the
level of modeling detail required. For most systems intricate enough to be worthy of simula-
tion, a large number of effects can be identified that potentially have some bearing on system
performance. The model developer must determine which of these effects are truly significant
and which can be ignored. This is partially an economic decision because as more effects are
added to a model, the amount of time and money needed to develop and validate the model
will increase.

An example of limiting the number of effects modeled occurs in modeling the orbit of an
earth satellite. In theory, the motion of the satellite will be perturbed by all of the massive
bodies in the solar system and beyond. This set of bodies includes the earth, moon, sun, all
the other planets, asteroids, distant stars, etc. In reality, the satellite motion is primarily influ-
enced by a limited number of bodies, perhaps just the earth, moon, and sun. The developer
can ignore the effects of the other bodies or may wish to treat them as a random disturbance,
depending on the goals for the simulation. Selecting which bodies to model and which to
ignore provides an answer to the first question.

Now to address the second question: the issue of model detail. A simple model for the
gravitational field of the earth assumes that it is a perfect sphere and the gravitational field is
uniform in all directions. The earth is actually nonspherical (it is slightly oblate) and this
affects the gravitational field. Furthermore, the strength of the gravitational field varies at dif-
ferent locations due to local differences in the density of the earth. Thus, there are at least
three levels of modeling detail for the earth gravitational field that could be selected: a perfect
uniform sphere, an oblate sphere, and locally varying gravity. Each of these levels of model
detail requires a different level of effort to implement and test, and each requires a different
quantity and type of data that must be included in the model. Selecting which level of detail
to use answers the second question.

One helpful approach when dealing with these issues is to begin with a relatively simple
model containing a limited set of effects and a coarse level of model detail. Then, as the devel-
oper gains experience with the simulation, more effects and model details can be added as the
need for them becomes clear. Often in the early stages of simulation development, it is not
obvious which effects and model details are truly significant. If a large number of effects and
model details are included in the initial design for the model, it may turn out that much effort
has been wasted modeling things that turn out to be trivial in determining system perfor-
mance.

If the software interfaces to each model are clearly and completely defined, it should be
possible to replace these low fidelity models with higher fidelity versions without any signifi-
cant changes in the rest of the simulation. Instead of replacing the original models, however, it
may be more useful to maintain multiple levels of fidelity for particular models in the simula-
tion simultaneously. This will allow the simulation user to select the desired level of fidelity of
individual models as part of the simulation input data set. The availability of multiple model
fidelity levels in a simulation allows the user to perform detailed modeling of particular
effects or model details when needed. When this level of detail is not required, lower fidelity
models can be used instead, which may reduce simulation execution time. Sometimes lower
fidelity models execute at speeds orders of magnitude faster than higher fidelity versions. The

Modeling Methods 31

ability to trade model detail for execution speed can help make the simulation a valuable tool
for a variety of applications.

2.4 Modeling Methods
This section will discuss some techniques for developing the equations and data sets for a
mathematical model. A model is “physics-based” if it is based on the equations of generally
accepted physical laws. A spacecraft orbital model based on Newton’s law of motion is an
example of a physics-based model. Many systems have behavior that is too complex to repre-
sent in terms of the laws of physics. An example of this situation is the aerodynamic perfor-
mance of a supersonic aircraft, which tends to be very nonlinear and difficult to represent
using the equations of physics. In this case, the only reasonable approach for model develop-
ment may be to measure the behavior of the system with a sub-scale model in a wind tunnel
and use this data to create a set of interpolation tables. This approach leads to an “empirical”
model.

2.4.1 Physics-Based Modeling: A Simple Pendulum

Example
Figure 2.2 shows a pendulum suspended from a string of length l under the influence of grav-
itational acceleration g. The pendulum angular deflection with respect to the vertical is ,
given in radians. The mass of the pendulum bob is defined to be m. The goal for this model is
to determine the period of oscillation of the pendulum as a function of the initial deflection
angle , assuming that the initial velocity is zero.

Figure 2.2 Simple pendulum.

To determine the oscillation period, begin by considering which effects are significant.
Look at the relevant physical effects and determine which ones to include in the model:
• Gravity must be modeled because the pendulum would not move without it.
• The mass of the pendulum bob must be modeled for the same reason.
• If we assume that the size of the bob is small in comparison to the length of the string, the

bob can be modeled as a point mass. This simplifies the model significantly.

θ

θ0 θ̇0

32 Chapter 2: Modeling Dynamic Systems

• If the mass of the string is much less than that of the bob, the mass of the string can be
ignored.

• Friction within the string will be assumed to be a small effect over short time periods and
will be ignored.

• The pendulum will be assumed to move slowly so that air resistance is not a significant
factor over a short time period.

We know that a real pendulum will eventually slow down and stop due to friction in the
string and air resistance. This is not the kind of behavior we are interested in, so we will mod-
ify our goal to be the determination of the oscillation period at the time motion is started.
This assumes that the pendulum slows gradually and the oscillation period changes slowly.

We have made several simplifying assumptions that will ease the model development task.
Next, apply the laws of physics to develop dynamic equations for the system. Only attempt to
model the effects that were determined to be relevant in the previous analysis.

The component of gravitational force that affects the motion of the pendulum bob is in
the direction perpendicular to the string. This force is defined in Equation 2.12. The gravita-
tional force component parallel to the string will create tension in the string, but it will not
affect the motion of the bob, so ignore it.

2.12

Note that the force F will always be acting to move the bob back towards the center position.
Applying Newton’s law F = ma to the problem leads to Equation 2.13, where a is the tangen-
tial acceleration of the bob.

2.13

The acceleration a is related to the angle by the equation a = l . This leads to the final
dynamic equation of Equation 2.14.

2.14

Note that this equation does not depend on the mass of the bob m, however it does depend
on the assumptions listed previously. It is also a nonlinear differential equation because it
contains the term . To completely determine a solution for this equation, the initial con-
ditions of the system must be specified as shown in Equation 2.15. The parameter in
Equation 2.15 is the angle from which the bob is released at time zero with an initial velocity
of zero. For this system, the possible values for are assumed to lie in the range

.

2.15

F mg– θsin=

a g– θsin=

θ θ″

θ″ g
l
---– θsin=

θsin
θ0

θ0

π
2
---– π

2
---[,]

θ 0() θ0=

θ′ 0() 0=

Modeling Methods 33

To make Equation 2.14 suitable for simulation, it must be transformed into a set of first-
order differential equations using the procedure discussed in The Differential Equation For-
mat on page 26. The resulting first-order equations and corresponding initial conditions are
shown in Equation 2.16.

2.16

Using the techniques of numerical integration (discussed in Chapter 3), we can solve these
equations for various values of and the oscillation period can be determined from examin-
ing the solutions.

Pendulum Simulation with the DSSL
Equation 2.16 represents a model of this dynamic system in differential equation format.
With the use of the DSSL C++ routines, a complete simulation of this system is shown in List-
ing 2.1.

Listing 2.1 Pendulum.cpp

θ′2
g
l
---– θ1sin=

θ′1 θ2=

θ1 0() θ0=

θ2 0() 0=

θ0

// Pendulum simulation

#include <dssl.h>

#include <cstdio>

#include <cmath>

int main()

{

 // Define the state variables

 StateList state_list;

 State<> theta(&state_list), theta_dot(&state_list);

 // Integration step size and simulation end time

 const double step_time = 0.01, end_time = 10.0;

 // Set the initial conditions

 theta.ic = 0.5;

 theta_dot.ic = 0.0;

34 Chapter 2: Modeling Dynamic Systems

This program must be compiled using the header files in the DSSL directory. You must also
include the file StateList.cpp from that directory in the compilation to produce an execut-
able image. After the program has finished executing, the file pendulum.csv will be available
for analysis using a spreadsheet program such as Microsoft Excel.

Pendulum Simulation in Simulink
An equivalent model of the pendulum can be implemented in Simulink as shown in Figure
2.3. Parameters such as the simulation stop time must be set from a dialog box prior to start-
ing a run. At the end of the run, the theta variable in the MATLAB workspace will contain
the time history of the Theta1 Simulink block output. MATLAB data analysis and plotting
commands can then be used to process and display the data.

 state_list.Initialize(step_time);

 // Pendulum model parameters

 const double g = 9.81;

 const double L = 1.0;

 // Open an output file

 FILE* iov = fopen("pendulum.csv", "w");

 assert(iov);

 fprintf(iov, "Time, Theta\n");

 for(;;)

 {

 // Pendulum dynamic equations

 theta_dot.der = -(g/L) * sin(theta);

 theta.der = theta_dot;

 fprintf(iov, "%6.2lf, %9.6lf\n", state_list.Time(), double(theta));

 if (state_list.Time() >= end_time)

 break;

 state_list.Integrate();

 }

 fclose(iov);

 return 0;

}

Modeling Methods 35

Figure 2.3 Simulink pendulum model.

2.4.2 Linearization of Nonlinear Models
The technique of linearization is so common in engineering that it is worthwhile to examine
some of the effects that can occur when it is used. The approach used in linearization is to
identify a stable point or trajectory for a nonlinear system and model small variations about
that point or trajectory using linear equations. It is possible to analyze the resulting model
using a variety of mathematical methods suitable for use only with linear systems. To demon-
strate the technique, this section will linearize the pendulum model from the previous section
about the stable point at which the pendulum hangs straight down with zero velocity.

The nonlinear term in the pendulum model is the term. If we make an assumption
that the value of is “small,” Equation 2.14 can be modified with the approximation

 (in radians). The limit for this approximation depends on the tolerable amount of
error in the solution. This approximation results in Equation 2.17, which is now a linear dif-
ferential equation that is solvable with standard calculus techniques. The solution to this
equation, incorporating the initial conditions of Equation 2.15, is shown in Equation 2.18.

2.17

2.18

Equation 2.18 has an oscillation period of seconds. Note that this period is indepen-
dent of .

Our goal in solving this problem does not include the assumption of a small angle how-
ever, so we cannot employ this approximation. This example will show how the use of simpli-
fied, linear models in a simulation can produce unexpected and incorrect results when used
inappropriately.

Figure 2.4 shows the results of numerically solving the nonlinear model of Equation 2.16
for values of ranging from zero to 90 degrees and determining the oscillation period of
each solution from the simulation output data. It also shows the oscillation period derived
from the linear approximation to the solution, which is a constant for all . It is clear that
as approaches zero, the linear approximation becomes a good match to the nonlinear

θsin
θ0

θsin θ≈

··
0 = –

g
l

0

θ t() θ0
g
l
---cos t=

2π l
g

θ0

θ0

θ0
θ0

36 Chapter 2: Modeling Dynamic Systems

model. It is also clear that using the linearized model will result in significant errors if is
large.

Figure 2.4 Comparison of nonlinear and linear pendulum model

oscillation periods.

This example demonstrates the basic approach for developing a physics-based mathemati-
cal model of a dynamic system. Similar model development techniques are useful in other dis-
ciplines such as electronics and chemistry. These modeling techniques are applicable as long
as the dynamic equations describing the system are well defined and the data values used in
the equations are known with sufficient precision. In the pendulum example, the data values
required were the gravitational acceleration g, the string length l, and the initial displacement

. In addition, it is necessary to examine other data to verify that the assumptions used in
the model development are reasonable — such as the assumption that the mass of the string is
small relative to the mass of the bob.

Linear approximations of dynamic systems are used frequently in engineering, but their
limitations should be well understood. Nonlinear system models are appropriate for use in
simulation, and will result in more accurate results as compared to simplified linear models.

In situations where the dynamic equations or data values for a mathematical model are
not known to a sufficient degree of precision, it is necessary to use alternative methods for
model development. These techniques are discussed in the next section.

θ0

θ0

Modeling Methods 37

2.4.3 Empirical Modeling
Empirical modeling techniques use measured data from various types of experiments to
develop a mathematical model of a system. In reality, all mathematical models are empirical
to some degree. For example, the pendulum model in the previous section includes some
experimentally determined constants. However, our interest in this section is on the develop-
ment of models for systems with substantial dynamic behavior that is not readily modeled by
known dynamic equations. The following sections present three empirical modeling tech-
niques: table interpolation, system identification, and neural networks.

Table Interpolation
Table interpolation is a static modeling technique used to evaluate functions of the form
shown in Equation 2.19. It is a static method because it does not permit the direct implemen-
tation of dynamic equations. However, table interpolation functions are useful in the con-
struction of dynamic equations. For example, it is common to compute coefficients appearing
in dynamic equations using table interpolation.

2.19 y = f (x1, x2, x3,...)

This approach is used when the function output must be determined experimentally. It is
also applicable as a speed optimization technique if a lengthy computation (perhaps an itera-
tive procedure) is required to evaluate the function. In that case, a table interpolation to esti-
mate the result of the computation may execute many times faster than a direct computation.

The function inputs x1, x2, etc. can be any variable in the simulation — such as time, a
state variable, or a constant. The number of function inputs is arbitrary, but in practical
applications, it is usually five or less. As more inputs are added to the function, its memory
requirements and execution time will increase. The output y depends only on the values of the
function inputs at the time of evaluation.

An interpolation function with N inputs is evaluated with the use of an N-dimensional
lookup table. Each input variable spans one dimension of the lookup table. For each table
dimension, it is necessary to define a set of interpolation breakpoints which span the permis-
sible range of the corresponding input variable. Each input variable can have a different num-
ber of interpolation breakpoints, and the breakpoints may be spaced equally across the span
of the dimension or placed at arbitrary intervals.

A one-dimensional example of the data for a lookup table with eight equally-spaced
breakpoints appears in Figure 2.5. The span of the input variable x is [0, 0.7]. If the input
variable precisely matches the x location of one of the breakpoints, it is a simple matter to
return the corresponding y value as the result of the function evaluation. If the input value
falls between the breakpoints, an interpolation must be performed.

38 Chapter 2: Modeling Dynamic Systems

Figure 2.5 Example one-dimensional lookup table.

Many different techniques for performing interpolation exist that vary in computational
complexity and smoothness of the interpolated function. Two methods that should satisfy
most needs are: linear interpolation and cubic spline interpolation.

Linear Interpolation with Equally-Spaced Breakpoints
We can perform one-dimensional linear interpolation graphically by drawing straight lines
between adjacent breakpoints as shown in Figure 2.6. The interpolated function is continu-
ous and its derivative is discontinuous at the breakpoints.

Modeling Methods 39

Figure 2.6 Linear breakpoint interpolation.

One-dimensional linear interpolation using equally-spaced breakpoints is performed with
the following steps. Assume that there are N breakpoints with y coordinates stored in an
array with indexes that begin at zero. The value of x(0), the leftmost x coordinate, and ∆x,
the interval between x coordinates, must also be provided.
1. Ensure that the input variable xin has a value greater than or equal to x(0) and less than

or equal to x(0) + (N – 1)∆x. A limit function can be applied, if that is appropriate. It is
also possible to linearly extrapolate outside the table using the first (or last) two data
points in the table to define a straight line. However, this approach may introduce signifi-
cant errors if the extrapolation does not accurately model the behavior of the function
outside the range of the table — do not consider it here. It may make more sense to issue
an error message and abort the simulation run if the input variable is outside the valid
input range of the table.

2. Determine the array index of the closest breakpoint with an x coordinate that is less than
or equal to the function input value. For equally-spaced breakpoints, the lower breakpoint
index is computed as shown in Equation 2.20. Note that L is truncated to an integer.

40 Chapter 2: Modeling Dynamic Systems

2.20

In Equation 2.20, L is the index of the lower of the two breakpoints that surround the
input value xin, x(0) is the x coordinate of the first breakpoint in the array, and ∆x is the x
interval between breakpoints. Based on the range limits placed on xin in step 1, L will be
in the range 0 ≤ L < N – 1.

3. Perform linear interpolation between the breakpoints with indices L and L + 1 as shown
in Equation 2.21. A special case occurs when L = N – 1, which is when xin is located at the
last breakpoint in the array and the correct interpolation result is y = y(N – 1). When this
happens, y(L + 1) is undefined, although it ends up being multiplied by zero. It is impor-
tant to handle this case properly to avoid potential memory access faults and floating
point problems.

2.21

Linear Interpolation with Unequally-Spaced Breakpoints
If the x coordinates of the breakpoints are not equally spaced, it takes more work to deter-
mine which breakpoint interval contains the function input value. A general approach for
locating the correct interval is the technique of bisection — an algorithm for performing an
efficient search of an ordered list.

The bisection algorithm locates the breakpoint pair surrounding the function input value.
Assume that the x and y breakpoint coordinates are stored in arrays of length N that are
indexed starting at zero.
1. Ensure that the input variable xin has a value greater than or equal to the first breakpoint

in the table and less than or equal to the last breakpoint.
2. Define an index variable L and initialize it to zero. Define an index variable U and initial-

ize it to N – 1. These lower and upper indexes bracket the entire list initially.
3. Repeat the following steps until the quantity (U – L) is equal to one:

(a) Set the current index i to be , truncated to an integer.

(b) If the breakpoint at index i is greater than the input xin, set U = i. Otherwise, set L = i.

4. Upon exiting the loop in the previous step, L will contain the index of the lower break-
point of the correct breakpoint interval.

5. Perform linear interpolation between the breakpoints at indices L and L + 1 as shown in
Equation 2.22.

2.22

Although the bisection method is the most general technique for locating the correct
breakpoint interval, it may be possible to eliminate this search much of the time. If the input

L
xin x 0()–

∆x
-----------------------=

y y L() y L 1+() y L()–[]
xin x L()–

∆x
------------------------+=

U L+
2

y y L() y L 1+() y L()–[]
xin x L()–

x L 1+() x L()–
--------------------------------------+=

Modeling Methods 41

value x changes slowly between evaluations of the function, the simple step of checking to see
if the input is contained in the same breakpoint interval as the previous function evaluation
will often eliminate the need for bisection. If the input is not in the same interval, bisection
can then be performed.

Alternatively, as a next step, the breakpoint intervals immediately above and below the
previously-used interval can be checked, and bisection performed if the input does not lie in
those intervals. The technique of checking the previously-used breakpoint interval followed
by checking the adjacent intervals (if necessary) can sometimes eliminate the use of bisection
completely, except for the very first function evaluation. This efficiency is realized when the
input variable does not change quickly enough to jump over a breakpoint interval between
function evaluations. The drawback of this technique is that, when the assumption of a
slowly changing input turns out to be incorrect, the function evaluation process will be a bit
slower due to the additional checking that precedes bisection.

On average, the bisection algorithm requires approximately log2N iterations of the loop in
step 3 of the algorithm, which is considerably more time consuming than the direct computa-
tion used to locate the breakpoint interval when equally-spaced breakpoints are used. The
advantage of using unequally-spaced breakpoints is that it may be possible to adequately
model a function with a much smaller table than would be required with equally-spaced
breakpoints. The points can be closely spaced in regions where the function has rapid fluctua-
tions and they can be more widely spaced in regions where the function is relatively smooth.
When using equally-spaced breakpoints, the points must be spaced closely enough to accom-
modate the most rapid fluctuations in the function even if these fluctuations only occurs over
a small part of the input variable’s span.

An example will clarify this point. We will use table interpolation to evaluate the function
y = cos(x4) over the input span [0,2] and compare the required table size for equally-spaced
and unequally-spaced breakpoints. Require that the maximum interpolation error magnitude
be no greater than 0.05 at any location along the curve.

Figure 2.7 shows the result of selecting unequally-spaced breakpoints to evaluate this
function. The breakpoints were carefully selected to limit the error magnitude to the required
0.05 at any location between them. The breakpoints at both ends of the input range must
always be included. Note how the breakpoints are widely spaced in the lower x values and
are closely spaced as the function varies more rapidly in the higher x values. Twenty-one
breakpoints are required in this case.

42 Chapter 2: Modeling Dynamic Systems

Figure 2.7 Unequally-spaced breakpoint interpolation

of y = cos(x4).

If equally-spaced breakpoints are used instead, it is necessary to use a breakpoint interval
of 0.02 in order to limit the approximation error between breakpoints to 0.05 as shown in
Figure 2.8. This requires 101 total breakpoints — a factor of 4.8 more points than are
required in the unequally-spaced breakpoint implementation of this function.

Modeling Methods 43

Figure 2.8 Equally-spaced breakpoint interpolation

of y = cos(x4).

Figure 2.9 shows the interpolation error for both the unequally-spaced breakpoints of Fig-
ure 2.7 and the equally-spaced breakpoints of Figure 2.8. The error is distributed relatively
evenly along the x axis for the case of unequal breakpoint spacing. In the equally-spaced
breakpoint case, the error is very small for the lower part of the x range and grows larger as
the function fluctuates more rapidly.

44 Chapter 2: Modeling Dynamic Systems

Figure 2.9 Interpolation error in Figure 2.7 and 2.8.

This example shows that, when using table interpolation, we must give some consider-
ation to the choice between equally-spaced breakpoints versus unequally-spaced breakpoints.
The selection of the appropriate type of breakpoint spacing depends on

• the characteristics of the function or data to be interpolated,
• the time available for function evaluation, and
• the memory available for table storage.

If unequally-spaced breakpoints are used, the locations of the breakpoints must be selected
carefully to minimize the number of breakpoints required while simultaneously limiting the
magnitude of the interpolation error. When equally-spaced breakpoints are used, one must
choose the breakpoint interval to limit the maximum interpolation error to an acceptable
value.

Cubic Spline Interpolation
A drawback of the linear interpolation method is that the derivative of the evaluated function
is discontinuous at the breakpoints, as can be seen in Figure 2.6 (page 39). If a smoother
interpolation function is required, cubic spline interpolation is an appropriate choice. Cubic

Modeling Methods 45

spline interpolation uses a third-order polynomial to estimate the function value between
breakpoints. Using this method, the estimating function, as well is its first and second deriva-
tives, are continuous both between and at the breakpoints. In a sense, the cubic spline gives
the smoothest interpolation possible through the breakpoints defining the function.

The costs of using cubic spline interpolation rather than linear interpolation are an
increase in execution time and an increase in data memory required for a given number of
breakpoints — as well as a significantly more complex algorithm. Each breakpoint interval
requires the determination of four coefficients for the third-order interpolating polynomial,
and this polynomial must be evaluated to determine the function output.

If the function to be approximated is somewhat smooth, it may be possible to use fewer
breakpoints with cubic spline interpolation than would be needed with linear interpolation.
This may mitigate the additional storage space required for the polynomial coefficients. Fig-
ure 2.10 shows the same set of interpolation breakpoints as Figure 2.5 with cubic spline inter-
polation used to estimate the function value between the breakpoints.

Figure 2.10 Cubic spline breakpoint interpolation.

A simulation application of this algorithm should be broken into two steps. A preprocess-
ing step during initialization determines the polynomial coefficients for each breakpoint inter-
val. The resulting coefficient values are stored for use during simulation execution. During the
simulation run, the function evaluation is carried out by first locating the breakpoint interval
containing the input value (either equally-spaced or unequally-spaced breakpoints can be

46 Chapter 2: Modeling Dynamic Systems

used) and evaluating the polynomial using the stored coefficients. An example of an algo-
rithm for efficiently performing cubic spline interpolation with unequally-spaced breakpoints
appears in [5].

Multidimensional Table Interpolation
The table interpolation examples presented in the previous sections were for functions that
had only one input variable. The discussion now turns to interpolation methods for functions
that have multiple inputs.

To define a multiple-input interpolation function, each input variable must have a set of
breakpoints (either equally-spaced or unequally-spaced) associated with it. A function may
have equally-spaced breakpoints for some input variables and unequally-spaced breakpoints
for others. For each input, the breakpoint interval containing the current input must be
located using the appropriate technique as described in “Linear Interpolation with Equally-
Spaced Breakpoints” on page 38 and the following section “Linear Interpolation with
Unequally-Spaced Breakpoints” on page 40. Using these breakpoints, a multidimensional
interpolation must then be performed. It is possible to use linear interpolation for some input
variables and cubic spline or other interpolation methods for other inputs, if that is appropri-
ate.

Here’s an example of a two-input function with equally-spaced breakpoints and linear
interpolation for both input variables. It is straightforward to extend this example to three or
more dimensions. Equations 2.23, 2.24, and 2.25 list the x and y axis breakpoint locations
and the function values z at those locations. The table in Equation 2.25 is defined so that
increasing values of x appear in the columns from left to right and increasing values of y are
listed in the rows from top to bottom.

2.23 x=[3 4 5 6]

2.24 y=[1.2 1.4 1.6 1.8]

2.25

We will evaluate this function using linear interpolation. Assume that the correct break-
point interval for each function input has already been located using the techniques men-
tioned previously. This example uses equally-spaced breakpoints, but the steps are identical
for unequally-spaced breakpoints once the correct breakpoint interval has been determined
for each input.

In Figure 2.11, the function inputs x and y define the point p, where we wish to evaluate
the function output z. The four points defined by the intersection of the lines x = x1, x = x2,
y = y1, and y = y2 represent the breakpoints that surround p (as defined in Equations 2.23,
2.24, and 2.25).

Two-dimensional interpolation must be performed in two steps.

z

0 0.1 0.3 0.3

0.1 0.3 0.5 0.4

0.1 0.5 0.6 0.7

0.2 0.5 0.6 0.9

=

Modeling Methods 47

1. The function z value is computed at the points p1 and p2 by performing linear interpola-
tion along the x dimension.

2. The function z value at the point p is computed by performing linear interpolation
between p1 and p2 along the y dimension.

Figure 2.11 Two-dimensional linear interpolation.

As a numerical example, let the input (x, y) pair be (4.8, 1.55). Consulting Equations 2.23,
2.24, and 2.25, observe that x1 = 4, x2 = 5, y1 = 1.4, y2 = 1.6, z(x1, y1) = 0.3, z(x2, y1) = 0.5,
z(x1, y2) = 0.5, and z(x2, y2) = 0.6.

First, compute the interpolated function values at p1 and p2 using the formulas shown in
Equation 2.26. Numerical results for this example are shown in Equation 2.27.

2.26

2.27

Finally, perform linear interpolation between the two function values computed in Equa-
tion 2.26 along the y dimension as shown in Equation 2.28. The result is the interpolated
value of the function output at the point p, with the numerical result for this example shown
in Equation 2.29.

2.28

z x y1(,) z x1 y1(,) z x2 y1(,) z x1 y1(,)–[]
x x1–

x2 x2–
----------------+=

z x y2(,) z x1 y2(,) z x2 y2(,) z x1 y2(,)–[]
x x1–

x2 x1–
----------------+=

z x y1(,) z 4.8 1.4(,) 0.3 0.5 0.3–[]+=
4.8 4–
5 4–

---------------- 0.46==

z x y2(,) z 4.8 1.6(,) 0.5 0.6 0.5–[]+=
4.8 4–
5 4–

---------------- 0.58==

z x y(,) z x y1(,) z x y2(,) z x y1(,)–[]
y y1–

y2 y1–
----------------+=

48 Chapter 2: Modeling Dynamic Systems

2.29

A plot of the function defined by Equations 2.23, 2.24, and 2.25 using linear interpolation
appears in Figure 2.12. Note that the between-breakpoint surfaces resulting from the linear
interpolation will not generally be flat. The only time an interpolation surface will be flat is
when the four points at the corners of the surface all happen to lie in the same plane.

Figure 2.12 Two-dimensional function evaluation using linear

interpolation.

The function of Equations 2.23, 2.24, and 2.25 has been plotted using cubic spline inter-
polation in Figure 2.13. The resulting interpolated function is very smooth and passes
through all the z values defined by the table of breakpoints. However, substantially more
computation is required for multidimensional cubic spline interpolation. As was noted in the
one-dimensional case, it may be possible to use fewer breakpoints if the interpolated function
is smooth and maps well to the approximating polynomials used in cubic spline interpolation.
The selection of the appropriate interpolation method depends on the requirements of the
application.

It is possible to extend multidimensional interpolation to use any number of input vari-
ables. For example, with three inputs, linear interpolation is performed across a three
dimensional box using the eight breakpoint values located at the box corners. In general, an

z x y(,) 0.46 0.58 0.46–[]+
1.55 1.4–
1.6 1.4–

------------------------ 0.55==

Modeling Methods 49

N-dimensional linear interpolation will require 2N – 1 one-dimensional interpolations to
compute an output.

Figure 2.13 Two-dimensional function evaluation using cubic

spline interpolation.

Linear function interpolation is a common tool in the simulation of complex dynamic sys-
tems. The selection of equally-spaced versus unequally-spaced breakpoints is a tradeoff
between data table size and speed of function evaluation that depends on the characteristics
of the data that represent the function. Linear interpolation is the standard method used with
these tables due to the speed and simplicity of function evaluation. More complex interpola-
tion techniques, such as the cubic spline method discussed here, are applicable when the
requirements of a particular application dictate the use of a smoother approximating func-
tion.

Linear Interpolation with the DSSL
The DSSL library can perform linear interpolation for functions with any number of dimen-
sions. Each function input can use either equally-spaced or unequally-spaced breakpoints.
Equally-spaced breakpoints are the most computationally efficient. The unequally-spaced

50 Chapter 2: Modeling Dynamic Systems

breakpoint algorithm employs the technique of first checking to see if the function input falls
within the previous breakpoint interval, followed by testing the two surrounding intervals
before resorting to bisection. Because of this, the use of unequally-spaced breakpoints may
not result in significantly worse performance if the input function changes in sufficiently small
steps between function interpolations.

Listing 2.2 shows a program that performs two-dimensional table interpolation with
equally-spaced breakpoints along both axes. The output file created by this program was
plotted in MATLAB to produce Figure 2.12.

Listing 2.2 InterpTest.cpp

// Two dimensional interpolation

#include <dssl.h>

#include <cstdio>

#include <cassert>

int main()

{

 // Define the equally-spaced breakpoints. The first argument is the

 // first breakpoint value; the second is the breakpoint separation.

 EqSpacedBkpt<4> x_bkpt(3, 1), y_bkpt(1.2, 0.2);

 // Define a two-dimensional interpolation function with the above bkpts

 LinearInterp<2> interp;

 interp.SetDimension(0, &x_bkpt);

 interp.SetDimension(1, &y_bkpt);

 const double data[] =

 {

 0.0, 0.1, 0.3, 0.3,

 0.1, 0.3, 0.5, 0.4,

 0.1, 0.5, 0.6, 0.7,

 0.2, 0.5, 0.6, 0.9

 };

 interp.SetupData(data);

 // Open a file for the output data

 FILE* iov = fopen("z.txt", "w");

Modeling Methods 51

Linear Interpolation in Simulink
Simulink provides a one-dimensional table interpolation block as shown in Figure 2.14. This
block takes two equal-length one-dimensional arrays as parameters: a monotonically increas-
ing vector of x axis coordinates (which may be equally or unequally-spaced) and a vector of
corresponding y values. If the block input is outside the range of the x array, the block per-
forms extrapolation using the first or last two breakpoints. This block displays a graph of the
function (compare to Figure 2.6).

Figure 2.14 Simulink one-dimensional interpolation.

 assert(iov);

 // Interpolate the function across the ranges of the X and Y breakpoints

 // and write the results to the output file

 for (int ix=0; ix<=60; ix++)

 {

 double x = 3 + 0.05 * ix; // Function X input

 x_bkpt(x);

 for (int iy=0; iy<=60; iy++)

 {

 double y = 1.2 + 0.01 * iy; // Function Y input

 y_bkpt(y);

 double z = interp(); // Function interpolation result

 fprintf(iov, " %lf", z);

 }

 fprintf(iov, "\n");

 }

 fclose(iov);

 return 0;

}

52 Chapter 2: Modeling Dynamic Systems

Simulink also has a two-dimensional interpolation block, shown in Figure 2.15. The
parameters for this block are monotonically increasing arrays for the x and y axis break-
points and the two-dimensional table of z values. The table must have the same number of
columns as the number of x axis breakpoints and the same number of rows as the number of
y axis breakpoints. If either input is outside the range of the corresponding set of breakpoints,
the block extrapolates along that dimension. This block displays a graph of the table, with
each table column drawn as a line.

Figure 2.15 Simulink two-dimensional interpolation.

Simulink v4 provides additional blocks for performing interpolation along more than two
dimensions. These newly-added blocks permit any number of function inputs and they sup-
port linear interpolation as well as cubic spline interpolation. The blocks allow the developer
to select whether an out-of-range function input should result in limiting it to the valid range,
extrapolating it, or halting the simulation with an error message.

System Identification
Another technique for developing models of dynamic systems is system identification [3]. To
perform system identification, one or more test input data sequences and the measured output
data sequences are required for the system being modeled. Typically, tests of a real world sys-
tem must be designed and executed to generate this data. By applying a variety of system
identification algorithms, it is possible to derive an estimate of the system transfer function
from input to output. The resulting model is typically linear and time-invariant, so the devel-
oper must verify that this is an adequate representation of the system.

This book will not examine the details of algorithms for performing system identification.
Simply note that, as was shown in “The s-plane Format” on page 23, it is a straightforward
procedure to convert an s-domain transfer function resulting from system identification into
an equivalent set of first-order differential equations suitable for implementation in a simula-
tion.

The model resulting from system identification is a dynamic model, while table interpola-
tion methods are static function evaluation techniques. System identification and table inter-
polation methods are similar in that they are based on the use of measured data rather than
an assumed set of mathematical relations as was the case in physics-based modeling.

Rigid Body Motion in Three-Dimensional Space 53

Neural Networks
Neural networks [6] provide a method for developing models from data using a method that
is conceptually similar to system identification, but with a fundamentally different mathemat-
ical approach. A neural network is based on simple mathematical models of biological neu-
rons — the fundamental cognitive units of the brain. This technique can be used to model
highly nonlinear systems and phenomena that do not have an associated physics-based
model.

A neural network functions as a static model, meaning that it processes a set of inputs to
produce an output value during each evaluation. The actual processing occurs within the neu-
rons. The neurons are interconnected through links, each of which has a weight associated
with it. A weight controls the strength of the signal transmitted over its link. Each neuron has
a set of these weighted signals connected to its input, which are summed and applied to the
neuron activation function. The activation function determines the output signal of the neu-
ron.

The “programming” of a neural network is contained in the connection pattern of the
neurons, the type of activation function used within each neuron, and the learning algorithm
used to set the connection weights between the neurons. The connection weights are set by an
iterative procedure called training which applies a set of inputs to the network, evaluates the
network output using the current weights, and compares the network output to the expected
output. This comparison generates an error signal, which the learning algorithm uses to
adjust the network connection weights to reduce the error. Training a neural network to per-
form a useful task may require applying thousands of training examples until the error for
each example has been reduced to an acceptable level.

The training of a neural network is often a lengthy procedure, but once that step has been
completed, the resulting model is fast and efficient. A simulation developer should consider
the use of neural networks in simulation modeling when a complex, nonlinear system is to be
modeled and the techniques presented earlier in this chapter cannot be used to develop a suit-
able model. One requirement for neural network model development is that a sufficiently
large set of input-output training examples must be available to perform the training proce-
dure.

2.5 Rigid Body Motion in Three-Dimensional Space
A model that describes the translational and rotational motion of one or more objects must
express the motion of those objects with respect to a set of coordinate systems. It must be
possible to determine the position, velocity, angular orientation, and rotational rate of each
object in the different coordinate systems to perform system simulation. For example, when
Newton’s Law of motion is applied to determine the translational motion of an object, you
must determine the direction of forces and moments acting on the object with respect to iner-
tial (nonrotating and nonaccelerating) space. This may be difficult, because the forces and
moments acting on the body are frequently defined in terms of a body-fixed coordinate sys-
tem that accelerates and rotates with the object.

In an aircraft flight simulation, there are typically two primary coordinate systems [7].
One coordinate system is fixed to the body of the aircraft and moves with it in both transla-
tion and rotation. This coordinate system has its origin at the aircraft center of mass and is
called the body-fixed coordinate system. The other originates on the surface of the earth at a

54 Chapter 2: Modeling Dynamic Systems

defined location and is called the earth-fixed coordinate system. The relations between these
coordinate systems define the aircraft position, velocity, Euler angles (roll, pitch, and yaw
angles), and rotation rates.

In many cases, the effects of the rotation of the earth and its curvature are negligible,
which allows the earth to be modeled as flat and nonrotating. Under these assumptions, the
earth-fixed coordinate system is an inertial system, which allows the direct application of
Newton’s Law of motion. If the rotation of the earth is not negligible for a particular applica-
tion, a more complex model defines an inertial coordinate system with its origin at the center
of the earth. In this model, the earth-fixed coordinate system also has its origin at the earth
center and rotates with respect to the inertial coordinate system. The motion of the aircraft is
defined relative to the rotating earth coordinate system, and the equations of motion must be
applied with reference to the inertial coordinate system. Although this level of modeling detail
is sometimes necessary, we will not consider such complex cases.

2.5.1 Two-Dimensional Motion
Let’s first examine the relatively simple case of a body that moves in a two-dimensional plane
and rotates about the axis perpendicular to the plane. Figure 2.16 shows the relationship
between the body-fixed coordinate system (xb, yb) and the (assumed inertial) earth-fixed coor-
dinate system (xe, ye).

Figure 2.16 Coordinate systems for two dimensional motion.

If we assume that the body mass m and its rotational inertia I are constant, the differential
equations that describe the translational and rotational motion of the body in terms of the
forces and the rotational moment in the body-fixed axes are shown in Equation 2.30. In these
equations, Fx and Fy are the instantaneous forces acting on the body along the xb and yb axes,
and M is the instantaneous rotational moment acting in the direction of the angle as shown
in Figure 2.16. Equation 2.30 describes the position and orientation of the body in inertial
space given the forces and moment acting on it in body-fixed coordinates at each instant in
time. To completely specify the motion of the body, Equation 2.30 requires the forces Fx and
Fy and the moment M as functions of time over the integration interval, as well as six initial
conditions specifying x(0), , y(0), , , and .

θ

x ′ 0() y ′ 0() θ 0() θ′ 0()

Rigid Body Motion in Three-Dimensional Space 55

2.30

These equations of motion can be represented more clearly with the use of vector-matrix
notation. The differential equations in Equation 2.30 can be rewritten as shown in Equation
2.31, where the position vector P = [x y]T and the force vector F = [Fx Fy]

T. The superscript T
indicates matrix or vector transposition.

2.31

The matrix in Equation 2.31 is called a direction cosine matrix. It is an orthonormal
matrix, which means that

for any value of . In other words, the matrix inverse of is equal to its transpose.
When a vector in earth-fixed coordinates is premultiplied by , the result will be a

vector in body-fixed coordinates, except for the difference in origin location. Using the
orthonormality of , you can transform a vector in body-fixed coordinates to earth-fixed
coordinates (except for the difference in origin location) by premultiplying it by

.

These relationships are shown in Equation 2.32, where Xb is an arbitrary vector in body-
fixed coordinates and Xe is the equivalent (except for the difference in origin location) vector
in earth-fixed coordinates.

2.32

2.5.2 Three-Dimensional Motion
When the motion of a body extends to three degrees of freedom in both translation and rota-
tion, the dynamic equations become somewhat more complicated. However, the additional
effort is worthwhile because this method of simulating the motion of a body accurately mod-
els the translational and rotational motion of rigid bodies in three-dimensional space. This
approach is called “six degrees of freedom motion simulation,” often shortened to “6DOF”
simulation. I will present two methods for solving the 6DOF rotational equations of motion
in a simulation, but first I’ll clarify some issues regarding the coordinate systems.

x″
Fx θcos Fy θsin–[]

m
---=

y″
Fx θsin Fy θcos+[]

m
---=

θ″ M
I

-----=

P″ θcos θsin–

θsin θcos
= F

m
---- C θ()T F

m
----=

C θ()

C θ() 1– C θ()T=

θ C θ()
C θ()

C θ()

C θ()T

Xb C θ()Xe=

Xe C θ()TXb=

56 Chapter 2: Modeling Dynamic Systems

The coordinate systems used here will always be orthogonal, meaning that the three coor-
dinate axes are at right angles to each other. Our coordinate systems will also be right-
handed, which means that an angular rotation has a positive sign when it occurs in a clock-
wise direction as viewed along the positive direction of the axis of rotation. In addition, in a
right-handed coordinate system the z axis will be in the direction of the vector cross product
between the x and y axes. In terms of unit-length vectors along each axis, in a
right-handed coordinate system. Figure 2.17 shows a positive rotation through the angle
from the (x1, y1, z1) coordinate system to the (x2, y2, z2) coordinate system, where the z1 and
z2 axes are identical. Both of these coordinate systems are right-handed and orthogonal.

Figure 2.17 Positive rotation about the z axis.

Next, we will examine the transformation of a vector in a given initial coordinate system
through angular rotations about the three axes in a particular sequence. By performing these
three rotations, we can place the transformed coordinate system in any desired orientation.
The steps are: rotate about the z1 axis, then about the y2 axis, and finish with a rotation about
the x3 axis.

In matrix-vector form, the transformation of a vector from the (x1, y1, z1) coordinate sys-
tem to the (x2, y2, z2) coordinate system is as shown in Equation 2.33.

2.33

In Equation 2.33, the vector X1 is an arbitrary vector in the (x1, y1, z1)coordinate system, X2
is the same vector in the (x2, y2, z2) coordinate system, and is the direction cosine
matrix that performs this coordinate transformation. The subscript z indicates the axis of
rotation and the parameter indicates the angle of rotation. Similarly, the next rotation
through the angle about the y2 axis is shown in Equation 2.34. The result of this transfor-
mation is the vector X3.

2.34

uz ux uy×=
ψ

X2

ψcos ψsin 0

ψsin– ψcos 0

0 0 1

X1 Cz ψ()X1= =

Cz ψ()

ψ
θ

X3

θcos 0 θsin–

0 1 0

θsin 0 θcos

X2 Cy θ()X2= =

Rigid Body Motion in Three-Dimensional Space 57

The final rotation through the angle about the x3 axis is shown in Equation 2.35. The
vector X4 is the result after the full three axis coordinate transformation.

2.35

The complete transformation from the (x1, y1, z1) coordinate system to the (x4, y4, z4)
coordinate system appears in Equation 2.36, where the three single axis direction cosine
matrices are applied in sequence using matrix multiplication.

2.36

Equation 2.37 shows the result of multiplying out the matrices in Equation 2.36. We will
call this matrix the matrix to indicate the sequence of axes used for rotations
and the angle of rotation about each axis. Note that matrix multiplication is not generally
commutative, so changing the order of the axes for the rotations produces a different (and
incorrect) result. Because of this, it is critical to perform the axis rotations in the correct
order.

2.37

The orthonormality of the direction cosine matrix is maintained through the complete
three axis rotation. Because of this, the direction cosine matrix for performing the reverse
transform from the X4 vector to the X1 vector is the transpose of the matrix,
which produces the matrix. This matrix performs angular rotations of the
opposite sign in the reverse axis order in comparison to the matrix.

When simulating the motion of a rigid body, we sometimes wish to transform vectors
from earth-fixed coordinates to body-fixed coordinates. Define the vector X1 to be in earth-
fixed coordinates and identify it as Xe. The equivalent vector X4 in body-fixed coordinates
will be called Xb. The relations between these vectors are shown in Equation 2.38.

2.38

φ

X4

1 0 0

0 φcos φsin

0 φsin– φcos

X3 Cx φ()X3= =

X4

1 0 0

0 φcos φsin

0 φsin– φcos

θcos 0 θsin–

0 1 0

θsin 0 θcos

ψcos ψsin 0

ψsin– ψcos 0

0 0 1

X1 Cx φ()Cy θ()Cz ψ()X1= =

Czyx ψ θ, φ(,)

X4

θcos ψcos θcos ψsin θsin–

φsin θsin ψcos φcos ψsin– φsin θsin ψsin φcos ψcos+ φsin θcos

φcos θsin ψcos φsin ψsin+ φcos θsin ψsin φsin ψcos– φcos θcos

X1

Czyx ψ θ φ, ,()X1

=

=

Czyx ψ θ, φ(,)
Cxyz φ– θ–, ψ–(,)

Czyx ψ θ, φ(,)

Xb Czyx ψ θ φ, ,()Xe=

Xe Czyx ψ θ φ, ,()T
Xb Cxyz φ– θ– ψ–, ,()Xb= =

58 Chapter 2: Modeling Dynamic Systems

Equation 2.38 demonstrates how to transform vectors from earth-fixed coordinates to body-
fixed coordinates and vice versa. We can use these relations to develop the 6DOF transla-
tional equation of motion. Define the instantaneous force acting on the body center of mass
in body-fixed coordinates to be the vector

.

Equation 2.39 is the translational equation of motion, where Pe is the position of the body
in earth-fixed coordinates and m is the instantaneous mass of the body. Using the methods
described in Chapter 3, we integrate Equation 2.39 numerically to determine the body posi-
tion and velocity over time.

2.39

Equation 2.39 requires the three angles , , and which are the roll, pitch, and yaw Euler
angles. To determine these angles for a body that is undergoing angular accelerations, we
must solve the rotational equation of motion. Let’s now define this equation and examine
approaches for solving it numerically.

The first step in the solution of the rotational equation of motion is to determine the angu-
lar rates of the body given the moments acting on it about its center of mass. This solution
depends on the moments of inertia and the products of inertia for the body, which are defined
in Equation 2.40 — where dm represents a differential element of the body mass at the loca-
tion (x, y, z) in body-fixed coordinates. These integrations must be performed over the entire
body mass. Here, as is often the case, one may assume that the moments and products of iner-
tia of the body are constant — in other words, that the body is rigid.

2.40

Next, place the moments and products of inertia into a matrix called the inertia tensor
shown in Equation 2.41.

Fb Fbx
Fby

Fbz

T
=

P″ e C= zyx ψ θ, φ(,)T

φ θ ψ

I xx y
2

z
2+() md

m
∫=

I yy x
2

z
2+() md

m
∫=

Izz x
2

y
2+() md

m
∫=

I xy xy md
m
∫=

I xz xz md
m
∫=

I yz yz md
m
∫=

Rigid Body Motion in Three-Dimensional Space 59

2.41

The differential equation that defines the angular rates in body-fixed coordinates is shown
in Equation 2.42, where Ω = [p q r]T is the rotation rate vector and M = [mx my mz]

T is the
moment vector acting about the body’s center of mass, all in body-fixed coordinates.

2.42

Equation 2.42 is integrated numerically to compute the body rotation rate vector over time.
The initial condition associated with this equation is the body rotation rate at the start of the
simulation run.

Now that we know the body rotation rate, the next step is to determine the angular orien-
tation resulting from these rotation rates, usually as the Euler angles , , and . There are
two commonly used techniques for performing this computation in 6DOF simulations: Euler
angle integration and quaternion integration. Euler angle integration is conceptually simpler,
but it will run into numerical problems if the pitch angle approaches 90 degrees in magni-
tude where a singularity occurs in the equations. Quaternion integration is more mathemati-
cally complex, but this approach does not have any difficulty when passes through 90
degrees in magnitude.

Euler Angle Integration
Assume that the body rotation rate vector Ω is available from the solution of Equation 2.42.
Then, relate the time derivatives of the Euler angles to the body-fixed rotation rates using
Equation 2.43 [7]. The initial conditions associated with these equations are the initial Euler
angles of the body.

2.43

We can integrate Equation 2.43 numerically during simulation which — along with Equation
2.42 — gives the complete solution for the rotational motion of the body given the moments
acting about its center of gravity in body-fixed coordinates. Using these results, we compute
the matrix as shown in Equation 2.37 (page 57) and use it in the solution of
the translational equation of motion shown in Equation 2.39.

The numerical difficulty in Equation 2.43 occurs when the angle approaches 90 degrees
in magnitude because the magnitude of the terms in the last row of the matrix
approaches infinity. If the simulation application will never have approach ±90 degrees,
Equation 2.43 is appropriate for the solution of the equations of rotational motion. An exam-
ple where this assumption may be valid is in the flight simulation of a transport aircraft,
where would never be expected to exceed, say, 40 degrees in magnitude.

I

I xx I xy– I– xz

I xy– I yy I– yz

I xz– I yz– Izz

=

Ω̇ I 1– M Ω IΩ()×–()=

φ θ ψ

θ

θ

φ̇
θ̇
ψ̇

1 φsin θtan φcos θtan

0 φcos φsin–

0 φsin θsec φcos θsec

Ω=

Czyx ψ θ φ, ,()T

θ
θsec

θ

θ

60 Chapter 2: Modeling Dynamic Systems

Quaternion Integration
On the other hand, if any arbitrary value of must be accommodated in the simulation, it is
necessary to use an alternative approach to determine the body orientation relative to earth-
fixed axes. The use of quaternion integration is the preferred technique in this situation. A
quaternion is a four-element vector

that can be thought of as a four-component complex number. Use a quaternion to maintain
the relationship between the body-fixed and earth-fixed coordinate systems.

The values of the quaternion elements must be initialized from the initial values of the
body Euler angles. The initial earth-fixed to body-fixed direction cosine matrix
is computed as shown in Equation 2.37. In this section, call this initial direction cosine matrix
C and select individual elements from it with the notation Crc where r and c identify the row
and column of a particular matrix element. Using this notation, C11 is the first element in the
first row.

Initialize the elements of the quaternion. First, initialize the last quaternion element as
shown in Equation 2.44.

2.44

Then, initialize the remaining quaternion elements as shown in Equation 2.45.

2.45

There is a potential problem if the computed value of b4 happens to be zero, which results
in division by zero in Equation 2.45. The file RigidBody.cpp on the companion disk contains
some variations on Equations 2.44 and 2.45 that accommodate this situation and correctly
initialize the quaternion from any arbitrary initial direction cosine matrix.

The differential equation that relates the change in the quaternion parameters to the rota-
tion rate in body-fixed axes is shown in Equation 2.46, where

as before.

θ

b b1 b2 b3 b4

T
=

Czyx ψ θ φ,(,)

b4
1
2
--- 1 C11 C22 C33+ + +=

b1
1

4b4
-------- C12 C21–()=

b2
1

4b4
-------- C31 C13–()=

b3
1

4b4
-------- C23 C32–()=

Ω pqr[] T=

Rigid Body Motion in Three-Dimensional Space 61

2.46

To correctly model the relationship between the two coordinate systems, the magnitude of the
quaternion vector must equal one. Floating point roundoff errors and integration errors accu-
mulate over time and cause the magnitude of the vector to change slowly. To ensure accurate
results, we must correct this error. As a first step in performing this correction, compute an
error term as shown in Equation 2.47.

2.47

Then use the error term as a correction to modify Equation 2.47 as shown in Equation 2.48.
This equation is solved numerically to determine the quaternion vector during the simulation
run.

2.48

Given the current quaternion vector b, compute the direction cosine matrix

using the following method [8]. Here, the identifier C will represent and we
will use the same row and column subscript notation as before. The equations for computing
the direction cosine matrix elements are shown in Equation 2.49.

2.49

ḃ 1
2

b– 4 b– 3 b– 2

b– 3 b4 b1

b2 b1 b– 4

b1 b– 2 b3

Ω=

eb 1 b
2– 1 b1

2
b2

2
b3

2
b4

2+ + +()–= =

ḃ 1
2

b– 4 b– 3 b– 2

b– 3 b4 b1

b2 b1 b– 4

b1 b– 2 b3

Ω ebb+

=

Czyx ψ θ φ, ,()

Czyx ψ θ φ, ,()

C11 b1b1 b2b2– b3b3 b4b4+–=

C12 2 b1b2 b3b4+()=

C13 2 b2b4 b1b3–()=

C21 2 b3b4 b1b2–()=

C22 b1b1 b2b2 b3b3 b4b4–+–=

C23 2 b2b3 b1b4+()=

C31 2 b1b3 b2b4+()=

62 Chapter 2: Modeling Dynamic Systems

Compute the Euler angles from the elements of C as shown in Equation 2.50.

2.50

In summary, to determine the body orientation relative to earth-fixed axes using quater-
nions, first initialize the quaternion vector b from the initial direction cosine matrix using
Equation 2.44 and Equation 2.45. Update the quaternion during simulation execution by
numerically integrating Equation 2.48. Use the current state of the quaternion to compute the
direction cosine matrix via Equation 2.49 and the three Euler angles using
Equation 2.50. Finally, use the direction cosine matrix to integrate the translational equation
of motion in Equation 2.39 (page 58).

Although the quaternion computation is more complicated than Euler angle integration, it
is the preferred method for solving the rotational equations of motion if the numerical diffi-
culty of Euler angle integration is a potential problem.

Three-Dimensional Motion Simulation with the DSSL
The DSSL C++ library provides routines that implement the equations given previously for
simulating three-dimensional motion of rigid bodies. Listing 2.3 is a simulation of the motion
of a projectile fired from a gun with a rifled barrel. For a short time while in the barrel, the
projectile accelerates along the x body-fixed axis while simultaneously experiencing an angu-
lar acceleration that spins it about the x body-fixed axis. After the projectile leaves the barrel,
no further acceleration is modeled.

Listing 2.3 RigidBodyTest.cpp

C32 2 b2b3 b1b4–()=

C33 b1b1 b2b2 b3b3 b4b4––+=

φ arc 2 C12 C11,[]tan=

θ arc 2 C13– C2
23 C2

33+,[]tan=

ψ arc 2 C23 C33,[]tan=

Czyx ψ θ φ, ,()

#include "RigidBody.h"

StateList state_list;

RigidBody body(&state_list);

int main()

{

 // All states will be initialized to zero

 Vector<3> pos_ic, vel_ic, euler_ic, body_rate_ic;

Rigid Body Motion in Three-Dimensional Space 63

 body.Initialize(pos_ic, vel_ic, euler_ic, body_rate_ic);

 const double step_time = 0.001, end_time = 1.0;

 state_list.Initialize(step_time);

 printf("Time, Px, Py, Pz, Vx, Vy, Vz, Phi, Theta, Psi, P, Q, R\n");

 for(;;)

 {

 // Set all accelerations to zero for now

 Vector<3> translational_accel, angular_accel;

 if (state_list.Time() <= 0.01) // If still in the barrel, accelerate

 {

 translational_accel[0] = 10000.0;

 angular_accel[0] = 1000.0;

 }

 body.Compute(translational_accel, angular_accel);

 // Print state information

 printf("%lf", state_list.Time());

 for (int i=0; i<3; i++) printf(",%lf", body.GetPos()[i]);

 for (i=0; i<3; i++) printf(",%lf", body.GetVel()[i]);

 for (i=0; i<3; i++) printf(",%lf", body.GetEuler()[i]);

 for (i=0; i<3; i++) printf(",%lf", body.GetBodyRate()[i]);

 printf("\n");

 if (state_list.Time() >= end_time)

 break;

 state_list.Integrate();

 }

 return 0;

}

64 Chapter 2: Modeling Dynamic Systems

Three-Dimensional Motion Simulation in Simulink
Simulink v4 provides several new blocks for solving the rotational equation of motion using
the quaternion integration and Euler angle integration techniques. Additional blocks perform
conversions between a direction cosine matrix, a set of Euler angles, and a quaternion vector.
These new blocks enable the implementation of a full 6DOF simulation with a reasonable
amount of effort.

2.6 Stochastic Systems
A system that always responds identically to the same set of initial conditions and control
input signals during multiple test runs is deterministic. If there is some variation in the system
behavior from run to run — even though all initial conditions and control inputs remain the
same — the system behavior is described as stochastic, or random. An example of stochastic
behavior is an aircraft flying with a predefined sequence of control inputs. Wind gusts affect
the flight path differently on each attempt, so although we model the aircraft deterministi-
cally, the wind model in this case is stochastic. If any part of a mathematical model is stochas-
tic, we describe the model itself as stochastic.

In addition to external random disturbances such as wind gusts, there may be randomness
associated with the system itself. Manufacturing tolerances may produce variations from unit
to unit in parameters that affect the performance of the system. We model these random vari-
ations in the parameters of the system and its operational environment in a stochastic man-
ner.

First, consider the case where a single number is required to specify a random effect that
we wish to model. The example we will use is the misalignment of a system component due to
manufacturing tolerances. The alignment is specified as an angle, . To meet specifications,
this angle must lie in the range from to and is equally likely to have any value in
this range. Absolute limits on are possible because we will assume that the system would
not pass manufacturing tests if the angular limits were exceeded.

We use a probability density function (PDF) [9] to describe the random variable . Figure
2.18 shows the PDF for as described, where the angles degrees and

 degrees. This random variable is typically described in terms of a tolerance such
as 2.0±0.1 degrees.

It is a property of any PDF that the function is nonnegative for all . In this exam-
ple, for and for In addition, the integral of the PDF over the
entire x axis always equals one as shown in Equation 2.51.

2.51

For any PDF, the probability that the angle lies between two angles and (where
) is shown in Equation 2.52.

2.52

α
αmin αmax

α

α
α αmin 1.9=

αmax 2.1=

f α() α
f α() 0= α 1.9> α 2.1>

f α() αd
∞–

∞

∫ 1=

α α 1 α2
α2 α1≥

P α1 α α 2≤ ≤() f
α1

α2

∫ α()dα=

Stochastic Systems 65

The uniform PDF is appropriate when all points over the possible range of values for a
random variable appear to be equally likely. Programming languages and simulation develop-
ment tools usually provide a uniform pseudorandom number generator that produces num-
bers over some range. A pseudorandom number generator that produces outputs over the
range (0, 1) can be used as shown in Equation 2.53 to generate values from the distribution
shown in Figure 2.18. In Equation 2.53, random() represents a call to the system random
number generator routine that returns a value between 0 and 1.

Figure 2.18 Uniform probability density function.

2.53 random()

One should always be cautious using system-supplied pseudorandom numbers because
they are frequently of poor quality. One potential problem with these generators is that the
first output value after the generator is seeded may not appear very random, i.e., it might
always be a very small number. Another problem that sometimes occurs is that individual bits
in the output may exhibit non-random behavior such as toggling between 0 and 1 with each
call to the generator. It is a good idea to test a system pseudorandom number generator thor-
oughly before using it in a critical simulation application.

If the system-supplied pseudorandom number generator fails to satisfy your requirements,
or if you have other needs such as cross-platform portability, you may want to develop your
own uniform pseudorandom number generator routine. Some examples are provided in [10].

x αmin αmax αmin–()+=

66 Chapter 2: Modeling Dynamic Systems

Another PDF that is commonly used is the normal (also known as Gaussian) distribution.
This PDF is defined by Equation 2.54 where µ is the mean and is the standard deviation of
the distribution. The normal PDF is used in situations where the total error is assumed to be
the sum of a large number of independent errors.

2.54

Figure 2.19 shows a normal distribution of a random variable with a mean µ of 2 and
standard deviation of 0.1. Compare this distribution to the uniform distribution shown in
Figure 2.18.

Figure 2.19 Normal probability density function.

Pseudorandom number generators with non-uniform PDFs such as the normal distribu-
tion are not available in some simulation development environments. If this is the case, it will
be necessary to transform the output of a uniform pseudorandom number generator into the
desired PDF. An efficient technique for performing the transformation from a uniform PDF to
a normal PDF is the Box-Muller method [11].

So far, we have looked at techniques for generating single pseudorandom samples from a
given PDF. A random process is a sequence of random variables over time. An example of a
random process is the sequence of additive noise values that appear in the output of an ana-
log-to-digital converter that performs conversions at regular time intervals.

σ

f x() 1

2πσ2
-----------------e

x µ–()2

2σ2
--------------------–

=

σ

Stochastic Systems 67

A simple type of random process is an uncorrelated sequence that generates a new sample
from the appropriate PDF at each time step. This model is useful for simulating the additive
noise of the analog-to-digital converter.

A more complex random process involves the use of filtered noise, where, for example, the
power spectrum of the noise is assumed to be uniform up to a cutoff frequency and zero at all
higher frequencies. An example application of filtered noise is a model of the noise in the out-
put of a communication receiver. This random process could be simulated by constructing a
lowpass digital filter (perhaps designed with the Remez technique [12]) and using an uncorre-
lated random sequence as the filter input. The resulting filter output approximates the desired
bandlimited noise spectrum.

When simulating a stochastic system, each simulation output affected by one or more ran-
dom inputs will generate a probability distribution over a number of runs. The technique of
Monte Carlo simulation is used to determine the probability distributions of simulation out-
puts. A Monte Carlo simulation consists of a large number of simulation runs performed
under identical conditions, except that each run uses a different pseudorandom sequence for
each random parameter or process in each run. The various sequences of pseudorandom
numbers generate performance variations that involve combinations of random behaviors.
The more simulation runs performed in a Monte Carlo set, the more accurate the probability
distribution of the simulation outputs will be. However, the time available for performing
simulation runs often limits the number of runs in Monte Carlo sets to less than a statistically
ideal amount. The results of Monte Carlo testing that contain limited numbers of runs should
be examined critically to ferret out anomalies resulting from the limited data set size.

Random Numbers in the DSSL
The example program in Listing 2.4 generates one million uniformly-distributed random
numbers over the range (0,1) and counts how many of the numbers fall into each of one thou-
sand equal-width bins. It then generates one hundred thousand normally-distributed random
numbers with zero mean and unit variance and computes their sample mean and variance.

Listing 2.4 RandomTest.cpp

// Program for testing random numbers

#include <dssl.h>

int main()

{

 Random r;

 const int n_bin = 1000;

 int bin[n_bin];

 for (int i=0; i<n_bin; i++)

 bin[i] = 0;

68 Chapter 2: Modeling Dynamic Systems

Random Numbers in Simulink
Simulink provides blocks for generating both uniformly- and normally-distributed pseudo-
random numbers. When using the uniformly-distributed pseudorandom generator, the user
must specify the minimum and maximum values of the output interval as well as the seed to
use for the generator. When using the normally-distributed pseudorandom generator, the user
must specify the distribution mean, variance, and the generator seed. For a given seed, each

 for (i=0; i<1000000; i++)

 {

 double val = r.Uniform();

 int j = int(val*n_bin);

 assert(0 <= j && j < n_bin);

 bin[j]++;

 }

 printf("Bin, Count\n");

 for (i=0; i<n_bin; i++)

 printf("%4d, %d\n", i, bin[i]);

 const int n_gauss = 100000;

 double g[n_gauss], sum = 0;

 for (i=0; i<n_gauss; i++)

 {

 g[i] = r.Normal();

 sum += g[i];

 }

 double mean = sum / n_gauss;

 double dev_sq = 0;

 for (i=0; i<n_gauss; i++)

 dev_sq += pow(g[i]-mean, 2);

 double sigma = sqrt(dev_sq/n_gauss);

 printf("Mean: %lf; Sigma: %lf\n", mean, sigma);

 return 0;

}

Stochastic Systems 69

generator will produce an identical sequence of pseudorandom values during each simulation
run.

Figure 2.20 Simulink uniform random number generator block.

Figure 2.21 Simulink normal random number generator block.

Exercises1

*1. Indicate if each of the following systems is a dynamic system:
(a) A spacecraft coasting through deep space (gravitational effects are not significant).
(b) A logic circuit consisting of ideal boolean AND, OR, and NOT gates.
(c) A filter circuit consisting of resistors and capacitors.
(d) An automotive suspension system consisting of the frame, wheels, springs, and shock
absorbers.

*2. Write the following differential equation as a system of first-order equations:

*3. Show how Equation 2.14 (page 32) is changed if wind resistance is included. The angu-
lar acceleration due to wind resistance is modeled as a constant C multiplied by the square
of the bob velocity, acting in the direction opposite to the velocity.

4. Using the results of Exercise 3, add the effect of a steady wind to the model. The wind is
modeled as moving with constant velocity vw from left to right in the system shown in
Figure 2.2 (page 31).

5. Verify that Equation 2.18 (page 35) is the solution of Equation 2.17.

6. Given a function y = f(x) with x breakpoints {0, 0.2, 0.5, 0.7, 0.9} and y values at the
breakpoints {0, 1.2, 2.1, 4.3, 3.9}, estimate the value of the function using linear interpo-
lation at x values of 0.1, 0.2, and 0.55.

1. Answers are provided for those exercises with an asterisk in Appendix A, page 293.

x ′″ ax″ bx ′ cx d+ + +=

70 Chapter 2: Modeling Dynamic Systems

*7. Given a function z = f(x, y) with x breakpoints {0.5, 0.8, 1.5, 1.7}, y breakpoints {0, 1.4,
2.5, 4.7}, and z values at the breakpoints as shown below, where the x breakpoints are in
increasing order across the columns to the right and the y breakpoints are in increasing
order down the rows, estimate the value of the function using linear interpolation at (x, y)
input value pairs of (0.8, 2.6), (0.7, 2) and (0.7, 0.9).

8. Given the function y = cos(x4), develop an algorithm for selecting linear interpolation
breakpoints over the interval 0 ≤ x ≤ 2 so that the maximum interpolation error is mini-
mized. Use the minimum number of breakpoints possible and limit the interpolation to
0.05 across given range of x. Use your algorithm to select a set of breakpoints and com-
pare your results with Figure 2.7 (page 42).

9. Derive the equations of motion for the inverted pendulum shown in ExerciseFigure 2.1 in
terms of the cart position x relative to a fixed point on the ground and the pendulum
angle from the vertical . The cart has mass mc, the pendulum bob has mass mb and is
supported by a stiff shaft of length l, and the gravitational acceleration is g. The masses of
the pendulum shaft and cart wheels are negligible. Wind resistance and friction in the
pendulum pivot and in the wheel motion can also be ignored. f(t) is an arbitrary external
force applied to the cart in the x direction.

ExerciseFigure 2.1 Inverted pendulum.

References

[1] Franklin, Gene F., J. David Powell, and Abbas Emami-Naeini, Feedback Control of
Dynamic Systems. Reading, MA: Addison Wesley, 1986.

[2] Churchill, Ruel V., Operational Mathematics, Boston, MA: McGraw-Hill, 1972.

z

0.2 0.3 0.6 0.5

0.3 0.4 0.3 0.5

0.5 0.7 0.4 0.7

0.6 0.9 0.7 0.9

=

θ

References 71

[3] Juang, Jer-Nan, Applied System Identification. Upper Saddle River, NJ: Prentice-Hall,
1993.

[4] Oppenheim, Alan V., and Ronald W. Schafer, Discrete-Time Signal Processing. Engle-
wood Cliffs, NJ: Prentice Hall, 1989.

[5] Press, William H., Saul A. Teukolsky, William T. Vetterling, and Brian P. Flannery,
Numerical Recipes in C: The Art of Scientific Computing. Cambridge, England: Cambridge
University Press, 1992, §3.3.

[6] Beale, R., and T. Jackson, Neural Computing: An Introduction. Bristol, England: Adam
Hilger, 1990.

[7] Roskam, Jan, Airplane Flight Dynamics and Automatic Flight Controls. Lawrence, KS:
Roskam Aviation and Engineering Corporation, 1979.

[8] Farrell, Jay A., and Matthew Barth, The Global Positioning System & Inertial Naviga-
tion. New York, NY: McGraw-Hill, 1999, §2.4.2.

[9] Papoulis, Athanasios, Probability, Random Variables, and Stochastic Process. New
York, NY: McGraw-Hill, 1991.

[10] Press, William H., Saul A. Teukolsky, William T. Vetterling, and Brian P. Flannery,
Numerical Recipes in C: The Art of Scientific Computing. Cambridge, England: Cambridge
University Press, 1992, §7.1.

[11] Ibid., §7.2.

[12] Ledin, Jim, Digital Filtering and Oversampling. Dr. Dobb’s Journal, April, 2000.

72 Chapter 2: Modeling Dynamic Systems

