
 state-machine.com© 2016, Quantum Leaps

This presentation provides an overview of the QP™ active object (actor)
frameworks and the QM™ modeling and code-generation tool from
Quantum Leaps.

 state-machine.com© 2016, Quantum Leaps

You can't just look at the QP™ frameworks and the QM™ modeling tool
as a collection of features, because some of the features will make no
sense in isolation. You can only use these powerful tools effectively if you
are thinking about the overall architecture and design of your system,
not simply coding. And to understand the tools and the underlying
concepts that way, you must understand the problems with programming
real-time embedded (RTE) systems in general.

Therefore this presentation starts with discussing problems inherent in
RTE systems, why they are problems, and how active object frameworks
and hierarchical state machines can help.

You can't just look at the QP™ frameworks and the QM™ modeling tool
as a collection of features, because some of the features will make no
sense in isolation. You can only use these powerful tools effectively if you
are thinking about the overall architecture and design of your system,
not simply coding. And to understand the tools and the underlying
concepts that way, you must understand the problems with programming
real-time embedded (RTE) systems in general.

Therefore this presentation starts with discussing problems inherent in
RTE systems, why they are problems, and how active object frameworks
and hierarchical state machines can help.

 state-machine.com© 2016, Quantum Leaps

Some of the most difficult problems with Real-Time Embedded (RTE)
programming are related to concurrent code execution
Ÿ these problems are usually intermittent, subtle, hard-to-reproduce,
hard-to-debug, and hard-to-remove
Ÿ they pose the highest risk to the project schedule

#1 Shared-state concurrency problems due to preemption:

ᴞ Endemic to all shared-state systems (main+ISRs and RTOS)
ᴞ The ripple-effects of preemption in shared-state systems:
Ÿ Race conditionsŸ failure (if unaddressed)
Ÿ mutual exclusion Ÿ blockingŸ missed deadlines

#2 Problems caused by threads synchronization by blocking:
ᴞ Endemic to most conventional RTOS
Ÿ lack of responsiveness Ÿ more threads Ÿ more mutual exclusion
Ÿ more blocking … Ÿ architectural decay

ᴞ No really good options!

 state-machine.com© 2016, Quantum Leaps

Experts in the field have learned to avoid shared-state concurrency and to
avoid blocking to synchronize their threads. Instead, experts apply the
following best practices of concurrent programming:

1. Keep data and resources encapsulated inside threads (“share-
nothing” principle) and use events to share information

2. Communicate among threads asynchronously via event objects
Ÿ Threads run truly independently, without blocking on each other

In other words, experts combine multi-threading with event-driven
programming:
Ÿ Threads are organized as “message pumps” (event queue + event
loop)
Ÿ Threads process one event at a time (Run-to-Completion, RTC)
Ÿ Threads block only on empty queue and don't block anywhere else

Such event-driven, asynchronous, non-blocking, encapsulated threads
are called Active Objects (a.k.a. Actors)

