J Quantum®[€qPs

novating embedded systems

Updates and Errata

PRACTICAL
UML STATECHARTS

IN C/C++, Second Edition

Event-Driven Programming for
Embedded Systems

Index of Corrections and Updates

NOTE: The following index uses the section numbering consistent with the book. Practical UML
Statecharts in C/C++, Second Edition [PSiCC2]. The updated sections are highlighted and
marked with an exclamation point (!).

8o Yo L o'oY o 1
[o 00 Y= P 1
[=) 7= 1 =S 1
PART | UML STATE MACHINES.......ciiiiemeeiiiiiinnsssiieneassirresnsssssieeenssssreresnssseresnssssssreenssssssresnnssssseresnsssssrennssens 2
CHAPTER 1 Getting Started with UML State Machines and Event-Driven Programming.........ccccceevueenene.. 2
T2 Lt S PlAY. it 2
1.2.2 Running the StellariS VerSioN. 2
1.3 The Main() fUNCHION. ...ttt eeeeeeeeenn 2
1.4 The Design of the “Fly 'n' ShOOt” GaMB..iiuuuiiieeiiiiiiiiiiiiieiiiee e 2
1.5 Active Objects in the “Fly 'n' SNOOt” GaM...iiieuuiiieiiiiiiiiiiieeiiieeeiiee e, 2
1.5.1 The Missile ACtiVe ODJECE. ..icuuuuiiiiiiiiiiiiieeeeeiee et eeeeeeeeeeeeeeeieeeis 3
1.5.2 The Ship ACtiVE ODJEC . ..uuueiiiiiiiiiiiieeeeeeeee ettt ee e eeeeieeeeeees 3
1.5.3 The Min€ COMPONENES. . .oiiiieeeiiiiiiieieiieeeee ettt ettt e e e it e e ee i eeeeeeiennas 3
1.6 Events in the “Fly 'n' ShOOt” GaM...uu.iiiiieeeiiiiiieeiiiieeeeeeeeee e eeieeieeeieeeiens 4
1.7 Coding Hierarchical State MacChinNeS.........c.uuuiiiiiieeiiiiiiiieiii e eeeeeeeeeeees 4
1.7.3 Defining State-Handler FUNCHONS ieeniie ittt ettt e et teeeeeteeeetereaeerenaieeeneees 4
L0 S UM I A Y ettt ettt ettt et ee et tes et tee e tteseeese e eees e eee e tes e eet et eee e tes e tet e eeeten e tee et teetenateaaintss 5
CHAPTER 2 A Crash Course in UML State MachinesS...........ccuuiiiieuiiienniieeniiiiniiieniiienniiieniieeniieennieeeaeenniennes 6
2.2 Basic State Maching CONCEPS.iiieiiieiiieeiiieeeieeeeieeeeee e, 6
2.2 StAIES . ittt eaenns 6
2.2.5 GUArd CONAItIONS . cuuuiieeiiieiii ettt eieeeeis 6
2.3.15 UML State Machine Semantics: An Exhaustive Example......ccoooiveeeiiieeiiiieeiiiiiiiiieiieeiieiieeeenn. 6
2.4.2 High-LeVel DEeSION..ciiuuiiieiiiiiiieiiieeieeee ettt teeee i 7
2.4.6 FINAl TOUCNES. .uuuiiieiiiieiiieiiieeiieeeeeeee ettt e e e e e ee i eiieeeeans 7
3.1 The Time BOmMb EXAMPIE..uuiieeiiieeiiieiiieiieeiieeeeee ettt eeeeieeeeeennes 8
3.1.1 Executing the EXample COAe...u.uuuiiiiieeiiiiiiieeeiieieee et eeeeeeeeeen, 8
3.3.3 Variations of the TeCHNMIQUE. ittt ettt ettt ettt ettt eeeetereeeeieeetieenateeeaaeeesss 8
3.4.1 Generic State-Table EVENt PrOCES SOl ittt ettt ettt ettt tereeeereerereiezeeteeaeeieenes 8
3.4.2 Application-SpecCific COA . iiuuiiiuiiiiiiiiiiiieiiieeeeieeeeeeeeee e 8
3.5 Object-Oriented State Design Pattern.........oooieeeiiieiiiiiiiiiiiiiiiiiieiiieeeieeeeeeeeeeeeeeeeee e 8
3.5.3 Variations of the TeChNIQUE......ciiieeiiiieiiiiiiiiieiiiieiiieeee e 9
3.6.1 Generic QEP EVeNnt ProCeSSOr . uuu. it 9
3.6.2 Application-SpecCific COA . iiuuuiiiuiiiiiiiiiiiieiiieee e eieeieeanns 9
CHAPTER 4 Hierarchical Event Processor Implementation.......cccccciiiieensiiiiiieeniiiieennnsiiieeeensiiiieeenasieeeeennnnes 10
4.2 QEP COdE StrUCHUI. .ouvueiiiiieeeiiiiiee ettt ee i eeaeenn, 10
4.2.1 QEP Source Code Organization........eee.iiiieeeeiiiiiieeiiiiiieee e 10
Gl Y=Y 01 £ TN 10
4.3.1 Event SigNal (QSIQNaAI)..uu.ueeeiiiiiieeeeeeeeeeee et eei i 10
4.3.2 QEVENt StrUCIUIE TN €. ettt ettt e et ettt et et eee ettt e ett et eeeee et aeetenteentzeaaensss 10
4.4 Hierarchical State-Handler FUNGCHONS iee ittt e et teeeeeeeeetereeteeeetieeeeteezeneens 10

Copyright © Quantum Leaps, LLC. All Rights Reserved.

m‘ Quantum®€aqPs
—) innovating embedded systems

4.4.2 Hierarchical State-Handler Function Example in C...........vveeeeeieieiiiiiiiiiiiiiiiiiiiiiiiieeeeiieeeeeiieeeene, 10
4.4.3 Hierarchical State-Handler Function Example in C++.......ooovveeeeiiiiiiiiieieeeeeeeeieiieieiiieeeeieeee 10

4.5 Hierarchical State Maching ClaSS.........c.uuiiiiiiuiieiiiiiiee e e e eeeeeeeeeanens 11
4.5.1 Hierarchical State Machine in C (Structure QHSM)........uueiiiiieieiiiiiiiiieiiiiiieieeieieeeeeeeeeeeeeeee 11
4.5.2 Hierarchical State Machine in C++ (Structure QHSM). ..uuueeeeiiiiiiiiiiiiiiiiieeiciieieeeeieeeeeeeeeeee 11
4.5.4 Entry/Exit Actions and Nested Initial TranSitioNS..........ooovvviiiiieeeeeeiiiieieiieiiieiiieieeeeeeeeeeeeen 11
4.5.5 Reserved Events and Helper Macros in QEP.........cceeeiiiiiiiiiiiiiiiiiiiiiiiieeieieeeeeeeeeeeeeeeeeeeeen 11
4.5.6 Topmost Initial Transition (QHSM_iNit()).....eeeeeeuereeeiiieiiiiiiiiiiiiiiiieeceieieee e, 11
4.5.7 Dispatching Events (QHsm_dispatch(), General Structure)............ocoeieeiieiiiiiiiiiiiieeiiiiiiiiiiiiiee 12
4.5.8 Executing a Transition in the State Machine (QHsm_dispatch(). Transitoin).............ccccoeeevevenn..... 12

4.6 Summary of Steps for Implementing HSMs with QEP.......cccvvveveeeieniniiniiiiiiiiiiiiiiiiiiiiiieieeeeeiii 12
4.6.2 Step 2: Defining EVENES....uuiiiiiee i 12
4.6.5 Step 5: Defining the State-Handler FUNCHONS........cvuuiiiiieeeiiiiiiiiiiieeieieiieeeeeeeeeeeeeeeeeeee 12
4.6.9 Coding Regular TranSitioNS.iiiiieeeei it eeeeieeeeeeeeeeeenness 12
4.6.10 Coding Guard CoNditiONS......uuuiiiiieeiiiiiiie ettt 12

4.7 Pitfalls to Avoid While Coding State Machines with QEPccveiiiiiiiiiiiiiiiiiiieiiiieeiieieieeeeee 13
4.7.7 Code Outside the switch Statement..............oooovvvveveiiiiiiiiiiiiecciiieeeeeeeeeeeeeeeee e 13
4.7.8 Suboptimal Signal Granularity..........eeeeeeeieiieiiiiiiiiiieeeeeieie e 13
CHAPTER 5 State Patterns............ccceeveeeeememuueseeeeieeeissee e eeee e e seeeesese e e e e s e e e eeeeeee s eesssaseseeeeeeeeeennannnaaaaaes 14
5.1 URIMate HOOK....uiiiiieeueiiiiiie ettt ettt ettt ettt ettt et e e ettt e e e e aaeeeaen 14
5.1.4 SaAMPIE COUC..iiiiiieiieitie ettt e e e e eeaeane 14

oI Y 101101 =Y ST 14
oI B Y= 110] o) SN O Yo [T 14

SR H BIC) (=Y un=o l =AY o) O T T T 14
5.3.4 SAMPIE COAC.euuuniiiiieii ittt 14

5.4 Orthogonal COMPONENE. . ..uuu.iiiiie ittt e ee e eeeaeeee 14
R R B Y= 1011 o) SN @Yo [T T T T 14
5.4.5 CONSEQUENCES . .ooeeueeiiieeeee ettt e et e e ettt ettt et ettt ettt et et e et e eraneeen, 15

5.5 Transition t0 HiSTOIY.......covvuuuiiiiiiiei ittt 15
5.5.3 SOIUtION. ettt e et e e e e e e eeeeaane 15
5.5.4 SaMPIE COUC..iiiiiieieiitiie ettt e et e e e eeeeeanne 15
CHAPTER 6 Real-Time Framework Concepts.........cceeuuueuuieieiiiiiiirieiieiiiiiiisssessesssseeeeeeeeeeeeeeneeseenaaseenaaneens 16
6.1 INVersion Of CONEIOl.....uuue ittt e et et e ettt e et e e e eeeeeeeeeeeeeeeeeeneane, 16
(oI O] el U\ =T a P Yo (=] 0 0 1Y o | SN 16
6.2.2 Traditional Multitasking SYSteMS.......iiiiieeeiiiiiiiiiii et 16

6.5 Event Memory ManagemMent.oiiiieeeiiiiiiiee i 16
6.5.6 EVENt OWNEISNID . cuuuuiiiiie ittt ettt et e et e e et r e, 16

6.7 Error and Exception HaNAliNgG......ceuueiiiiieiiiii e 16
6.7.1 Design by CONraCt.......oovveeeeiiiiiiiiei e 16
6.7.2 Errors versus Exceptional ConditioNS.........eieiieueuiiiiiiiiieiiiiiiee i 16
6.7.3 Customizable Assertions in C and CH+...oooiiiiiieieieiiieieieiei e 16
CHAPTER 7 Real-Time Framework Implementation...............ccecemeeucceciiiininieeiieeeiiiieiiiesecsieses e eeeee e, 17
7.1 Key Features of the QF Real-Time FrameWork.ooooeviiiiiiiieieiiiiiiiiiieiiiieeeeeeeieeeeeeeeie e 17
7. 1.1 SOUMCE COB. ..ttt ettt e et e e e ettt e ettt et e ee e e e e eeeeerenes 17
7.1.2 Portability. . .ooeiiiieieeeieeee ittt r e eeeaaane 17
7.1.6 Zero-Copy Event Memory Management.eiveeeeeiiiieieeeeiieeeeeeeeeeee e eeeeeieeaes 17
7.1.12 Low-Power Archite@CtUIe.....uuuuiiiieeeiiiieieee e eeeeeen, 17

A @ SRS (1N (o1 (V] (= Y T T 17
7.2.1 QF Source Organization..........u.iiiiieeeiiiiie et 17
17.3 Critical Sections in QFttt ettt 18
17.3.1 Saving and Restoring Critical Section Status...........cccoeeviiiieeeeiiiiiiieiiiiieeeeeieeeeeeeeeeeean 18
17.3.2 Unconditional Disabling and Enabling InterruptS.........ccoeeeeiiiieiuiiiiiiiieiiiiiiieeeeeiiiieeeeeeeeeeeae 19
17.3.3 Internal QF Macros for Critical Section ENtry/EXit.......coceeeeiiiiiiiiiiiieieiiiiiiiiiiiiiiieeiieeeeeeiiieieeeeennnn.. 21

7.4 ACHVE ODJECES. ...ttt et ettt et eeeeaenn 22

Copyright © Quantum Leaps, LLC. All Rights Reserved.

m‘ Quantum®€aqPs
—) innovating embedded systems

7.4.3 Thread of Execution and Active Object Priority...........oceeueiiiiieeeiiiiiiiiiieiiiiiieeeeeeiieeieieeieeeenn 22

7.5 Event Management in QFoooouuuiiiiiiiei it 23
1751 Event StrUCIUI€. ..ocuue i 23
7.5.2 Dynamic Event AllOCatiON.....ouuueiiiiiiiei i 24
7.5.3 Automatic Garbage ColleCtioN..........cooeeiiiiiiieiiiiiiee i 24
7.5.4 Deferring and Recalling EVENtS........oovveuuueiiiiieiiiiiiiii e 24
7.6.1 Dirtect Event POSHING.....coivvueiiiiiiiiiii it 24
7.6.2 Publish-Subscribe Event DeliVErY..........oovvveueeiiieiiiiiiieieiieiiieeeeeeieee e eeeeeeeeeeines 24
7.7.2 The System Clock Tick and the QF _tick() FuNction..............vuveueeieiiiiiiiiiiiiiiiiiiiieeiiieeeeeieeeee 25
7.7.3 Arming and Disarming @ Time EVEeNt........oovvuveiiiiiiiiiiiiiiieeeieeeee e 25
7.8.1 The EQUEUE StrUCIUIE. ...cuuueiiiiieeieiieeeee ettt ee e eeeeeieeeneeeen, 25
7.8.3 The Native QF Active Object QUEUE.uiiiieeeeiiiiiiiei e eeeeeeeeeeeeeeenes 25
7.8.4 The “Raw” Thread-Safe QUEUE.oiiiieeueiiiiiiiiei i, 26
7.9.1 Obtaining a Memory Block fromthe POOl..........ccvuuiiiiiiiiiiiiiiiiiiiiiiiiiieee e 26
7.10 Native QF Priority Set........cooovuuuiiiiiiiiiiiiiieiee it 26
7.11 Native Cooperative “Vanilla” KerN€l..........ocuueiiiiieeuiiiiiiiiiieiiiiiiiiieeiiieie e 26
7.11.1 The gvanilla.c Source Code........oouiiiiieiieiiieie et eeee e eeeeeeeeeeeeeses 26
7.11.2 QP Reference ManUal..........ooovveveeeiiiieiiiieie oot eeeanne 26
CHAPTER 8 Porting and Configuring QF.............cccceeeiiimmumueeieiesiesesee e e e eeeeeseeseeeeeeeeeeeee e sesaeneees 27
8.1 The QP Platform Abstractin Layer (PAL).........eeeieeiiiiiiiiiiieeeeeieeeeee e eeeeeeeeeeeenn 27
8.1.4 The gep _porth Header Fil€..........uuuuuieiiiiiiiiiiiiiiiieeieieee e eeeeeeeeeinnes 27
18.1.5 The of porth Header Fil€.........ooovvuuuniiiiiiiieiiiieeeeeeieee e eeeeeeeeeeeeeee 27
(@] S OTqi(Tor=1 I T=Yor (o) Al \Y/[<Ye] aF= a1 1<) o o TN 28
Active Object Event Queue OpPerationS.........ueeeeeeeeiiiiiiiiiiiiiieeieeeeeeee e eeeeeeeeeeeeeeieieeeeeeeeeeeeeenn 29
8.1.6 The af port.cSource File...........ocovveeeiiiiiniiiiiiiiiiiiiiiiiiiiiiiiiieiiiiieee 29
8.1.6 System Clock Tick (Calling QF tiCK())...oeveeeeeiiiiiieeeiiiiiie et 29

8.2 Porting the Cooperative “Vanilla” Kernel...........couueiiiiieeuiiiiiiiiiiiiiiiieiieieiiieeeei e, 29
8.2.1 The gep _portth Header Fil€..........uiiiiiieuiiiiiiiiiiiiiiiiiiiieee e, 29
8.2.2The af porthHeader File.........cccvuuuuueiiiiiiiiiiiiiiiiiiiiieeee e eeeeeeeeeeannes 29

8.3 QF Port to uC/OS-II (Conventional RTOS).....cooiiiiiiiiiiiiiieeeeeeeee e eeeeeeeeeeeeeeeeeeenn, 29
8.3.2The af porthHeader File..........cevuuuueiiiiiiiiiiiiiiiiiiieeeeee e eeeeeannnes 29
8.3.2 The gf port.c SOUrce Fil€......cuuuuuuuiieiiiiiiiiiiiiiiiieeeeee e eeeeeinnes 30

8.4 QF Port to Linux (Conventional POSIX-Compliant OS)ueeeiiiiiiiiiiiiiiiiiiiiiiiiiieeie e 30
8.4.2 The gf port.h Header Fil€.........cuuuuiiiiieeeeiiiiieeeeeeieeeeeeeeeee et eeeeeeeeeeeeeeeen, 30
CHAPTER 9 Developing QP ApplicatioNS.........ceeeeuuuuueiiiiiiiiiiiiiiiiieeesinsnssssiiiisiiiieeeeeeesesesnsnnnnssssssisseieeeeesnnneeees 31
9.2 Dinigng Philosophers Problem.........oooveeeeiiiiiiiii i 31
9.2.1 Step1: REQUIrEMENES. .euuuuiiiiiiiiei ettt ettt 31
9.2.2 Step 2: Sequence DIiagramS......cuuueiiiieeei it 31

9.3 Running DPP on Various PlatfOrms........coovveeeeeiiiiiiiee e 33
9.3 3 UC/OS Nttt e et e et e et et e e ereeeanns 33
.34 LiNUX .t ittt e e ettt eeeeeee i eeieetee e eeeree e ieetree e eeeeer i aeeeeeeen 33
9.4.1 Sizing EVENt QUEBUES.....ooooiiiiiiiiiiiieee oottt ettt ettt e e e e eeeranes 33
CHAPTER 10 Preemptive Run-to-Completion Kernel.............coeeevveeieeeenemeenscseeieeeieieeeeeeeeeeieeeceeeeeeeeee e 34
10.1 Reasons for Choosing a Preemptive KerNel.........oeeeeieiiiiiiiiiiiieieiiieiieiiiiieeeeeeeeeeeeeeiieeeieeeeeeenns 34
10.2.3 Synchronous and Asynchronous PreemptionS.........ooeeeeeueeuuuiiiiiiiiiiiiiiiiiiieeeeiieieeeeeeeeeeeeeeee 34
10.3.1 QK Source Code Organization...............ieiiieeeeieiiiieieiiiieeeeeeeeeeeeeei i eeeieeieeeeeieieeeeeeeeeeeennes 34
10.3.2 The gk.h Header Fil€......oouiiiieeeeeieineieiiiieeieeieieeeeeee ettt eee e e 34
10.3.4 The gk_sched.c Source File (QK Scheduler)..............ooooooivviiiiiiiiiiiiiiiiiiiiii 34
10.3.5 The gk.c Source File (QK Startup and Idle LOOP).....cuuvveeeeeeiiiiiieieieieeeiieiiiiieiiiiiieeeeeeeeeeeen 34
10.4.3 Extended Context Switch (Coprocessor Support)..........cceeeeeeneninnnnenneeeeiissisiee e 35
10.5 Porting QK. .ouuiiiieiei ettt ettt e et raeean 35
10.5.1 The gep _porth Header Fil€.........oovveuuuiiiiiiiiiiiiiiiee e eeeeeeeeeeanes 35
10.5.1 The gf porth Header Fil€.........cooeeeiiiiiiiiiiiiiiiieeieeiee e, 35
10.5.1 The gk_port.h Header Fil€..........ccuuueiiiiieiiiiiiiiiiiiiiiiiiiieee e eeeeeeeane 35

Copyright © Quantum Leaps, LLC. All Rights Reserved. iii

m‘ Quantum®€aqPs
—) innovating embedded systems

10.6 Testing the QK POt ...ttt 35
10.6.2 Priority-Ceiling MULEX.....iiieeiiiieiiiieiiiieiiiieeiiieee et 35
10.6.3 TLS DeMONSrAtION . ceuuuiiieiiiieiiiieiiieeiie ettt ieanns 35
10.6.4 Extended Context Switch Demonstration...........eiiieeeiiieiiiieiiiieeiiieeeiiieeiieeeeieeeeeeeeeeeieeeieeenn 36

10,7 SUMMIAIY ittt ettt ettt ettt ettt et ettt et ettt ei e ei e eieeeiee 36

CHAPTER 11 Software Tracing for Event-Driven Systems..........ccccccceeeeiiiiiiirinieeeiiieieiesisesieseeeieeeeenacaeeeeass, 37

11.2 Quantum Spy Software Tracing SYSteM.......iiiiieeiiiiiiieeieiiieeeeeeie et 37
11.2.1 Example of a Software-Tracing SeSSION......iiiiieeeiiiiiieeiiiiiiiieieiieeeeeeeeeeieeeeieeeeeeeeieeeiieeeeenn 37
11.2.2 The Human-Readable Trace OUtPUL.........c.uuuiiiiieeeiiiiiiieieiiiiieeee i eeeeeeeeeeeeeeeeeeeeieeies 37

11.3 QS Target COMDONMENT . . ettt ettt ettt it ettt eettee st eeteet e e teeet e e aeteetet e aeeeeeeeeaaaaereeaaas 37
113,50 QS Bl OrS . . iiieiiie ittt ettt ettt ettt ettt ettt tee et tee et tes e tee e teeeteeee e tee e te st teerenteeenteeatetteeaeeaannss 37
11.3.6 QS Data ProtOCOL. ... i 38
11.3.7 QS Trace BUFf@r.uu i 38
11.3.8 Dictionary Trace RECOIMS. ...iiuuuiiieiiiiiiiieiiieeeieeee e ieeeeeeeen 38
11.3.10 Porting and Configuring QScoooioeueoiiiieeeeeeeeeeeeeeeeee e 38

11.5 Exporting Trace Data t0 MATLAB . ..o, 39
11.5.3 MATLAB SClipt QSDY. M.t eeeeeeeeeeeeeeeeeee, 39
11.5.4 MATLAB Matrices Generated bY QSPY .ioouuuiiiiieiiiiiiieeeeeeeeeee et 39

11.6 Adding QS Software Tracing to a QP Application........coovieeeeeiiiiiieiiiiiiiiieieiiiieeeeeeeeeeeeeeeeeeeeeeeeee 39
11.6.3 Generating QS Timestamps with the QS _onGetTime() Callback..........oeeeeiieeeeeiiiiiieeeiiiieennnnee. 39
11.6.4 Generating QS Dictionary Records from Active ObJeCtS.......ocuveieeeeeeeeeeieieieiiieiiiiieeeeeieeeeeeenn, 39
11.6.5 Adding Application-Specific Trace RECOIAS.uuuiiieiii ittt ettt ettt it teeeeteieeaieieenes 39

CHAPTER 12 QP-nano: How Small Can YOU GO 2.iueezuiienniieeasiieessiiensieenssiresssirnnssrensssrensssrenssteesssrassenssassss 40

12.2 Implementing “Fly 'n' Shoot” Example with QP-NaN0......oooiveiiiieiiiiiiiiiiiiieiiiieiiiieeiieeeeeiieeeeeeeeee 40
12.2.1 The Main() FUNCHON . cciuuuiiiiiiiieiiiieeiie et eeeeeeeeeieeeans 40
12.2.2 The gpn_porth Header File........c..oooeiiiiiiiiiiiiiiiiiiiiiieieeeiieeee e 40
12.2.3 Signals. Events ., and Active Objects in the “Fly 'n' Shoot” Game........oeevieiiiieeiiiieiiiiiiiiieeeeenn 40
12.2.4 Implementing the Ship Active Object in QP-NaN0.......oovveiiiieiiiiiiiieiiiieeiieeeiieeieeeeeee 40
12.2.5 Time Events in QP -NaANO......oiiiieeeiiiiiieeieiieeeee ettt eeie e ieeies 40
12.2.7 Building the “Fly 'n' Shoot” QP-nano AppliCation.........oooueeeeiiiiiieeiiiiiiieeeieeiieieeeeeeeeeeeeeeeeeeaen 41

12.3 QP-NAN0 SrUCKUIE...ciiiiieeeiiiiiieiiiieeee oottt e et e e e et e e eeeiiaeeeene 41
12.3.1 QP-nano Source Code, Examples, and Documentation..........ooeeeeeeeiiiieeeeeiiiiiiiiieeiiiieeiieeeeennnee. 41
12.3.4 Active Objects in QP-NAN0......oivueeiiiiiieeiiiiieeeee ettt eeiis 41

12.4 Event QUEUES IN Q P8I0, ..ttt ettt ettt ettt et et ettt ettt et et tee ettt e eeeeeetterentereeenieenees 41
12.4.2 Posting Events from the Task Level (QACHVE POSE()).eeeuriiiiiiiie ittt st e e i e i e eeeeeeeeeeeenns,s 41
12.4.3 Posting Events from the ISR Level (QActive POSISR())..eeeeueeeeiieeiiiiiiiiiiiiiiiiiiiiiiieiiieieees 41

12.5 The Cooperative “Vanilla” Kernel QP-NaN0.....iiuuiiieiiiieiiiieiiiieeiiieeeeieeeeeeeeeeeeeee e 42

12.6 The Preemptive Run-to-Completion QK-nano KerNel......oooeuueiieeiiieeiiiiiiiiiiiiieeiiieeiieeeiieeeeeeeeeeeeenn 42
12.6.1 QK-nano Interface gKN.N. oo 42
12.6.2 Starting Active Objects and the QK-nano 1dI€ LOOD . .icuuuuueiiiiieiiiiiieeeeeeieeeeeeeeeeeeeeeeeeeeeeeen 42
12.6.3 The QK-NAN0 SCREAUIET . c.euuuuiiiiiieiiiiieee ettt eeeeeeeeeeeis 42

12.7 The PELICAN CroSSing EXAMPIE...iuuuuiiiiiieiiiiiiieeeiieeeee e eeieeeieeeeas 42
12.7.1 PELICAN Crossing State Machine.........iiiiieeeeiiiiiiieiiiiiiee e eeeeeeeeeeeeeeeeeeeeeeeen 42
12.7.2 The Pedestrian Active ObJECE.uuuiiiiiieeiiiiiiieeeiiiieeeeeeieeeeeeeiee et eeeeeeeieeeies 42
12.7.3 QP-NAN0 MEMOIY USAQE. ..uuuuiiiiieeeiiiiieee ettt eee e e eeeeeeeeee i eeeeseeenes 43

APPENDIX B Guide to NOtatioN.........ieezziemesiienesiienssiiensirensreesssirnsssernsssresssrenssrensserensssrensssrensseeensresssassensenses 43

Bl ClaSS DA A .. ettt ittt ettt et ee et eee ettt e eet e ees ettt eee e eee e etet et eteaette e tee e ter e terettareatraterietas 43

Bibliograpy...cccee et eere e e e eeeeeereaaa———————eieeeereeeeteerenna——————eaanreenans 43

Contact Information..........ceiieeuiiieniiiiniiiiiiiiiiiiiee it iei it eea st iee it iea e iesa i tens i tensteenssirensetenstesnstennseeaeaniennees 44

Copyright © Quantum Leaps, LLC. All Rights Reserved. iv

Introduction

This document contains updates and errata to the book:

Pracical UML Statecharts in
C/C++, Second Edition:
Event-driven Programming
for Embedded Systems

uonIp3 puodas

++2/2 NI SLUVHO3ALVIS &
TNN IVIILDVHd g

A Bhb

= tncrin an aiemmon xomple sing o NS
[

By Miro Samek
Newnes, 2008

ISBN-10: 0750687061
ISBN-13: 978-0750687065

Companion Website: state-machine.com/psicc2

The updates cover the QP frameworks version 4.4.00.

NOTE: The following sections are numbered consistently with the
book. The updated sections are highlighted and marked with a (!).

Back Cover
Location Is Should be
First Bullet, From traditional finite state From traditional finite state
“‘Understand State automated to modern UML state automata to modern UML state
Machine Concepts” machines machines
Preface
Page xxi, 5" paragraph Corterx-M3 Cortex-M3
Page xxi, 5" paragraph form Luminary Micro from Luminary Micro
Page xxi, last paragraph Max OS X Mac OS X
Page xxi, footnote 2 EKIEV-LM3S811 EKI-LM3S811

Copyright © Quantum Leaps, LLC. All Rights Reserved. 10of 44

http://www.state-machine.com/psicc2

®L€‘ p u
pdates and Errata to
uﬂsl q vantum aMs Practical UML Statecharts in C/C++, Second Edition
=

innovating embedded systems state-machine.com/psicc2

PART I UML STATE MACHINES

Location Is Should be

Page 2, 1% paragraph catalogue catalog

CHAPTER 1 Getting Started with UML State Machines and Event-
Driven Programming

1.2 Let's Play

1.2.2 Running the Stellaris Version

Page 9, 6" paragraph game-ev-Im3s811.eww game.eww

1.3 The main() function

Page 13, Listing 1.1, Section 1.7 Section 1.6

explanation section (3)

Page 15, Listing 1.1 (17) The function QF poolInit () (17) The function QF psInit ()
explanation section (17) initializes... initializes...

1.4 The Design of the “Fly 'n' Shoot” Game

Page 18, Figure 1.4(13) HIT_MINE(type) DESTROYED_MINE(score)

Page 18, Figure 1.4(14) DESTROYED_MINE(type) DESTROYED_MINE(score)

Page 20, Figure 1.4 ... Missile posts the ... Missile posts the

explanation section (12) MISSILE IMG(x, y, bmp) eventto MISSILE IMG(x, y, bmp) event
Table. to Tunnel.

Page 20, Figure 1.4 Table renders the Missile bitmap... Tunnel renders the Missile

explanation section (13) HIT MINE (score) .. bitmap...

DESTROYED MINE (score) ...

Page 20, Figure 1.4 HIT MINE (type) . DESTROYED MINE (score)
explanation section (14)

1.5 Active Objects in the “Fly 'n' Shoot” Game

Copyright © Quantum Leaps, LLC. All Rights Reserved. 2 of 44

http://www.state-machine.com/psicc2

uiS

Quantum®€qPs

innovating embedded systems

Updates and Errata to

Practical UML Statecharts in C/C++, Second Edition

state-machine.com/psicc2

1.5.1

1.5.2

1.5.3

Page 20, last paragraph

.. actions performed by an active
object depend as much on the
events it receives as on the internal
mode of the object.

The Missile Active Object

Location

Page 22, Figure 1.5(5)

Is

HIT MINE (score)

The Ship Active Object

Page 24, last paragraph
Page 25, Figure 1.6(12)
Page 26, Figure 1.6
explanation section (7)

Page 26, Figure 1.6
explanation section (8)

argumentation

QActive postFIFO (Table,
The PLAYER TRIIGGER internal
transition...

... The score is not posted to the
Table at this point.

The Mine Components

Page 30, Figure 1.9
explanation section (7)

Page 31, Fig 1.9

The exit action in the “used” state
posts the

MINE DISABLDED (mine id) event
to the Tunnel active object... (see
also Figure 1.9(4))... Note that
generating the

MINE DISABLDED (mine id) event
in the exit section from “used” ...

The internal transition TIME TICK in
state “used” is:

TIME TICK [me->x +
GAME MISSILE SPEED X
B B <
GAME SCREEN WIDTH] /
me->x +=
GAME MISSILE SPEED X;
postFIFO (Tunnel,
MISSILE IMG (me->x,
me->y,
MISSILE BMP));

.. actions performed by an active
object depend as much on the
internal mode of the object as on
the events it receives.

Should be

DESTROYED MINE (score)

reasoning

QActive postFIFO (Tunnel,

The PLAYER TRIGGER internal
transition...

.. The score is not posted to the
Tunnel at this point.

The exit action in the “used” state
posts the

MINE DISABLED (mine id) event
to the Tunnel active object... (see
also Figure 1.7(4))... Note that
generating the

MINE DISABLED (mine id) event
in the exit section from “used” ...

The internal transition TIME TICK
in state “used” should be:

TIME TICK [me->x >=
GAME_SPEED X] /
me->x -= GAME SPEED X;

postFIFO (Tunnel,
MISSILE IMG (me->x,
me->y,
MINE2 BMP)) ;

(see also state diagram below)

Copyright © Quantum Leaps, LLC. All Rights Reserved.

30of44

http://www.state-machine.com/psicc2

Quantum®€qPs

innovating embedded systems

uiS

Updates and Errata to
Practical UML Statecharts in C/C++, Second Edition
state-machine.com/psicc2

~

4 planted

TIME_TICK [me->x >= GAME_SPEED_X] /
me->x = GAME_SPEED_X;
postFIFQ(Tunnel,

MISSILE_IMG(me->x, me->y,
MINE2_BMP));

postFIFQ(Ship,

me->X, me->y,

-
-

entry/ me->exp_ctr = 0;

exploding N

TIME_TICK[(me->x >= GAME_SPEED_X)
&& (me->exp_ctr < 15)] /
me->x = GAME_SPEED_X;
++me->exp_ctr;
postFIFQ(Tunnel, EXPLOSION (me->x + 3, me->y - 4,
EXPLOSIONO_BMP + (me->exp_ctr >> 2)));

QActive_postFIFQ(Tunnel, MINE_DISABLED(MINE_ID(me)));

SHIP_IMG [do_bitmaps_overlap(
MINE2_BMP,
me->x, me->y,
e->bmp, e->Xx, e->y)]/

MISSILE_IMG [do_bitmaps_overlap(
MINE2_MISSILE_|

e->bmp, e->x, e->y)]/
postFIFQ(Missile, DESTSOYED_MINE(45));

®)
—TIME_TICK[else
J

~ unused N\ O
(6)

“—MINE_RECYCL

\ J \

(2)

MINE_PLANT(x,) /—]
7~ used - .
oxitl (@) Me>X =X,

me->y = e->y,

3)
TIME_TICK [else

“)

HIT_MINEQ)),

BMP,

S
- J

Figure 1.9: Mine2 state machine diagram.

1.6 Events in the “Fly 'n' Shoot” Game

Location Is Should be
Page 33, Listing 1.2 /* From Missile the /* From Missile to the

Tunnel . . x/ Tunnel . o #f

1.7 Coding Hierarchical State Machines

1.7.3 Defining State-Handler Functions

Copyright © Quantum Leaps, LLC. All Rights Reserved.

4 of 44

http://www.state-machine.com/psicc2

i SQuantum®[€qPs
thj innovating embedded systems

Updates and Errata to
Practical UML Statecharts in C/C++, Second Edition

state-machine.com/psicc2

Location

Page 46, Listing 1.6
explanation section (9)

Page 47, Listing 1.6
explanation section (16)

1.10 Summary

Page 53,
4" paragraph

Page 54, last paragraph

Is

return QHandled ()

return QHandled ()

Wile the coding ...

build-in

Should be

return Q HANDLED ()

return Q HANDLED ()

While the coding ...

built-in

Copyright © Quantum Leaps, LLC. All Rights Reserved.

50f44

http://www.state-machine.com/psicc2

Quantum®€qPs

L

innovating embedded systems

Updates and Errata to

Practical UML Statecharts in C/C++, Second Edition

state-machine.com/psicc2

CHAPTER 2 A Crash Course in UML State Machines

Is

2.2 Basic State Machine Concepts
221 States
Location
Page 60, footnote 2 Ignore at this print...
2.2.5 Guard Conditions

Page 65, end of second
paragraph

Page 66, begin of second
paragraph

Page 66, middle of third
paragraph

... whole new column in the table...

Capturing behavior as the
quantitative “state” has ...

This example points to the main
weakness of the quantitative
“state”,...

2.3.15 UML State Machine Semantics: An Exhaustive Example

®
/ me->foo = 0;

Should be

Ignore at this point...

...whole new row in the table..
Capturing behavior as the
qualitative “state” has ...

This example points to the main

weakness of the qualitative
“state”,...

/_TERMINATE_>©

- s ~N
entry /
exit /
| [me->foo] / me->foo = 0; / K >f s2 A
entry /
exit /
4 .y st N | ['me->foo] / me->foo = 1; °
entr
Dlime->00]/ | exit/ 1 s21 7
me->foo =1; ||/ v L entry /
«— (M o> exit / j
entry / ‘ Gaml A
exit /
E G <_J
(— L F B—
A D [me->foo]/ K —F D
k me->foo = 0; o
_¥ J - . J
- I J
- A v)

Figure 2.11: Hypothetical state machine that contains all possible state transition topologies up to

four levels of state nesting.

Copyright © Quantum Leaps, LLC. All Rights Reserved.

6 of 44

http://www.state-machine.com/psicc2

uiS

Quantum®€qPs

innovating embedded systems

Updates and Errata to

Practical UML Statecharts in C/C++, Second Edition

state-machine.com/psicc2

2.4.2

2.4.6

Location
Page 89, first line
Page 89, 15 paragraph
Page 90, 15 paragraph,
4" line

Page 90, 4™ paragraph,
2" line

High-Level Design
Page 93, In TIP

Page 94, footnote 10

Final Touches

Page 96, Section 2.4.6,
end of paragraph

Is
...UML sate machines...

...defined in the direct target state
"821 .ll

...which is a test of me->foo against
0,...

States "s2" and d both ...

OPER (operand)

factorize out

The actual C implementation...

Should be
...UML state machines...

...defined in the direct target state
lls1 'Il

...which is a test of me->foo
against 1,...

States "s2" and "s" both ...

OPER (operator)

factor out

The actual C++ implementation...

Copyright © Quantum Leaps, LLC. All Rights Reserved.

7 of 44

http://www.state-machine.com/psicc2

Updates and Errata to

ere
uﬂsl q vantum L a pS Practical UML Statecharts in C/C++, Second Edition
=

innovating embedded systems

state-machine.com/psicc2

CHAPTER 3 Standard State Machine Implementations

3.1 The Time Bomb Example

3.1.1 Executing the Example Code
Location Is

Page 104, 1% paragraph, tcpp101\bomb
2 occurrences

Page 104, 2™ paragraph Section 1.1

3.3.3 Variations of the Technique

Page 113, 6" paragraph gpc\examples\cortex-
m3\dos\iar\game\bsp.c

3.4.1 Generic State-Table Event Processor

Page 116, This typedef defines Tran type as a
Listing 3:2 _ pointer to the StateTable struct
explanation section (3) and a pointer to the Event struct as

arguments and returns uint8 t.
The value returned from the
transition function represents the
next state for the state machine after
executing the transition...

3.4.2 Application-Specific Code

Page 121, Listing 3.4 The sate table ...
explanation section (17)

3.5 Object-Oriented State Design Pattern

Page 125, Figure 3.6, state
to immediate right of
‘Bomb 3” class

Should be

tcpp101\\bomb

Section 1.2.1

gpc\examples\cortex-
m3\vanilla\iar\game-ev-
Im3s811\bsp.c

This typedef defines Tran type as
a pointer to the stateTable struct
and a pointer to the Event struct as
arguments and returns void....

The state table ...

state

Copyright © Quantum Leaps, LLC. All Rights Reserved.

8 of 44

http://www.state-machine.com/psicc2

Quantum®€qPs

innovating embedded systems

uiy

Updates and Errata to
Practical UML Statecharts in C/C++, Second Edition

state-machine.com/psicc2

3.5.3 Variations of the Technique

Location Is

Page 132, Figure 3.8,
to immediate right of the
“Bomb” class

state

Should be

state

3.6.1 Generic QEP Event Processor
Page 137, (void) (*me->state) (me, (void) (*me->state) (me,
Listing 3.7(7) &QEP reservedEvt [Q EXIT SIG] &QEP reservedEvt [Q ENTRY SI
) Gl)
3.6.2 Application-Specific Code
Page 140, Listing 3.8 "gqp_port.h" "gep port.h"
explanation section (1)
Page 141, Listing 3.8 Figure 3.1(1) Figure 3.2(1)

explanation section (14)

Copyright © Quantum Leaps, LLC. All Rights Reserved.

9 of 44

http://www.state-machine.com/psicc2

®L€‘ p u

pdates and Errata to
MI q vantum aMs Practical UML Statecharts in C/C++, Second Edition
N\

innovating embedded systems state-machine.com/psicc2

CHAPTER 4 Hierarchical Event Processor Implementation

4.2 QEP Code Structure

4.2.1 QEP Source Code Organization

Location Is Should be
Page 153, Listing 4.1 80x88 80x86
Page 153, Listing 4.1 gep_pkg.h -internal, packet- gep_pkg.h -internal, package-
scope interface scope interface
4.3 Events

4.3.1 Event Signal (QSignal)

Page 155, In code snippet QEP_SIGNAL SIZE Q SIGNAL SIZE

4.3.2 QEvent Structure in C

Page 156, Casting from subclass to Casting from superclass to

footnote no. 4 superclass is called in OOP subclass is called in OOP
downcasting... downcasting...

Page 156, last paragraph became become

4.4 Hierarchical State-Handler Functions

4.4.2 Hierarchical State-Handler Function Example in C

Page 160, Listing 4.4 Q_HANLDED () Q_HANDLED ()
Explanation Section (6)

4.4.3 Hierarchical State-Handler Function Example in C++

Page 160, 5" paragraph state "operand1" state "int1"

Copyright © Quantum Leaps, LLC. All Rights Reserved. 10 of 44

http://www.state-machine.com/psicc2

Updates and Errata to
Practical UML Statecharts in C/C++, Second Edition

state-machine.com/psicc2

Quantum®€qPs

innovating embedded systems

L

4.5 Hierarchical State Machine Class
4.5.1 Hierarchical State Machine in C (Structure QHsm)
Location Is Should be
Page 162, Listing 4.6 uint8 t QHsm isIn(QHsm *me, uint8 t QHsm isIn (QHsm *me,
Label (5) QHsmState state); QStateHandler state);
4.5.2 Hierarchical State Machine in C++ (Structure QHsm)
Page 163, Listing 4.7 uint8 t isIn(uint8 t isIn(
Label (4) QHsmState state); QStateHandler state);
4.5.4 Entry/Exit Actions and Nested Initial Transitions
Page 168, first NOTE box, QEQ EMPTY SIG QEP _EMPTY SIG
third line
4.5.5 Reserved Events and Helper Macros in QEP
Page 168, code snippet (update for QP 4.3.00 and later)
QEvent const QEP reservedEvt [] {
{ (0Signal)QEP EMPTY SIG , (uint8 t)0, (uint8 t)0 },
{ (QSignal)Q ENTRY SIG , (uint8 t)0, (uint8 t)0 },
{ (QSignal)Q EXIT SIG , (uint8 t)0, (uint8 t)0 },
{ (QSignal)Q INIT SIG , (uint8 t)0, (uint8 t)0 }
}
Page 169, in code snippet, ... /* QS software tracing ... I* QS software tracing
2" macro instrumentation for state entry */ instrumentation for state exit */
Page 169, in code snippet ... /* QS software tracing ... I* QS software tracing
3" macro instrumentation for state exit */ instrumentation for state entry */
Page 170, first paragraph Myrphy Murphy
4.5.6 Topmost Initial Transition (QHsm_init())

Page 170, Section 4.5.6 Execution of the entry actions to the

Bullet 4. “result” state

Page 170, Execution of the actions associated
Section 4.5.6 with the initial transition defined in
Bullet 5. the “result” state

Execution of the entry actions to
the “ready” state

Execution of the actions associated
with the initial transition defined in
the “ready” state

Copyright © Quantum Leaps, LLC. All Rights Reserved.

11 of 44

http://www.state-machine.com/psicc2

®L€‘ p u
pdates and Errata to
uﬂsl q vantum aMs Practical UML Statecharts in C/C++, Second Edition
=

innovating embedded systems

state-machine.com/psicc2

4.5.7 Dispatching Events (QHsm_dispatch(), General Structure)

4.5.8

4.6

4.6.2

4.6.5

4.6.9

4.6.10

Location Is

Page 175, Listing 4.11 initial transition
explanation section (2)

Should be

transition

Executing a Transition in the State Machine (QHsm_dispatch(), Transitoin)

Page 182, Listing 4.12 ... and involves only entry to the
explanation section (5) target but no exit from the source.
Page 183, Listing 4.12 (10) The topologies shown in 4.6(G)
explanation section (10) and (H) require traversal of the

target state hierarchy stored in the
array path[] to find the match with
any of the superstates of the source.

Page 183, Listing 4.11 (11) Because every scan for a

explanation section (11) match with a given superstate of the
source exhausts all possible
matches for the LCA, the source's
superstate can be safely exited.

... and involves only exit from the
source but no entry to the target.

(10) Because every scan for a
match with a given superstate of
the source exhausts all possible
matches for the LCA, the source's
superstate can be safely exited.

(11) The topologies shown in
4.6(G) and (H) require traversal of
the target state hierarchy stored in
the array path[] to find the match
with any of the superstates of the
source.

Summary of Steps for Implementing HSMs with QEP

Step 2: Defining Events

Page 185, last line <gp>\gpc\include\gevent.h

Step 5: Defining the State-Handler Functions

Page 188, last paragraph ...Such state disignate s¢QHsm: : top
before the NOTE as the argument to the 9 SUPER ()
macro.

Coding Regular Transitions

Page 190, 4" paragraph ... Listing 4.5 provides two examples
of regular state transitions.

Coding Guard Conditions

Page 191, 1% paragraph Cacl::begin()

<gp>\gpcpp\include\qevent.h

...Such state designate
&QHsm: : top as the argument to
the 9 SUPER () macro.

... Listing 4.5 provides an example
of a regular state transition.

Calcl::begin()

Copyright © Quantum Leaps, LLC. All Rights Reserved.

12 of 44

http://www.state-machine.com/psicc2

®Le p u
pdates and Errata to
ml q vantum aMs Practical UML Statecharts in C/C++, Second Edition
=

innovating embedded systems state-machine.com/psicc2

4.7

4.7.7

4.7.8

Pitfalls to Avoid While Coding State Machines with QEP

Code Outside the switch Statement

Location Is Should be
Page 196, 2™ paragraph ...event that dispatched the state ...event that is dispatched to the
machine... state machine...

Suboptimal Signal Granularity

Page 197, end of 3™ IDC_1_9 SIG DIGIT_1_9 SIG
paragraph

Copyright © Quantum Leaps, LLC. All Rights Reserved. 13 of 44

http://www.state-machine.com/psicc2

o Quantum®€qPs
g innovating embedded systems

Updates and Errata to

Practical UML Statecharts in C/C++, Second Edition

state-machine.com/psicc2

CHAPTER 5 State Patterns

5.1 Ultimate Hook

5.1.4 Sample Code

Location
Page 210,

Listing 5.1
explanation section (1)

5.2 Reminder

5.2.4 Sample Code
Page 213, 2™ paragraph

Page 217, NOTE

5.3 Deferred Event

5.3.4 Sample Code

Page 222, 1% paragraph

Page 229, Listing 5.4,
explanation section (4)

Is

Every QEP application needs to
include gep_porth.h

file REMINDER.EXE file

Windows GUI applications can call
the PostMessage() Win32 API to
queue messages and the
WM_TIMER message to receive
timer updates.

file DEFER.EXE file

Listing 4.1

5.4 Orthogonal Component

5.4.4 Sample Code

Page 234, 2nd paragraph

Page 234, Figure 5.11
2" note from bottom

Page 236, Listing 5.6

file COMP.exe file

... from the A1arm component

/* the HSM version of the
Alarm component */

Should be

Every QEP application needs to
include qep_port.h

REMINDER.EXE file

Windows GUI applications can call
the PostMessage() Win32 API to
queue messages and provide a
WM_TIMER case in the window
procedure to receive timer
updates.

DEFER.EXE file

Listing 4.2

COMP.exe file

... from the AlarmClock
component

/* the FSM version of the
Alarm component */

Copyright © Quantum Leaps, LLC. All Rights Reserved.

14 of 44

http://www.state-machine.com/psicc2

®L€ p u

pdates and Errata to
uﬂsl q vantum aMs Practical UML Statecharts in C/C++, Second Edition
\—

innovating embedded systems

state-machine.com/psicc2

Page 237, listing 5.7 /* HSM definition...

P. 239, Listing 5.8 caption (file clock.c)

5.4.5 Consequences
Location Is

Page 244, footnote 8 must explicitly instantiate all
components explicitly

5.5 Transition to History

5.5.3 Solution

Page 245, last paragraph ~ doorClosed_history (abbreviated to
history in Figure 5.12).

5.5.4 Sample Code

Page 246 file HISTORY .exe file

Page 247, Listing 5.9 HSM definitio----...
Comment line

Page 250, last paragraph requires setting doorClosed_history
to &ToasterOven_toasting in the exit
action from "toasting" to
&ToasterOven_baking in the exit
action from "baking," and so on

/* FSM definition...

(file comp.c)

Should be

must explicitly instantiate all
components

doorClosed_history.

HISTORY .exe file

HSM definition----...

requires setting
doorClosed_history to
&ToasterOven_toasting in the exit
action from "toasting," and likewise
to &ToasterOven_baking in the exit
action from "baking," and so on

Copyright © Quantum Leaps, LLC. All Rights Reserved.

15 of 44

http://www.state-machine.com/psicc2

o Quantum®€qPs
g innovating embedded systems

Updates and Errata to

Practical UML Statecharts in C/C++, Second Edition

state-machine.com/psicc2

CHAPTER 6 Real-Time Framework Concepts

6.1 Inversion of Control

Location

Page 256, last paragraph

6.2 CPU Management

Is

control is key part

6.2.2 Traditional Multitasking Systems

Page 261, 3™ paragraph

easer

6.5 Event Memory Management

6.5.6 Event Ownership

Page 288, Figure 6.14

retrun-from-dispatch(e)

6.7 Error and Exception Handling

6.7.1 Design by Contract

Page 295, 2™ paragraph
from the bottom

... code to “wonder around,” silently
taking care of ...

6.7.2 Errors versus Exceptional Conditions

Page 297, 1° paragraph

(see Section 6.1.6)

6.7.3 Customizable Assertions in C and C++

Page 298, Listing 6.1
explanation section (1)

Page 300, Listing 6.1
explanation section (11)

When disabled, all assertion macros
expand to empty statements that
don't generate any code.

(see [Murphy 01])

Should be

control is the key part

easier

return-from-dispatch(e)

... code to “wander around,”
silently taking care of ...

(see Section 6.7.6)

When disabled, all assertion
macros, except 0 ALLEGE (),
expand to empty statements that
don't generate any code.

(see [Murphy 01a])

Copyright © Quantum Leaps, LLC. All Rights Reserved.

16 of 44

http://www.state-machine.com/psicc2

Updates and Errata to

ere
h‘ﬂ!l q vantum L a pS Practical UML Statecharts in C/C++, Second Edition
=

innovating embedded systems

state-machine.com/psicc2

CHAPTER 7 Real-Time Framework Implementation

7.1 Key Features of the QF Real-Time Framework

7.1.1 Source Code

Location Is
Page 309, 1% paragraph www.quantum-
leaps.com/doc/AN_QL_Coding_Sta
ndard.pdf

7.1.2 Portability

Page 310, 1% paragraph QP-nano in Chapter 11

7.1.6 Zero-Copy Event Memory Management

Page 312, Section 7.1.6 Perhaps that most ...

7.1.12 Low-Power Architecture

Page 314, 1° paragraph power-savings features

7.2 QF Structure

Page 315, 1% paragraph As all real-time frameworks, QF
provides the central base class
QActive...

Page 315, left side, Star Wars application

near bottom

7.2.1 QF Source Organization

Page 317, Listing 7.1, QTimeEvt darm()
in description of
“‘qte_darm.c”

Should be

www.quantum-
leaps.com/resources/AN_QL_Codi
ng_Standard.pdf

QP-nano in Chapter 12

Perhaps the most ...

power-saving features

QF provides the central base class
QActive...

Fly 'n' Shoot application

QTimeEvt disarm()

Copyright © Quantum Leaps, LLC. All Rights Reserved.

17 of 44

http://www.state-machine.com/psicc2

] ®L€ p u
pdates and Errata to
q —— ni'U m G S Practical UML Statecharts in C/C++, Second Edition

innovating embedded systems state-machine.com/psicc2

17.3

17.3.1

Critical Sections in QF

NOTE: This section has been updated for QP 4.3.00 (01-Nov-11), which changed the names of
critical section macros and introduces macros for unconditional interrupt disabling/enabling. This
was done to simplify and speed up the built-in Vanilla and QK kernels, which no longer are
dependent on the interrupt disabling policy.

QF, just like any other system-level software, must protect certain sequences of instructions against
preemptions to guarantee thread-safe operation. The sections of code that must be executed indivisibly
are called critical sections.

In an embedded system environment, QF uses the simplest and most efficient way to protect a section of
code from disruptions, which is to disable interrupts on entry to the critical section and re-enable interrupts
at the exit from the critical section. In systems where locking interrupts is not allowed, QF can employ
other mechanisms supported by the underlying operating system, such as a mutex.

NOTE

The maximum time spent in a critical section directly affects the system’s responsiveness to external
events (interrupt latency). All QF critical sections are carefully designed to be as short as possible and
are of the same order as critical sections in any commercial RTOS. Of course, the length of critical
sections depends on the processor architecture and the quality of the code generated by the compiler.

To hide the actual critical section implementation method available for a particular processor, compiler,
and operating system, the QF platform abstraction layer includes two macros, QF INT DISABLE () and
QF INT ENABLE (), to disable and enable interrupts, respectively.

Saving and Restoring Critical Section Status

The most general critical section implementation involves saving the critical section status before entering
the critical section and restoring the status upon exit from the critical section. Listing 7.2 illustrates the use
of this critical section type.

Listing 7.2 Example of the “saving and restoring critical section status” policy

{

(1) unsigned int crit stat;

(2) éritistat = get _int status();
(3) disable interrupts();

(4) }*.céitical section of code */
(5) éeéiintistatus(critistat);

}

(1) The temporary variable crit stat holds the interrupt status across the critical section.

(2) Right before entering the critical section, the current interrupt status is obtained from the CPU and
saved in the crit stat variable. Of course, the name of the actual function to obtain the interrupt

status can be different in your system. This function could actually be a macro or inline assembly
statement.

(3) Interrupts are disabled using the mechanism provided by the compiler.

Copyright © Quantum Leaps, LLC. All Rights Reserved. 18 of 44

http://www.state-machine.com/psicc2

] ®L€ p u
pdates and Errata to
q —— ni'U m G S Practical UML Statecharts in C/C++, Second Edition

innovating embedded systems state-machine.com/psicc2

17.3.2

(4) This section of code executes indivisibly because it cannot be interrupted..

(5) The original interrupt status is restored from the crit stat variable. This step re-enables interrupts
only if they were enabled at step 2. Otherwise, interrupts remain disabled.

Listing 7.3 shows an example of the “saving and restoring critical section status” policy.

Listing 7.3 QF macro definitions for the “saving and restoring critical section status” policy

(1) #define QF CRIT STAT TYPE unsigned int
(2) #define QF CRIT ENTRY (stat) do { \

(stat) = get_int status(); \
disable interrupts(); \
} while (0)

(3) #define QF CRIT EXIT (stat) set int status(stat)

(1) The macro QF CRIT STAT TYPE denotes a data type of the “criticasl section status” variable, which
holds the critical section status. Defining this macro in the gf port.h header file indicates to the QF
framework that the policy of “saving and restoring critical section status” is used, as opposed to the
policy of “unconditional disabling and enabling interrupts” described in the next section.

(2) The macro QF CRIT ENTRY () encapsulates the mechanism of entering the critical section. The
macro takes the parameter stat _, into which it saves the critical section status.

NOTE

Thedo {. . .} while (0) loop aroundthe QF CRIT ENTRY () macro is the standard practice for
syntactically correct grouping of instructions. You should convince yourself that the macro can be used
safely inside the i f-else statement (with the semicolon after the macro) without causing the
“dangling-else” problem. | use this technique extensively in many QF macros.

(3) Themacro QF CRIT EXIT () encapsulates the mechanism of restoring the interrupt status. The
macro restores the critical section status from the argument stat_.

The main advantage of the “saving and restoring critical section status” policy is the ability to nest critical
sections. The QF real-time framework is carefully designed to never nest critical sections internally.
However, nesting of critical sections can easily occur when QF functions are invoked from within an
already established critical section, such as an interrupt service routine (ISR). Most processors disable
interrupts in hardware upon the interrupt entry and enable interrupts upon the interrupt exit, so the whole
ISR is a critical section. Sometimes you can re-enable interrupts inside ISRs, but often you cannot. In the
latter case, you have no choice but to invoke QF services, such as event posting or publishing, with
interrupts disabled. This is exactly when you must use this type of critical section.

Unconditional Disabling and Enabling Interrupts

The simpler and faster critical section policy is to always unconditionally enable interrupts in
QF CRIT EXIT (). Listing 7.4 provides an example of the QF macro definitions to specify this type of
critical section.

Listing 7.4 QF macro definitions for the “unconditional interrupt disabling and enabling” policy

(1) /* QF CRIT STAT KEY not defined */
(2) #define QF CRIT ENTRY (dummy) disable interrupts()
(3) #define QF CRIT EXIT (dummy) enable interrupts ()

Copyright © Quantum Leaps, LLC. All Rights Reserved. 19 of 44

http://www.state-machine.com/psicc2

] ®L€ p u
pdates and Errata to
q —— ni'U m G S Practical UML Statecharts in C/C++, Second Edition

innovating embedded systems state-machine.com/psicc2

(1) The macro QF CRIT STAT KEY is not defined in this case. The absence of the QF CRIT STAT KEY
macro indicates to the QF framework that the critical section status is not saved across the critical
section.

(2) The macro QF CRIT ENTRY () encapsulates the mechanism of entering critical section. For
consistency, the macro must take a parameter, but the parameter is not used in this case and so it is
named dummy .

(3) The macro QF CRIT EXIT () encapsulates the mechanism of exiting critical section. For
consistency, the macro must take a parameter, but the parameter is not used in this case and so it is
named dummy .

The inability to nest critical sections does not necessarily mean that you cannot nest interrupts. Many
processors are equipped with a prioritized interrupt controller, such as the Intel 8259A Programmable
Interrupt Controller (PIC) in the 80x86-based PC or the Nested Vectored Interrupt Controller (NVIC)
integrated inside the ARM Cortex-M3. Such interrupt controllers handle interrupt prioritization and nesting
before the interrupts reach the processor core. Therefore, you can safely enable interrupts at the
processor level, thus avoiding nesting of critical sections inside ISRs. Listing 7.5 shows the general
structure of an ISR in the presence of an interrupt controller.

Listing 7.5 General structure of an ISR in the presence of a prioritized interrupt controller

Write End-Of-Interrupt (EOI) instruction to the Interrupt Controller

(1) void interrupt ISR(void) { /* entered with interrupts locked in hardware */
(2) Acknowledge the interrupt to the interrupt controller (optional)

(3) Clear the interrupt source, if level triggered

(4) QF INT ENABLE(); /* enable the interrupts at the processor level */
(5) body of the ISR, use QF calls, e.g., QF tick(), Q NEW or QF publish()

(6) QF INT DISABLE(); /* lock the interrupts at the processor level */
(7)

(8)

(1) Most processors enter the ISR with interrupts disabled in hardware.

(2) The interrupt controller must be notified about entering the interrupt. Often this notification happens
automatically in hardware before vectoring (jumping) to the ISR. However, sometimes the interrupt
controller requires a specific notification from the software. Check your processor’s datasheet.

(3) You need to explicitly clear the interrupt source, if it is level triggered. Typically you do it before re-
enabling interrupts at the CPU level, but a prioritized interrupt controller will prevent the same
interrupt from preempting itself, so it really does not matter if you clear the source before or after
enabling interrupts

(4) Interrupts are explicitly enabled at the CPU level, which is the key step of this ISR. Enabling
interrupts allows the interrupt controller to do its job, that is, to prioritize interrupts. At the same time,
enabling interrupts terminates the critical section established upon the interrupt entry. Note that this
step is only necessary when the hardware actually disables interrupts upon the interrupt entry (e.g.,
the ARM Cortex-M3 leaves interrupts enabled).

(5) The main ISR body executes outside the critical section, so QF services can be safely invoked
without nesting critical sections.

NOTE

The prioritized interrupt controller remembers the priority of the currently serviced interrupt and allows
only interrupts of higher priority than the current priority to preempt the ISR. Lower- and same-priority
interrupts are stopped at the interrupt controller level, even though the interrupts are enabled at the
CPU level. The interrupt prioritization happens in the interrupt controller hardware until the interrupt

Copyright © Quantum Leaps, LLC. All Rights Reserved. 20 of 44

http://www.state-machine.com/psicc2

] ®Le p u
pdates and Errata to
q UG ni'U m C] S Practical UML Statecharts in C/C++, Second Edition

innovating embedded systems state-machine.com/psicc2

17.3.3

controller receives the end-of-interrupt (EQI) instruction.

(6) Interrupts are locked to establish critical sections for the interrupt exit.

(7) The end-of-interrupt (EOI) instruction is sent to the interrupt controller to stop prioritizing this
interrupt level.

(8) The interrupt exit synthesized by the compiler restores the CPU registers from the stack, which
includes restoring the CPU status register. This step typically unlocks interrupts.

Internal QF Macros for Critical Section Entry/Exit

The QF platform abstraction layer (PAL) uses the critical section entry/exit macros QF CRIT ENTRY (),
QF CRIT EXIT(),and QF CRIT STAT TYPE in a slightly modified form. The PAL defines internally the
parameterless macros, shown in Listing 7.6. Please note the trailing underscores in the internal macros’
names.

Listing 7.5 Internal macros for critical section entry/exit (file <qp>\gpc\gfisource\qf_pkg.h)
#ifndef QF CRIT STAT TYPE /* simple unconditional critical section entry/exit */
#define QF CRIT STAT
#define QF CRIT ENTRY () QF CRIT_ENTRY (dummy)
#define QF CRIT EXIT () QF CIR EXIT (dummy)
#else /* policy of saving and restoring interrupt status */
#define QF CRIT STAT QF CRIT STAT TYPE critStat ;
#define QF CRIT ENTRY () QF CRIT ENTRY (critStat)
#define QF CRIT EXIT () QF CRIT EXIT(critStat)
#endif

The internal macros QF CRIT STAT , QF CRIT ENTRY (),and QF CRIT EXIT () enable me writing the
same code for the case when the interrupt key is defined and when it is not. The following code snippet
shows the usage of the internal QF macros. Convince yourself that this code works correctly for both
critical section policies.

void QF service xyz(arguments) ({
QF CRIT STAT

QF_CRIT_ENTRY_();
/* critical section of code */

QF CRIT EXIT ();

Copyright © Quantum Leaps, LLC. All Rights Reserved. 21 of 44

http://www.state-machine.com/psicc2

uiy

Quantum®€qPs

innovating embedded systems

Updates and Errata to

Practical UML Statecharts in C/C++, Second Edition

state-machine.com/psicc2

7.4

743

Active Objects

Location

Page 326, Listing 7.7,
explanation section (8)

Page 326, last paragraph

QEqueue

See Chapter 8, "POSIX QF Port," ...

Thread of Execution and Active Object Priority

Page 332, Listing 7.9
explanation section (4)

The argument 'stkSto' is a pointer to
the storage for the private stack, and
the argument 'stkSize' is the size of
that stack (in bytes), respectively.

Should be

QEQueue

See Section 8.4, "QF Port to Linux
(Conventional POSIX-Compliant
0S)," ...

The argument 'stkSto' is a pointer
to the storage for the private stack,
and the argument 'stkSize' is the
size of that stack (in bytes).

Copyright © Quantum Leaps, LLC. All Rights Reserved.

22 of 44

http://www.state-machine.com/psicc2

] ®Le p u
pdates and Errata to
q —— ni'U m G S Practical UML Statecharts in C/C++, Second Edition

innovating embedded systems state-machine.com/psicc2

7.5

17.5.1

Event Management in QF

Event Structure

NOTE: This section has been updated for QP 4.2.00 (14-Jul-11), which changed the QEvent
structure and extened the number of event pools beyond the limit of 3.

QF uses the same event representation as the QEP event processor described in Part I. Events in QF are
represented as instances of the QEvent structure (shown in Listing 7.10), which contains the event signal
sig and two additional bytes poolId and refCtr to represent the internal “bookkeeping” information
about the event.

Listing 7.10 QEvent structure defined in <qp>\qpclinclude\qevent.h

typedef struct QEventTag {

QSignal sig; /* signal of the event instance */

uint8 t poolld ; /* pool ID (0 for static event) */

uint8 t refCtr ; /* reference counter */
} QEvent;

The QF framework uses the QEvent .poolId data byte to store the event pool ID of the event The pool
ID of zero is reserved for static events, that is, events that do not come from any event pool. With this
representation, a static event has a unique, easy-to-check signature (QEvent.poolId == 0).
Conversely, the signature (QEvent.poolId != 0)unambiguously identifies a dynamic event.

NOTE: The Figure 7.4 on page 334 is now obsolete.

NOTE

The data members QEvent.poolId and QEvent.refCtr are used only by the QF framework for
managing dynamic events (see the following section). For every static event, you must initialize the
poolld_ member to zero. Otherwise, the QEvent.poolId or QEvent.refCtr data members should
never be of interest to the application code.

To encapsulate the access to the “private” poolId and refCtr members, the QF framework defines a
set of internal macros shown below (file <gp>\gpc\gf\source\gf pkg.h).

/* access to the poolId of an event */
#define EVT POOL ID(e) ((e_)->poolld)

/* access to the refCtr of an event */
#define EVT REF CTR(e) ((e_)->refCtr)

/* increment the refCtr of an event */
#define EVT INC REF CTR(e_) (++((QEvent *) (e))->refCtr)

/* decrement the refCtr of an event */
#define EVT DEC REF CTR(e) (--((QEvent *) (e))->refCtr)

Copyright © Quantum Leaps, LLC. All Rights Reserved. 23 of 44

http://www.state-machine.com/psicc2

Quantum®€qPs

uis

innovating embedded systems

Updates and Errata to

Practical UML Statecharts in C/C++, Second Edition

state-machine.com/psicc2

7.5.2 Dynamic Event Allocation

Location
Page 335, Listing 7.11(1)
Page 335, Listing 7.11
line before (6)

Page 336, Listing 7.11
explanation section (4)

Page 338, last paragraph

7.5.3

Page 341,
explanation section (12)

Is

QF POOL TYPE OQF pool [3];

perfom

see Chapter 6, "Customized
Assertions in C and C++"

evT

Automatic Garbage Collection

QF EPOOL_PU_ ()

7.5.4 Deferring and Recalling Events
Page 342, Listing 7.13 QActive defer () takes posts the
explanation section (1)
7.6.1 Dirtect Event Posting
Page 344, 2™ paragraph AO ship
code snippet
Page 344, 3" paragraph A0 ship
7.6.2 Publish-Subscribe Event Delivery

Page 345, Listing 7.14
caption

Page 346, 1° paragraph
Page 346, 1° paragraph

Page 348, Listing 7.17
caption

QF psInit () (file
\gpc\init\gf.h)

QF subsrcrList
QF maxSignal

ga_pspub.c

Should be

QF POOL_TYPE
QF pool [QF MAX EPOOL];

perform
see Section 6.7.3, "Customizable
Assertions in C and C++"

evtT

QF EPOOL_PUT ()

QActive defer () posts the

AO Ship

AO Ship

QSubscrlList (file
\gpc\include\gf.h)

QF subscrList
QF maxSignal

gf pspub.c

Copyright © Quantum Leaps, LLC. All Rights Reserved.

24 of 44

http://www.state-machine.com/psicc2

Updates and Errata to

ere
uﬂsl q vantum L a pS Practical UML Statecharts in C/C++, Second Edition
=

innovating embedded systems

state-machine.com/psicc2

7.7.2 The System Clock Tick and the QF_tick() Function
Location Is

Page 355, Listing 7.19 removing a link
explanation section (8-13)

Page 356, Listing 7.19 The link is advanced
explanation section (21)

7.7.3 Arming and Disarming a Time Event

Page 357, Listing 7.20 inserting a link
explanation (3-6)

Page 358, Listing 7.21 removing a link from
explanation section (3-8)

7.8.1 The EQueue Structure
Page 360, 3™ paragraph Figure 7.8

Page 360, Figure 7.9 Counterclockwise movement...

Page 360, Last paragraph frequently bypass, the buffering

Page 361, 1st paragraph counterclockwise

7.8.3 The Native QF Active Object Queue

Page 363, 2™ paragraph included directly in the level
QActive structure

Page 364, Listing 7.24 The function QActive_get_() returns

explanation section (1) a read-only (const) pointer to an
event

Page 365, Listing 7.24 (12,13) Additionally, a platform-

explanation section (12,13) specific macro...

Should be

removing a node

The time event node pointer is
advanced

inserting a node

removing a node from

Figure 7.9

Reverse the direction of the arrow
and the text in note to “Clockwise
movement...”

frequently bypass the buffering

clockwise

included directly in the higher-level
QActive structure

The function QActive get ()
returns a pointer to a read-only
(const) event

(12) Additionally, a platform-specific
macro...

(13) The event pointer is returned
to the caller. This pointer can
never be NULL.

Copyright © Quantum Leaps, LLC. All Rights Reserved.

250f 44

http://www.state-machine.com/psicc2

o Quantum®€qPs
g innovating embedded systems

Updates and Errata to

Practical UML Statecharts in C/C++, Second Edition

state-machine.com/psicc2

7.8.4 The “Raw” Thread-Safe Queue

Location Is
Page 368, listing 7.26 return (QState)O0;
Page 368, listing 7.26 return
(QState) &éMyAO stateA;
Page 369, Listing 7.26 you call QEQueue get () to post an
explanation section (8) event

7.9.1 Obtaining a Memory Block from the Pool

Page 375, last paragraph see Listing 7.12(3)

7.10 Native QF Priority Set

Page 377, 1% paragraph QPset64

7.11 Native Cooperative “Vanilla” Kernel

Page 380, Figure 7.12, prio
three occurrences

7.11.1 The gvanilla.c Source Code

Page 383, last paragraph Listing 7.32(20)

Page 384, 3™ paragraph Yet other class of MCUs...

7.11.2 QP Reference Manual

Page 386, 6" paragraph www.quantumleaps.com

Should be
return Q HANDLED () ;

return
Q SUPER (&MyAO stateA) ;

you call QEQueue postFIFO () or

QEQueue postLIFO () to postan

event

see Listing 7.12(5)

QPSet64

prio

Listing 7.32(8)

Yet another class of MCUs...

www.quantum-leaps.com

Copyright © Quantum Leaps, LLC. All Rights Reserved.

26 of 44

http://www.state-machine.com/psicc2

o Quantum®€qPs
uésj innovating embedded systems

Updates and Errata to

Practical UML Statecharts in C/C++, Second Edition

state-machine.com/psicc2

CHAPTER 8 Porting and Configuring QF

8.1 The QP Platform Abstractin Layer (PAL)

8.1.4 The gep_port.h Header File

Location

Page 400, Listing 8.2,

Explanation Section (4)

Is

The default for 9 SIGNAL SIZEis 1
(256 signals).

18.1.5 The qf_port.h Header File

Page 401, Listing 8.3
before label (10)

Page 401, Listing 8.3
label (15)

Page 401, Listing 8.3
label (16)

Page 401, Listing 8.3
label (17)

Page 402, Listing 8.3
Explanation section (2)

QF INT KEY TYPE

QF INT LOCK (key)

OF INT UNLOCK (key)

...Section 8.4, "Conventional
POSIX-Compliant OS (Linux)"

Should be

The default for 0 SIGNAL SIZEis 2
(64K signals).

NOTE: Changed in QP 4.2.00.

QF MAX EPOOL 3

NOTE: Added in QP 4.2.00. This
macro determines the maximum
number of event pools in the QF
with the range of 1..255.

QF CRIT STAT TYPE

NOTE: Changed in QP 4.3.00.
QF CRIT ENTRY (stat)

NOTE: Changed in QP 4.3.00.
QF CRIT EXIT(stat)

NOTE: Changed in QP 4.3.00.
...Section 8.4, "QF Port to Linux

(Conventional POSIX-Compliant
OS)II

NOTE: QP 4.3.00 introduced support for building sequence diagrams from QS software traces.
To support this feature, the gf port.h header file adds the sender parameter in event-
producing functions QF tick (), QF publish (), and QActive postFIFO (), and defines

new macros QF TICK (), QF PUBLISH(), and QACTIVE POST ().

#ifndef Q SPY

/* QS software tracing disabled? */

void QF tick(void);

void QF publish (QEvent const *e);
void QActive postFIFO(QActive *me, QEvent const *e);

/* QS software tracing enabled */

felse

Copyright © Quantum Leaps, LLC. All Rights Reserved.

27 of 44

http://www.state-machine.com/psicc2

Quantum®€qPs

innovating embedded systems

uis

Updates and Errata to
Practical UML Statecharts in C/C++, Second Edition
state-machine.com/psicc2

void QF tick(void const *sender);
void QF publish (QEvent const *e, void const *sender);
void QActive postFIFO(QActive *me, QEvent const *e,
volid const *sender);
#endif

#ifndef Q SPY /* QS software tracing disabled? */

#define QF TICK (dummy) QF tick()
#define QF PUBLISH(e , dummy) QF publish (e)
#define QACTIVE POST (me , e , dummy) QActive postFIFO(()y (e))
#else /* QS software tracing enabled */
#define QF TICK (sender) QF tick(sender)
#define QF PUBLISH(e , sender) QF publish((e_), (sender))
#define QACTIVE POST (me , e , sender) \
QActive postFIFO((me), (e), (sender))

#endif

By using the macros QF TICK (), QF PUBLISH(), and QACTIVE POST (), the source code you write can
always be the same, (e.g. QF PUBLISH(&foo evt, me)). However, the compiler can determine which
version gets called. When QS tracing is enabled, the macro will become the call to

QF publish(&foo_evt, me) with the 'me' sender parameter, and when not tracing, the compiler will call
QF publish(&foo evt) without the sender parameter.

1QF Critical Section Mechanism

NOTE: This section has been updated for QP 4.3.00 (01-Nov-11), which changed the names of
critical section macros and introduces macros for unconditional interrupt disabling/enabling. This
was done to simplify and speed up the built-in Vanilla and QK kernels, which no longer are
dependent on the interrupt disabling policy.

This section defines the critical section mechanism used within the QF framework, which you always
need to provide. Refer to Section 7.3, “Critical Sections in QF,” in Chapter 7 for the detailed discussion of
critical sections in QF.

(1) The macro QF CRIT STAT TYPE defines the data type of the critical section status variable. When
you define this macro, you indicate to the QF framework that the policy of “saving and restoring
critical section status” is used. Conversely, when you don’t define the macro, the QF framework
assumes the policy of “unconditional exiting from the critical section.”

The macro QF CRIT ENTRY () encapsulates the mechanism of entering a critical section. The macro
takes a parameter into which it saves the critical section status. The parameter is not used if you use
the simple policy of “unconditional exiting from the critical section.”

The macro QF CRIT EXIT () encapsulates the mechanism of exiting a critical section. The macro
takes a parameter from which it restores the critical section status. The parameter is not used if you
use the simple policy of “unconditional exiting from the critical section.”

(4)

Copyright © Quantum Leaps, LLC. All Rights Reserved.

28 of 44

http://www.state-machine.com/psicc2

Updates and Errata to

ere
h‘ﬂ!l q vantum L a pS Practical UML Statecharts in C/C++, Second Edition
=

innovating embedded systems

state-machine.com/psicc2

Active Object Event Queue Operations
Location Is

Page 406, Section 8.3
explanation section (24)

8.1.6 The gf_port.c Source File

Page 410, Listing 8.4 the size of that stack (in bytes),
explanation section (8) respectively
Page 410, last line QS-specific

8.1.6 System Clock Tick (Calling QF _tick())

Page 413 As you design you port, you must
1%t paragraph in decide...
Section 8.1.9

8.2 Porting the Cooperative “Vanilla” Kernel

Page 414, 1% paragraph gep porth.h
in Section 8.2

8.2.1 The gep_port.h Header File

Page 415, in paragraph exact-with
before Listing 8.7

8.2.2 The gf_port.h Header File

Page 416, 2™ paragraph Section 8.2

8.3 QF Port to uyC/OS-ll (Conventional RTOS)

Page 421, 2" paragraph RTOS that it is superbly
documented

8.3.2 The gf_port.h Header File

Page 425, 5" paragraph QF EPPOL_TYPE
(after (9))

Should be

Section 8.4

the size of that stack (in bytes)

OS-specific

As you design your port, you must
decide...

gep_port.h

exact-width

Section 8.3

RTOS that is superbly documented

QF EPOOL_TYPE

Copyright © Quantum Leaps, LLC. All Rights Reserved.

29 of 44

http://www.state-machine.com/psicc2

Updates and Errata to

] ele
‘m q —— ni'U m L C] ps Practical UML Statecharts in C/C++, Second Edition
\—

innovating embedded systems

state-machine.com/psicc2

Page 425, section (11) QF EPPOL_TYPE

8.3.2 The gf_port.c Source File
Location Is

Page 430, whereas timeout
explanation section (30)

QF EPOOL_TYPE

Should be

where a timeout

8.4 QF Port to Linux (Conventional POSIX-Compliant OS)

Page 431, 3" paragraph build you own

8.4.2 The gf_port.h Header File

Page 436, Listing 8.19 due to insufficient privieges
for lines below (6)

Page 437, Listing 8.19(17) stopps

Page 438, lock in physical memory of all the
explanation section (2) pages mapped
Page 439, top of page (6) The "ticker" thread runs...

(7) The "ticker" thread calls...

Page 439, described in triggered
explanation section (14)

Page 440, paragraph and the rest highest priorities
following (29-33)

build your own

due to insufficient privileges

stops

lock in physical memory all of the
pages mapped

(7) The "ticker" thread runs...
(8) The "ticker" thread calls...

described is triggered

and the rest of the highest priorities

Copyright © Quantum Leaps, LLC. All Rights Reserved.

30 of 44

http://www.state-machine.com/psicc2

] ®L€ p u
pdates and Errata to
q —— ni'U m G S Practical UML Statecharts in C/C++, Second Edition

innovating embedded systems state-machine.com/psicc2

CHAPTER 9 Developing QP Applications

9.2 Dinigng Philosophers Problem
Location Is Should be

Page 446, Section 9.2 Philosopher Philosophers
title

9.2.1 Step1: Requirements

Page 447, 1% paragraph your always need you always need
Page 447, Figure 9.1 Philosopher Philosophers
caption

9.2.2 Step 2: Sequence Diagrams

NOTE: This section is missing in some printings of the book (missing page 448). Therefore, this
section is copied here verbatim.

A good starting point in designing any event-driven system is to draw sequence diagrams for the main
scenarios (main-use cases) identified from the problem specification. To draw such diagrams, you need
to break up your problem into active objects with the main goal of minimizing the coupling among active
objects. You seek a partitioning of the problem that avoids resource sharing and requires minimal
communication in terms of number and size of exchanged events.

DPP has been specifically conceived to make the philosophers contend for the forks, which are the
shared resources in this case. In active object systems, the generic design strategy for handling such
shared resources is to encapsulate them inside a dedicated active object and to let that object manage
the shared resources for the rest of the system (i.e., instead of directly sharing the resources, the rest of
the application shares the dedicated active object). When you apply this strategy to DPP,

you will naturally arrive at a dedicated active object to manage the forks. | named this active object Table.
The sequence diagram in Figure 9.2 shows the most representative event exchanges among any two
adjacent Philosophers and the Table active objects.

Copyright © Quantum Leaps, LLC. All Rights Reserved. 31 of 44

http://www.state-machine.com/psicc2

Practical UML Statecharts in C/C++, Second Edition

® e S Updates and Errata to
uﬁ' Quantum®€aP

©)

innovating embedded systems state-machine.com/psicc2
QF Philo[n] Philo[m] Table
T T T T
| Grineng) O Goning) o)
. (thinking) (thinking)
I |

3

|

| o (3 |

' e

| HUNGRY(

| ’ EAT(m§m :

| ® i

| |

— TIMEOUT—i (©) | |

n) }

. -
|
|

2
ILTI MEQOUT

I TIMEOUT.
' 9 Cthinking) atn)

[= }

|

|
|
|

Figure 9.2: The sequence diagram of the DPP application.

Each Philosopher active object starts in the “thinking” state. Upon the entry to this state, the
Philosopher arms a one-shot time event to terminate the thinking.

The QF framework posts the time event (timer) to Philosopher[m].

Upon receiving the TIMEOUT event, Philosopher[m] transitions to “hungry” state and posts the
HUNGRY(m) event to the Table active object. The parameter of the event tells the Table which
Philosopher is getting hungry.

The Table active object finds out that the forks for Philosopher[m] are available and grants it
permission to eat by publishing the EAT(m) event.

The permission to eat triggers the transition to “eating” in Philosopher[m]. Also, upon the entry to
“eating,” the Philosopher arms its one-shot time event to terminate the eating.

The Philosopher[n] receives the TIMEOUT event and behaves exactly as Philosopher[m], that is,
transitions to “hungry” and posts HUNGRY(n) event to the Table active object.

This time the Table active object finds out that the forks for Philosopher[n] are not available, and so
it does not grant the permission to eat. Philosopher[n] remains in the “hungry” state.

The QF framework delivers the timeout for terminating the eating to Philosopher[m]. Upon the exit
from “eating,” Philosopher[m] publishes event DONE(m) to inform the application that it is no longer
eating.

The Table active object accounts for free forks and checks whether any direct neighbors of
Philosopher[m] are hungry. Table posts event EAT(n) to Philosopher[n].

(10) The permission to eat triggers the transition to “eating” in Philosopher|n].

Copyright © Quantum Leaps, LLC. All Rights Reserved. 32 of 44

http://www.state-machine.com/psicc2

®L€ p u

pdates and Errata to
ml q vantum aMs Practical UML Statecharts in C/C++, Second Edition
\—

innovating embedded systems state-machine.com/psicc2

9.3 Running DPP on Various Platforms

9.3.3 uC/OS-lI
Location Is Should be
Page 470, oversized all stacks of to 256 of 16- oversized all stacks to have 256
explanation section (1-3) bit stack entries 16-bit stack entries
9.3.4 Linux
Page 474, 3" line 1 delay = atol(argv[l]); 1 delay =
from the top atol (argv[1l]);
Page 474, listing 9.8, QS_EXIT(); (remove line)
after (9)
Page 475, t sav 1 tsav

explanation section (5)

9.4.1 Sizing Event Queues

Page 477, Section 9.4.1 In Sizing Event Queues Sizing Event Queues
title

Page 477, 4" paragraph Listing 7.24(12-14) Listing 7.25(12-14)

Copyright © Quantum Leaps, LLC. All Rights Reserved. 33 of 44

http://www.state-machine.com/psicc2

®L€‘ p u
pdates and Errata to
h‘ﬂ!l q vantum aMs Practical UML Statecharts in C/C++, Second Edition
=

innovating embedded systems state-machine.com/psicc2

CHAPTER 10 Preemptive Run-to-Completion Kernel

10.1 Reasons for Choosing a Preemptive Kernel

Location Is Should be

Page 484, 1% paragraph routed rooted

10.2.3 Synchronous and Asynchronous Preemptions

Page 490, which as been which has been
explanation section (10)

10.3.1 QK Source Code Organization

Page 498, Listing 10.1 +-80x88\ +-80x86\

10.3.2 The gk.h Header File

Page 498, Figure 10.5 prio prio
three occurrences

Page 502, at step 13 at step 14
explanation section (27)

10.3.4 The qk_sched.c Source File (QK Scheduler)

Page 508, listing 10.4 } (missing brace)
before (34)

Page 510, could have change could have changed
explanation section (25)

Page 510, back to step (13) back to step (15)
explanation section (29)

10.3.5 The gk.c Source File (QK Startup and Idle Loop)

Page 512, includes to the wider includes the wider
explanation section (1)

Copyright © Quantum Leaps, LLC. All Rights Reserved. 34 of 44

http://www.state-machine.com/psicc2

Updates and Errata to

] ele
‘m q —— ni'U m L C] ps Practical UML Statecharts in C/C++, Second Edition
\—

innovating embedded systems

state-machine.com/psicc2

10.4.3 Extended Context Switch (Coprocessor Support)

Location Is
Page 520, last paragraph QOK_scheduler ()
Page 521, last paragraph ~ OK_scheduler ()

Page 523, Listing 10.9 does not to use
explanation section (4)

10.5 Porting QK

Page 524, 5" paragraph gep porth.h

10.5.1 The qep_port.h Header File

Page 525, 3™ paragraph exact-with

10.5.1 The qf_port.h Header File

Page 525, last paragraph gk _porth.h

10.5.1 The qk_port.h Header File

Page 529, unconditional interrupt saving and
explanation section (1) restoring

10.6 Testing the QK Port

10.6.2 Priority-Ceiling Mutex

Page 535, Listing 10.13 return (QState)O0;

10.6.3 TLS Demonstration

Page 537, Listing 10.14 return (QState)O0;
(two occurrences)

Should be
OK schedule ()
QK schedule ()

does not use

gep_port.h

exact-width

gk port.h

unconditional interrupt locking and
unlocking

return Q HANDLED () ;

return Q HANDLED () ;

Copyright © Quantum Leaps, LLC. All Rights Reserved.

350f44

http://www.state-machine.com/psicc2

Practical UML Statecharts in C/C++, Second Edition
innovating embedded systems state-machine.com/psicc2

m‘ q vantu m®LeC] pS Updates and Errata to

10.6.4 Extended Context Switch Demonstration

Page 539, last paragraph perform a lot performs a lot

10.7 Summary

Page 540, 1st paragraph embedded (RTE) stems embedded (RTE) systems

Copyright © Quantum Leaps, LLC. All Rights Reserved. 36 of 44

http://www.state-machine.com/psicc2

Updates and Errata to
Practical UML Statecharts in C/C++, Second Edition

state-machine.com/psicc2

Quantum®€qPs

innovating embedded systems

L

CHAPTER 11 Software Tracing for Event-Driven Systems

11.2 Quantum Spy Software Tracing System

11.2.1 Example of a Software-Tracing Session

Location

Page 545, 3rd paragraph

Is

located in the directory

11.2.2 The Human-Readable Trace Output

Page 549, last paragraph

Page 550, 3rd paragraph

first eight columns

((0000135566 -
0000070346) /7 = 65220 ~=
0x10000)

11.3 QS Target Component

Page 551, 2nd paragraph

Page 552, 3rd paragraph
Page 552, 3rd paragraph

Page 552, 3rd paragraph

11.3.5 QS Filters

Page 562, 3rd paragraph

Page 563, 4th paragraph

Page 563, 4th paragraph

Page 563, last paragraph
Page 565, last paragraph
Page 566, 1st paragraph

Page 566, 2nd paragraph
(code snippet)

factor of two in data density

many the elements of
High Level Data Link Control

[HDLC]

without entering the QS critical

(bimask & bit) != 0

(QS_glbFilter [5] & 0x40) !

= c00)

records types

all local filters is set
QS BEGIN ()

#define QS BEGIN (rec_,
obj) \

Should be

located at

first ten columns

(0000135566 — 0000070346
65220 ~= 0x10000)

factor of two improvement in data
density

many elements of
High-level Data Link Control

[HDLC 07]

without entering the QS critical
section

(bitmask & bit) != 0

((QS_glbFilter [5] & 0x40)
| =

)
record types
all local filters are set
QS BEGIN NOCRIT ()

#define
QS BEGIN NOCRIT (rec_,

Copyright © Quantum Leaps, LLC. All Rights Reserved.

37 of 44

http://www.state-machine.com/psicc2

o Quantum®€qPs
Q innovating embedded systems

Updates and Errata to

Practical UML Statecharts in C/C++, Second Edition

state-machine.com/psicc2

11.3.6 QS Data Protocol

Page 567, paragraph 3,
(item 2)

Page 567, paragraph 5,
(item 4)

Page 567, paragraph 6,
(item 5)

Page 568, 3rd paragraph

11.3.7 QS Trace Buffer
Page 569,
Section 11.3.7,
2" paragraph
Page 569, 4th paragraph

Page 570, Listing 11.7
caption

Page 571, 1st paragraph

Following the Fame Sequence
Number

over the frame Sequence Number

HDLC flag

over the Fame Sequence Number

You can employ just about any
repetition physical data link
available...

Your can apply

QS_initBuf (

options to avid losing

11.3.8 Dictionary Trace Records

Page 575, 4th paragraph

OS onFlush ()

11.3.10 Porting and Configuring QS

Page 580, 2nd paragraph
Page 580, 3rd paragraph
Page 580, Listing 11.11
caption

Page 581,
explanation section (5)

QK, C/OS-Il, and Linux

functions such as QS _onInit ()

gp_port.h

gf port.h

obj)\

Following the Frame Sequence
Number
over the Frame Sequence Number

HDLC Flag

over the Frame Sequence Number

You can employ just about any
physical data link available...

You can apply

QS_initBuf ()

options to avoid losing

QS onFlush ()

QK, uC/OS-Il, and Linux

functions such as
QS _onStartup ()

gs_port.h

gs_port.h

Copyright © Quantum Leaps, LLC. All Rights Reserved.

38 of 44

http://www.state-machine.com/psicc2

Updates and Errata to

] ele
‘m q —— ni'U m L C] ps Practical UML Statecharts in C/C++, Second Edition
\—

innovating embedded systems

state-machine.com/psicc2

11.5 Exporting Trace Data to MATLAB

11.5.3 MATLAB Script qspy.m
Location Is

Page 591, Listing 11.14 % sate entry/exit

11.5.4 MATLAB Matrices Generated by QSPY

Page 594, Table 11.4 Timesstamp
Header (2nd row)

Page 595, 1 pholo 0
explanation section (2)

11.6 Adding QS Software Tracing to a QP Application

Should be

Q

% state entry/exit

Timestamp

1 philo 0

11.6.3 Generating QS Timestamps with the QS_onGetTime() Callback

Page 601, 5th paragraph 8284 timer/counter

Page 601, 6th paragraph 8284 timer/counter

11.6.4 Generating QS Dictionary Records from Active Objects

Page 605, so it does need to have
explanation section (10)

11.6.5 Adding Application-Specific Trace Records

Page 607, formatted as 1 using one digit
explanation section (3)

8254 timer/counter

8254 timer/counter

so it does not need to have

formatted as using one digit

Copyright © Quantum Leaps, LLC. All Rights Reserved.

39 of 44

http://www.state-machine.com/psicc2

o Quantum®€qPs
Q innovating embedded systems

Updates and Errata to

Practical UML Statecharts in C/C++, Second Edition

state-machine.com/psicc2

CHAPTER 12 QP-nano: How Small Can You Go?

12.2

12.2.1

12.2.2

12.2.3

12.2.4

Location Is

Page 611, 2nd paragraph [Turely 02]

Should be

[Turley 02]

Implementing “Fly 'n' Shoot” Example with QP-nano

The main() Function

Page 617, 4th paragraph
control blocks

Page 618, explanation
section (13-15)

The qpn_port.h Header File

Page 619,
explanation section (8)

Page 619,
explanation section (9)

The order or the active object

function must first explicitly calls

The gpn port.h must include

The gpn port.h mustinclude

The order of the active object
control blocks

function must first explicitly call

The gpn_port.h header file must
include

The gpn port.h header file must
include

Signals, Events , and Active Objects in the “Fly 'n' Shoot” Game

Page 620, 3rd paragraph Listing 12.2(2)

Page 621,
explanation section (3-5)

Listing 12.1(12)

Implementing the Ship Active Object in QP-nano

Page 626,
explanation section (15)

overflow the dynamic range

12.2.5 Time Events in QP-nano

Page 626 & 627: Listing
12.5, three occurrences

return (QState)O0;

Page 627: Listing 12.5,
next to last line

return

(0State) &Tunnel active;

Listing 12.2(1)

Listing 12.1(7)

overflow the range

return Q HANDLED () ;

return
Q SUPER (&Tunnel active);

Copyright © Quantum Leaps, LLC. All Rights Reserved.

40 of 44

http://www.state-machine.com/psicc2

Updates and Errata to

ere
h‘ﬂ!l q vantum L a pS Practical UML Statecharts in C/C++, Second Edition
=

innovating embedded systems

state-machine.com/psicc2

12.2.7 Building the “Fly 'n' Shoot” QP-nano Application
Location Is

Page 630, last paragraph C:\software\gpn

12.3 QP-nano Structure
Page 631, 1st paragraph derivation of concrete active objects
Page 632, Figure 12.3, QState Handler

in the "QHsm" class

Page 632, last paragraph Every QP-application

12.3.1 QP-nano Source Code, Examples, and Documentation

Page 633, Listing 12.7 Platform-specific QP
examples

Page 633, Listing 12.7 +-main.c =

Page 634, Listing 12.7 - QP-nano Reference Manual"

12.3.4 Active Objects in QP-nano

Page 640, 3rd paragraph deriving application-specific active
objects

12.4 Event Queues in QP-nano

12.4.2 Posting Events from the Task Level (QActive_post())

Page 648, (just above (9)) Such as global variable

12.4.3 Posting Events from the ISR Level (QActive_postISR())

Page 650, The advance policy
explanation section (3)

Should be

<gp>\gpn

derivation of concrete active object
classes

QStateHandler

Every QP-nano application

Platform-specific QP-nano
examples

+-main.c - main ()
entry point

- “QP-nano Reference
Manual"

deriving application-specific active
object classes

Such a global variable

The advanced policy

Copyright © Quantum Leaps, LLC. All Rights Reserved.

41 of 44

http://www.state-machine.com/psicc2

Updates and Errata to

ere
MI q vantum L a pS Practical UML Statecharts in C/C++, Second Edition
N\

innovating embedded systems

state-machine.com/psicc2

12.5 The Cooperative “Vanilla” Kernel QP-nano

Location Is
Page 652, section (2) log2(bmask)
Page 652, section (3) QF readSet

Should be
log2(bitmask)

QF readySet

12.6 The Preemptive Run-to-Completion QK-nano Kernel

12.6.1 QK-nano Interface gkn.h

Page 657, The QK SCHEDULE ()
explanation section (6) encapsulates

12.6.2 Starting Active Objects and the QK-nano Idle Loop

Page 659, All active objects in the application
explanation section (6) are initialized, exactly the same way
asin 12.16(6--11).

12.6.3 The QK-nano Scheduler

Page 661, Listing 12.19, set cb and a again
the comment between (12)
and (13)

12.7 The PELICAN Crossing Example

12.7.1 PELICAN Crossing State Machine

Page 669, section (3) sperstate

12.7.2 The Pedestrian Active Object
Page 671, 5th paragraph PED WAITING

Page 671, last paragraph PED WAITING

The QK SCHEDULE_ () macro
encapsulates

All active objects in the application
are initialized, the same way as in
12.16(6--11).

set cb and act again

superstate

PEDS WAITING

PEDS WAITING

Copyright © Quantum Leaps, LLC. All Rights Reserved.

42 of 44

http://www.state-machine.com/psicc2

o Quantum®€qPs
g innovating embedded systems

Updates and Errata to

Practical UML Statecharts in C/C++, Second Edition

state-machine.com/psicc2

12.7.3 QP-nano Memory Usage

Location

Page 675, NOTE

Is

When you apply low-power mode is

MSP430

APPENDIX B Guide to Notation

B.1 Class Diagrams

Page 686, 2nd paragraph

Bibliography
Page 693, 5th entry

Page 695,
two occurrences on the
same line

Page 695

Page 696

Figure B.1C

[Butenhof 97] ...
[Butenhof 97] ...

Kerninghan

Rambaugh, James

Should be

When you apply low-power mode
in the MSP430

Figure B.1(C)

[Butenhof 97] ... (unintended
repetition)

Kernighan

[Meyer 97b] Bertrand Meyer.
Letters from readers (response to
the article "Put it in the contract:
The lessons of Ariane" by Jena-
Marc J\'ez\'equel, and Bertrand
Meyer). IEEE Computer, 30(2):8--
9, 11, 1997.

Rumbaugh, James

Copyright © Quantum Leaps, LLC. All Rights Reserved.

43 of 44

http://www.state-machine.com/psicc2

(ra ®|_e p u
pdates and Errata to
@ q Ua I"Ii'U m d S Practical UML Statecharts in C/C++, Second Edition

innovating embedded systems state-machine.com/psicc2

Contact Information

“Practical UML
Statecharts in C/C++,
Second Edition: Event
Driven Programming for

Quantum Leaps, LLC
103 Cobble Ridge Drive
Chapel Hill, NC 27516
USA

+1 866 450 LEAP (toll free, USA only) f}’/’”’ﬁfrzdggnfé’lftems ’

+1 919 869-2998 (FAX ’
(FAX) UML STATECHARTS Newnes, 2008

e-mail: info@quantum-leaps.com in C/C++, second Edition

WEB : http://www.quantum-leaps.com Event-Driven Programming for

http://www.state-machine.com SIS SYEtw

Copyright © Quantum Leaps, LLC. All Rights Reserved. 44 of 44

http://www.state-machine.com/psicc2
http://www.state-machine.com/
http://www.quantum-leaps.com/
mailto:info@quantum-leaps.com

	Index of Corrections and Updates
	Introduction
	Back Cover
	Preface
	PART I UML STATE MACHINES
	CHAPTER 1 Getting Started with UML State Machines and Event-Driven Programming
	1.2 Let's Play
	1.2.2 Running the Stellaris Version

	1.3 The main() function
	1.4 The Design of the “Fly 'n' Shoot” Game
	1.5 Active Objects in the “Fly 'n' Shoot” Game
	1.5.1 The Missile Active Object
	1.5.2 The Ship Active Object
	1.5.3 The Mine Components

	1.6 Events in the “Fly 'n' Shoot” Game
	1.7 Coding Hierarchical State Machines
	1.7.3 Defining State-Handler Functions

	1.10 Summary

	CHAPTER 2 A Crash Course in UML State Machines
	2.2 Basic State Machine Concepts
	2.2.1 States
	2.2.5 Guard Conditions
	2.3.15 UML State Machine Semantics: An Exhaustive Example
	2.4.2 High-Level Design
	2.4.6 Final Touches

	CHAPTER 3 Standard State Machine Implementations
	3.1 The Time Bomb Example
	3.1.1 Executing the Example Code
	3.3.3 Variations of the Technique
	3.4.1 Generic State-Table Event Processor
	3.4.2 Application-Specific Code

	3.5 Object-Oriented State Design Pattern
	3.5.3 Variations of the Technique
	3.6.1 Generic QEP Event Processor
	3.6.2 Application-Specific Code

	CHAPTER 4 Hierarchical Event Processor Implementation
	4.2 QEP Code Structure
	4.2.1 QEP Source Code Organization

	4.3 Events
	4.3.1 Event Signal (QSignal)
	4.3.2 QEvent Structure in C

	4.4 Hierarchical State-Handler Functions
	4.4.2 Hierarchical State-Handler Function Example in C
	4.4.3 Hierarchical State-Handler Function Example in C++

	4.5 Hierarchical State Machine Class
	4.5.1 Hierarchical State Machine in C (Structure QHsm)
	4.5.2 Hierarchical State Machine in C++ (Structure QHsm)
	4.5.4 Entry/Exit Actions and Nested Initial Transitions
	4.5.5 Reserved Events and Helper Macros in QEP
	4.5.6 Topmost Initial Transition (QHsm_init())
	4.5.7 Dispatching Events (QHsm_dispatch(), General Structure)
	4.5.8 Executing a Transition in the State Machine (QHsm_dispatch(), Transitoin)

	4.6 Summary of Steps for Implementing HSMs with QEP
	4.6.2 Step 2: Defining Events
	4.6.5 Step 5: Defining the State-Handler Functions
	4.6.9 Coding Regular Transitions
	4.6.10 Coding Guard Conditions

	4.7 Pitfalls to Avoid While Coding State Machines with QEP
	4.7.7 Code Outside the switch Statement
	4.7.8 Suboptimal Signal Granularity

	CHAPTER 5 State Patterns
	5.1 Ultimate Hook
	5.1.4 Sample Code

	5.2 Reminder
	5.2.4 Sample Code

	5.3 Deferred Event
	5.3.4 Sample Code

	5.4 Orthogonal Component
	5.4.4 Sample Code
	5.4.5 Consequences

	5.5 Transition to History
	5.5.3 Solution
	5.5.4 Sample Code

	CHAPTER 6 Real-Time Framework Concepts
	6.1 Inversion of Control
	6.2 CPU Management
	6.2.2 Traditional Multitasking Systems

	6.5 Event Memory Management
	6.5.6 Event Ownership

	6.7 Error and Exception Handling
	6.7.1 Design by Contract
	6.7.2 Errors versus Exceptional Conditions
	6.7.3 Customizable Assertions in C and C++

	CHAPTER 7 Real-Time Framework Implementation
	7.1 Key Features of the QF Real-Time Framework
	7.1.1 Source Code
	7.1.2 Portability
	7.1.6 Zero-Copy Event Memory Management
	7.1.12 Low-Power Architecture

	7.2 QF Structure
	7.2.1 QF Source Organization

	!7.3 Critical Sections in QF
	!7.3.1 Saving and Restoring Critical Section Status
	!7.3.2 Unconditional Disabling and Enabling Interrupts
	!7.3.3 Internal QF Macros for Critical Section Entry/Exit

	7.4 Active Objects
	7.4.3 Thread of Execution and Active Object Priority

	7.5 Event Management in QF
	!7.5.1 Event Structure
	7.5.2 Dynamic Event Allocation
	7.5.3 Automatic Garbage Collection
	7.5.4 Deferring and Recalling Events
	7.6.1 Dirtect Event Posting
	7.6.2 Publish-Subscribe Event Delivery
	7.7.2 The System Clock Tick and the QF_tick() Function
	7.7.3 Arming and Disarming a Time Event
	7.8.1 The EQueue Structure
	7.8.3 The Native QF Active Object Queue
	7.8.4 The “Raw” Thread-Safe Queue
	7.9.1 Obtaining a Memory Block from the Pool

	7.10 Native QF Priority Set
	7.11 Native Cooperative “Vanilla” Kernel
	7.11.1 The qvanilla.c Source Code

	7.11.2 QP Reference Manual

	CHAPTER 8 Porting and Configuring QF
	8.1 The QP Platform Abstractin Layer (PAL)
	8.1.4 The qep_port.h Header File
	!8.1.5 The qf_port.h Header File
	!QF Critical Section Mechanism
	Active Object Event Queue Operations
	8.1.6 The qf_port.c Source File
	8.1.6 System Clock Tick (Calling QF_tick())

	8.2 Porting the Cooperative “Vanilla” Kernel
	8.2.1 The qep_port.h Header File
	8.2.2 The qf_port.h Header File

	8.3 QF Port to µC/OS-II (Conventional RTOS)
	8.3.2 The qf_port.h Header File
	8.3.2 The qf_port.c Source File

	8.4 QF Port to Linux (Conventional POSIX-Compliant OS)
	8.4.2 The qf_port.h Header File

	CHAPTER 9 Developing QP Applications
	9.2 Dinigng Philosophers Problem
	9.2.1 Step1: Requirements
	9.2.2 Step 2: Sequence Diagrams

	9.3 Running DPP on Various Platforms
	9.3.3 µC/OS-II
	9.3.4 Linux
	9.4.1 Sizing Event Queues

	CHAPTER 10 Preemptive Run-to-Completion Kernel
	10.1 Reasons for Choosing a Preemptive Kernel
	10.2.3 Synchronous and Asynchronous Preemptions
	10.3.1 QK Source Code Organization
	10.3.2 The qk.h Header File
	10.3.4 The qk_sched.c Source File (QK Scheduler)
	10.3.5 The qk.c Source File (QK Startup and Idle Loop)
	10.4.3 Extended Context Switch (Coprocessor Support)

	10.5 Porting QK
	10.5.1 The qep_port.h Header File
	10.5.1 The qf_port.h Header File
	10.5.1 The qk_port.h Header File

	10.6 Testing the QK Port
	10.6.2 Priority-Ceiling Mutex
	10.6.3 TLS Demonstration
	10.6.4 Extended Context Switch Demonstration

	10.7 Summary

	CHAPTER 11 Software Tracing for Event-Driven Systems
	11.2 Quantum Spy Software Tracing System
	11.2.1 Example of a Software-Tracing Session
	11.2.2 The Human-Readable Trace Output

	11.3 QS Target Component
	11.3.5 QS Filters
	11.3.6 QS Data Protocol
	11.3.7 QS Trace Buffer
	11.3.8 Dictionary Trace Records
	11.3.10 Porting and Configuring QS

	11.5 Exporting Trace Data to MATLAB
	11.5.3 MATLAB Script qspy.m
	11.5.4 MATLAB Matrices Generated by QSPY

	11.6 Adding QS Software Tracing to a QP Application
	11.6.3 Generating QS Timestamps with the QS_onGetTime() Callback
	11.6.4 Generating QS Dictionary Records from Active Objects
	11.6.5 Adding Application-Specific Trace Records

	CHAPTER 12 QP-nano: How Small Can You Go?
	12.2 Implementing “Fly 'n' Shoot” Example with QP-nano
	12.2.1 The main() Function
	12.2.2 The qpn_port.h Header File
	12.2.3 Signals, Events , and Active Objects in the “Fly 'n' Shoot” Game
	12.2.4 Implementing the Ship Active Object in QP-nano
	12.2.5 Time Events in QP-nano
	12.2.7 Building the “Fly 'n' Shoot” QP-nano Application

	12.3 QP-nano Structure
	12.3.1 QP-nano Source Code, Examples, and Documentation
	12.3.4 Active Objects in QP-nano

	12.4 Event Queues in QP-nano
	12.4.2 Posting Events from the Task Level (QActive_post())
	12.4.3 Posting Events from the ISR Level (QActive_postISR())

	12.5 The Cooperative “Vanilla” Kernel QP-nano
	12.6 The Preemptive Run-to-Completion QK-nano Kernel
	12.6.1 QK-nano Interface qkn.h
	12.6.2 Starting Active Objects and the QK-nano Idle Loop
	12.6.3 The QK-nano Scheduler

	12.7 The PELICAN Crossing Example
	12.7.1 PELICAN Crossing State Machine
	12.7.2 The Pedestrian Active Object
	12.7.3 QP-nano Memory Usage

	APPENDIX B Guide to Notation
	B.1 Class Diagrams

	Bibliography
	Contact Information

