

October 2003

 T
he E

m
bedded A

ngle

Several years ago, I
go, the instructor beg
instructor spontaneo
family. At first, this
ingly. However, whe
the “is a” (is-a-kind-
the attributes and be
raised an objection th
specialized version
smoking “operation”
sequently, the Liskov
archy.

Apparently, the “fam
terminology used in
instructor helped to r
inheritance. Most pro
the fact, but the oth
tance. Both possibili
pear in software qui
unfortunate, because
curve far more quick
curate, or irrelevant.
quickly “look” into s

Coming back to the
cussed this matter du
based on the classifi
problems explaining
more specialized ver
a kind of Plant. Re
When you have a co
sense to substitute a
countless more exam
including polymorph
lishes the correct pat

Miro Samek
 C/C++ Users Journal www.cuj.com 1

Patterns of Thinking

Names, metaphors, better programming, and the politics of
language.

once attended an “Object-Oriented Analysis and Design” training. As most such courses
an with brushing up on the fundamental OO concepts. When explaining inheritance, the

usly compared inheriting from a class to passing traits from parents to the offspring in a
“family tree” metaphor seemed to make a lot of sense and most attendees nodded approv-
n the instructor discussed inheritance further, she mentioned that inheritance establishes
of) relationship between the child and the parent classes, and that the child class has all
haviors of the parent class, but is typically more specialized. At this point, one attendee
at he didn’t have all of his father’s attributes and behaviors and he didn’t feel like a more

of his father. For example, he had no coronary disease “attribute”, didn’t support the
, and didn’t feel fully substitutable for his father (or grandmother, for that matter). Con-
 Substitution Principle didn’t seem to apply to a family tree, as it should to a class hier-

ily tree” metaphor wasn’t working very well, although it evidently inspired much of the
 OOP (parent, child, ancestor, sibling, class family, etc.). I don’t recall exactly how the
esolve the confusion, but I do remember that she didn’t offer any better analogy for class
bably, the instructor made this analogy up “on the fly” without paying much attention to

er possibility is that the inaccurate analogy reflected her way of thinking about inheri-
ties offer interesting insights. First, the story indicates that analogies and metaphors ap-
te frequently and often spontaneously, but their role is usually underestimated. This is
 analogies and metaphors, when chosen correctly, may help students climb the learning
ly. Conversely, severe difficulties arise when the analogies chosen are incomplete, inac-

 The second insight from the story is that analogies and metaphors offer a unique way to
omebody’s mind—the ability critical in the software business.

unfortunate “family tree” metaphor, I was included in a small group of attendees that dis-
ring a break. In a short brainstorming session, we came up with a much better metaphor,
cation of living organisms in biology. This “biological classification” metaphor had no
 correctly the “is a” relationship between classes, and what it means that a subclass is a
sion of the superclass. For instance, a class RedRose is a kind of Flower, and a Flower is
dRose has all the attributes of a Flower as well as of a Plant, but is more specialized.
llection of Flowers, some of them may very well be RedRoses, because it always makes
 RedRose for a Flower. Needless to say, the “biology classification” metaphor provides
ples that illustrate virtually all the nuances and concepts encountered in class inheritance,
ism. Such a metaphor is more valuable than you might initially think, because it estab-
tern of thinking about the fundamental software concept.

The Embedded Angle Miro Samek

October 2003 C/C++ Users Journal www.cuj.com 2

 T
he E

m
bedded A

ngle

System Metaphor and Conceptual Integrity

Obviously, metaphors and analogies have been used in software for decades. For example, it is not an exag-
geration to say that the venerable desktop metaphor, the spreadsheet metaphor, or more recently the shopping-
cart metaphor have literally changed the civilization. All these are examples of system metaphors, that is
metaphors that provide a general idea of how a whole system works. The system metaphor has been subject
of many studies, books, and papers [1]. Recently, eXtreme Programming (XP) has brought the system meta-
phor once again to the attention of developers by elevating it to a key programming practice [2].

Contrary to widespread beliefs, the primary intention of the desktop, the spreadsheet, or the shopping cart
metaphors is not to exactly imitate office furniture, accounting pads, or physical aisles in a supermarket. In-
deed, users don’t expect the computer screen to be exactly as hard to erase or change as real paper is, or the
virtual aisles of an online store to be exactly as cluttered and hard to navigate as real ones are. In other words,
the function of a system metaphor is not a strict mapping between the source and target domains. Rather, the
critically important role of a system metaphor is in establishing a consistent user’s conceptual model, which
represents what the user is likely to think, and how the user is likely to respond.

As observed in XP, however, a consistent conceptual model is not just valuable for the end-users; it is invalu-
able for software developers because it provides the most difficult part of the design. With such a model in
hand, designers don’t need to invent potentially inconsistent policies and behaviors—they can simply consult
the real-life model to see how it solves various problems. The system metaphor thus serves as an objective
arbiter in resolving various design conflicts and ultimately guards the conceptual integrity of the design.

Metaphors and Learning

While the system metaphor can vastly benefit software developers, it is mostly a side effect of the conceptual
integrity, which is then reflected in a better software structure. However, other types of metaphors and analo-
gies, specifically aimed at guiding the learning process and improving the understanding of new concepts can
benefit software developers much more directly.

In order to appreciate how such “concept metaphors” influence learning new software concepts, it is interest-
ing to realize how humans organize and modify their knowledge. When people learn new things, they auto-
matically try to map new concepts to familiar ones in the spontaneous process of “making analogies”. A prob-
lem occurs when these spontaneous analogies are incorrect. The new knowledge interferes with the old
knowledge (learning interference), and the learning process is more difficult than it would be if the individual
did not have the conflicting knowledge in the first place.

For example, a study on retraining procedure-oriented developers in object-oriented programming [3] shows
clearly that software developers are more likely to recall, rather than forget their existing knowledge. This
research revealed that attempts to map familiar procedural concepts often resulted in inaccurate analogies,
which increased the time it took the learners to make effective use of the object-oriented development model.
The study further emphasized the role of the instructor in helping the learners make correct analogies. Instruc-
tors, who are aware of any incorrect analogies their students make can guide the students toward understand-
ing which aspects in the analogies are correct and which are incorrect. In any case, it’s much better for the
instructor to offer correct analogies explicitly, rather than to rely on the spontaneous analogies made up (con-
sciously or subconsciously) by the students. It is mostly in this spirit that I offered the mapping between pro-
cedural and object-oriented programming in an earlier installment of this column [4]. Similarly, in the June
installment [5], I showed that many familiar OOP concepts have their counterparts in hierarchical state ma-
chines.

The benefits of using concept metaphors for improving the learning process apply, of course, more generally
than just to learning completely new concepts. Metaphors and analogies have a unique capacity to shed new

The Embedded Angle Miro Samek

October 2003 C/C++ Users Journal www.cuj.com 3

 T
he E

m
bedded A

ngle

light on old ideas and thus can help you discover new aspects of already familiar concepts. For example, the
“assertions as fuses” analogy [6] offers a novel view of assertions as a controlled-damage protection mecha-
nism, which complements the “assertions as contracts” metaphor that underlies the design by contract meth-
odology.

Mining Concept Metaphors

In response to a recent installment of this column dedicated to hierarchical state machines [5], a reader wrote
me: “while [traditional] state machines supply an abstract representation of a system in the real world, the
concept of states within states does not correspond to any reality.” At first this statement stroke me as being
exactly backwards, because I always thought that the only “real” reactive systems correspond to hierarchical
state machines, of which the flat (non-hierarchical) versions are merely special, somewhat degenerated corner
cases. After a while, however, I realized that most probably the reader’s mental model of a state machine and
mine were based on different metaphors. Metaphors it must be, since only through analogies and metaphors
abstract software concepts can correspond to any “reality” and thus can gain a meaning to us. Obviously, the
whole discussion of what it means to “understand” a software concept borders on philosophy. However, given
that analogies and metaphors can be so beneficial for understanding and mastering new concepts, the prag-
matic question is: What is a good metaphor for a state machine?

Just as in the case of the aforementioned “biological classification” metaphor for class inheritance, a good
strategy for mining concept metaphors seems to be to look for examples of the concept successfully applied in
existing systems (e.g., biological classification as an example of class taxonomy). It should come as no sur-
prise that the source domain for the abstract concept metaphor, such as state machine, is most likely to be sci-
ence, and not the familiar physical objects or everyday activities, as in the case of the much less abstract sys-
tem metaphor. Therefore, the problem of finding a good metaphor for the state machine concept boils down
really to finding a good example of stateful behavior in other branches of science. As it turns out, such behav-
ior is fundamental and pervasive in the microscopic world of elementary particles, atoms, and molecules, as
explained by the laws of quantum mechanics [7].

A possible critique of the “quantum metaphor” for state machines might be that most programmers are not
familiar enough with the source domain — contemporary physics in this case. However, the physics back-
ground necessary to benefit from the metaphor is really at the level of high-school textbooks and popular sci-
ence articles. I believe that most programmers have heard about electrons, atoms, quantum numbers, quantum
states, or quantum leaps.

If you make the effort to understand the basic principles governing the microscopic world, the “quantum
metaphor” might turn out to be very valuable to you, because it has a very rich structure and correctly ex-
plains many specific aspects of state machines (all these are criteria that Kim Halskov Madsen proposed for
choosing successful metaphors [1]). Perhaps the most interesting is the observation that virtually all quantum
states are hierarchically decomposed (degenerated in physics language). Degeneration is always an indication
of some symmetry of the system. For example, the degeneration of angular momentum substates of an atom
comes from the spherical symmetry of the atom. Simple experiments, such as subjecting atoms to magnetic
fields lower the symmetry, and partially remove the degeneration allowing us to “see” the state hierarchy
(Zeeman effect). The concept of nested states corresponds thus to physical reality and is not just theoretical.

I found the quantum metaphor very valuable, and in fact, it has shaped my understanding of state machines.
As always with a good analogy, the quantum metaphor explains the fundamental character of state nesting
and its function in capturing and representing the symmetry of the system. This observation alone (i.e., the
link between state nesting and the symmetry of a system) is already a sufficient payoff from the metaphor.
Yet, there is so much more to be learned from the quantum analogy. For instance, the mechanism of quantum
leaps provides excellent insights into the true role of the run-to-completion (RTC) processing model in state

The Embedded Angle Miro Samek

October 2003 C/C++ Users Journal www.cuj.com 4

 T
he E

m
bedded A

ngle

machines. Likewise, the mechanism of virtual particle exchange provides a very good model of communica-
tion among concurrent state machines (active object computing model).

The main point here is that in contrast to system metaphors, “concept metaphors” involve thinking that is
more abstract and typically draws from science. In other words, don’t sign off on all of the stuff that you once
learned in math, biology, chemistry, or physics, because it can come in handy in your software work. The re-
sults might surprise you.

Metaphors and Social Intelligence

The beneficial impact of metaphors on improving communication within software teams has been observed
already for the system metaphor. As a natural byproduct, the source domain of such a metaphor provides a
common system of names for objects and the relationships among them. This can become a jargon in the best
sense: a powerful, specialized, shorthand vocabulary for all stakeholders of a software project.

Actual case studies indicate, however, that while metaphorical representations indeed dominate software dis-
cussions, it is not system metaphors that are most commonly applied. As it turns out, most frequently used are
anthropomorphic comparisons known as naïve psychology [8]. Developers often speak in terms of what a
software component “needs”, “knows”, “is trying to do”, or “thinks” is happening. These anthropomorphic
metaphors (identified in some 70 percent of all spoken representations in the Herbsleb’s study) strike many as
sloppy and imprecise. Dijkstra, for example, has gone so far as to propose that computer science faculty im-
plement a system of fines to stamp out such sloppiness among students.

However, the new research suggests that instead of fighting the “sloppy” metaphorical representations, soft-
ware practitioners and teachers could use them to their advantage. Naïve psychology seems to be a special
kind of metaphor, in that it exploits a specific cognitive capability that evolved as a result of natural selection
favoring individuals more capable to handle the increasingly complex social interactions in early human so-
cieties [9]. These natural skills, which develop without any special instruction in all intact humans, match
many tasks encountered in software development. In designing or understanding a complex, multi-component
software system, it is extremely important to be able to keep track of what state each component is in, what it
is “trying” to do, what it “knows” about the rest of the system, how is it likely to behave, how is it likely to
fail, and so on. The skills of naïve psychology seem to allow a software developer to keep track of this sort of
information with little effort, because of a built-in capability known as social intelligence.

The pervasive use of naïve psychology in virtually all software discussions, although certainly not part of any
standard software engineering curriculum, indicates how critical role social intelligence plays in collaborative
software development. Perhaps nowhere is it more evident than in pair programming advocated by XP. In pair
programming, software is created in small incremental steps, as ideas move back and forth between the more
stable media such a computer screen or a whiteboard and the transitory verbal medium of conversation be-
tween the two developers. The point is that most of the critical creative work occurs during these periods of
discussion when the primary representation is just the spoken language. If you’ve ever tried to pair-program,
you must have noticed how much of the discussions revolve around anthropomorphic representations and
role-playing. By insisting on informal, high-bandwidth, face-to-face communication between pairs of devel-
opers, XP makes a much better use of the social intelligence than other “heavyweight” methodologies. In-
deed, due to engaging the social intelligence, a pair of programmers typically creates more code and better
code than these two developers working separately.

Another way of tapping the potential of the social intelligence is to employ programming paradigms and
techniques that offer more opportunities to use naïve psychology than others. For example, object-oriented
method encourages partitioning the problem into specialized, encapsulated “society” of objects, which col-
laborate on the common task. More specific to embedded software development, active object computing
model [7] fits this paradigm even better, because autonomous stateful active objects (actors) resemble a hu-

The Embedded Angle Miro Samek

October 2003 C/C++ Users Journal www.cuj.com 5

 T
he E

m
bedded A

ngle

man society closer still [10]. There is some growing evidence that such programming models and techniques
reduce the need for clarifications in the discussion of design ideas.

An Adjunct to Existing Methods

Most software engineering tasks are sufficiently complex that many kinds of methods and many specific cog-
nitive abilities of the brain must be used in turn, or better yet—simultaneously. For example, the particular
value of visual languages (such as UML), lies in tapping the potential of high-bandwidth “spatial intelli-
gence”, as opposed to “lexical intelligence” used with textual information. While clearly not all visual repre-
sentations are useful for all purposes, when a visualization matches a task well, the visual processing capabili-
ties of the brain allow a tremendous amount of information to be conveyed in compact form. Moreover, this
effect is not just limited to faster information transfer; the quality of the very thinking has found to be im-
proved [11].

In this context, metaphorical representations based on naïve psychology, are a very important adjunct to other
techniques, because they make explicit use of another powerful cognitive capability of the human brain iden-
tified as the “social intelligence”. In this sense, the old saying “a picture is worth a thousand words” can be
modified to “a metaphor is worth a thousand words”.

Other types of metaphors (concept metaphors and system metaphors to some degree) seem to complement the
design-pattern approach to software development. Design patterns excel in capturing solutions to recurring
software problems, but they haven’t been able to capture the patterns of thinking that experts use. Metaphors
and analogies offer a unique view into experts’ minds and convey the particular way the experts see and un-
derstand the problem.

A Word of Caution

The special cognitive abilities of the human brain, such as the “social intelligence” (or the “spatial intelli-
gence”, for that matter) didn’t evolve to solve software problems. Analogies and metaphors (or visualization
techniques) are just a trick to take advantage of these powerful “hardware accelerators” of the brain to solve
different problems than those for which they were designed. The catch is that it might not work with all peo-
ple, or might work differently in different people. If the “quantum metaphor” for state machines doesn’t do
the trick for you, move on, and try to understand hierarchical state machines some other way. One excellent
explanation how state hierarchy arises naturally in every non-trivial reactive system appeared as a
point/counterpoint debate between Steve Mellor and Bran Selic, published in the March 2000 issue of the
ESP magazine [12].

End Around Check

I’m sure that you have used system metaphors, concept metaphors, or naïve psychology before, but perhaps
you didn’t fully realize the fact. I hope that this article will make you more aware of the different roles meta-
phors and analogies can play in software development, and that there is more to it than just the venerable sys-
tem metaphor. I hope that you start paying more attention how you and others use metaphors with the goal of
making better use of the natural god-given abilities built into your brain. I hope that you start thinking more
about metaphors, learn their limits, and remember their critical aspects. Perhaps you will start collecting
metaphors?

In doing my online research for this article, I was amazed at the number and quality of publications related to
metaphors in soft-ware. It seems that a slow, but noticeable ground swell is developing in favor of metaphori-

The Embedded Angle Miro Samek

October 2003 C/C++ Users Journal www.cuj.com 6

 T
he E

m
bedded A

ngle

cal thinking in software. In fact, it appears that metaphors and analogies have the potential to one day become
as hot a topic as design patterns are today.

I’d like to close with the quotation from Stefan Banach, a Polish mathematician who founded modern func-
tional analysis and made major contributions to the theory of topological vector spaces. He wrote: “Good
mathematicians see analogies between theorems and theories. The very best ones see analogies between
analogies.”

References

[1] Kim Halskov Madsen, “A Guide to Metaphorical Design”, Communication of the ACM, December

1994.
[2] Kent Beck, eXtreme Programming Explained, Addison-Wesley, 2000.
[3] Mary L. Manns and H. James Nelson, “Retraining Procedure-Oriented Developers: An Issue of Skill

Transfer”, Journal of Object-Oriented Programming, Vol. 9, No. 7, 1996.
[4] Miro Samek, “OOP in C” sidebar in “Who Moved my State?”, C/C++ Users Journal, April 2003.
[5] Miro Samek, “Déjà Vu”, C/C++ Users Journal, June 2003.
[6] Miro Samek, “An Exception or a Bug?”, C/C++ Users Journal, August 2003.
[7] Miro Samek, “Quantum Programming for Embedded Systems: Toward a Hassle-Free Multithread-

ing”, C/C++ Users Journal, March 2003.
[8] James D. Herbsleb, “Metaphorical Representation in Collaborative Software Engineering”, Available

online at <www.cs.cmu.edu/~jdh/collaboratory/research_papers/WACC_99.pdf>
[9] Nicholas Humphrey, The Inner Eye: Social Intelligence in Evolution, Oxford Paperbacks, 2002.

[10] Arthur Allen, “Actor-Based Computing: Vision Forestalled, Vision Fulfilled” <www.charis.com/-
documents/agent98.pdf>

[11] David Harel, “Biting the Silver Bullet: Toward a Brighter Future for System Development”, Com-
puter, January 1992, available online at <www.wisdom.weizmann.ac.il/~dharel/SCANNED.-
PAPERS/BitingTheSilverBullet.pdf>

[12] Steve Mellor and Bran Selic. “Point/Counterpoint”, Embedded Systems Programming, March 2000.
Available online at <www.embedded.com/2000/0003/0003feat1.htm> and <www.embedded.com/-
2000/0003/0003feat2.htm>.

Miro Samek is the author of Practical Statecharts in C/C++: Quantum
Programming for Embedded Systems, CMP Books, 2002. He is the lead
software architect at IntegriNautics Corporation (Menlo Park, CA) and a
consultant to industry. Miro previously worked at GE Medical Systems,
where he has developed safety-critical, real-time software for diagnostic
imaging X-ray machines. He earned his Ph. D. in nuclear physics at GSI
(Darmstadt, Germany) where he conducted heavy-ion experiments.
Miro welcomes feedback and can be reached at miro@quantum-

leaps.com.

	System Metaphor and Conceptual Integrity
	Metaphors and Learning
	Mining Concept Metaphors
	Metaphors and Social Intelligence
	An Adjunct to Existing Methods
	A Word of Caution
	End Around Check
	References

