
Copyright © Quantum Leaps, LLCCopyright © Quantum Leaps, LLC

info@sinfo@s tate-machinetate-machine .com.com
www.state-machine.comwww.state-machine.com

Application Note
Object-Oriented
Programming in C

Document Revision F
October 2017

http://www.state-machine.com/
mailto:info@quantum-leaps.com
mailto:info@quantum-leaps.com
mailto:info@quantum-leaps.com

Copyright © Quantum Leaps, LLC. All Rights Reserved.

Table of Contents

1 Introduction ... 1

2 Encapsulation .. 1

3 Inheritance ... 4

4 Polymorphism (Virtual Functions) ... 6
4.1 Virtual Table (vtbl) and Virtual Pointer (vptr) .. 7
4.2 Setting the vptr in the Constructor ... 8
4.3 Inheriting the vtbl and Overriding the vptr in the Subclasses .. 9
4.4 Virtual Call (Late Binding) ... 10
4.5 Examples of Using Virtual Functions ... 11

5 Summary ... 11

6 References ... 12

7 Contact Information .. 13

i

Legal Disclaimers

Information in this document is believed to be accurate and reliable. However, Quantum Leaps does not give any
representations or warranties, expressed or implied, as to the accuracy or completeness of such information and shall have
no liability for the consequences of use of such information.

Quantum Leaps reserves the right to make changes to information published in this document, including without limitation
specifications and product descriptions, at any time and without notice. This document supersedes and replaces all
information supplied prior to the publication hereof.

Copyright © Quantum Leaps, LLC. All Rights Reserved.

1 Introduction
Object-oriented programming (OOP) is not the use of a particular language or a tool. It is rather a way of
design based on the three fundamental design meta-patterns:

• Encapsulation – the ability to package data and functions together into classes

• Inheritance – the ability to define new classes based on existing classes in order to obtain reuse and
code organization

• Polymorphism – the ability to substitute objects of matching interfaces for one another at run-time

Although these meta-patterns have been traditionally associated with object-oriented languages, such as
Smalltalk, C++, or Java, you can implement them in almost any programming language including portable
ANSI-C [1,2,3,4,5,6].

NOTES: If you simply develop end-user programs in C, but you also want to do OOP, you probably
should be using C++ instead of C. Compared to C++, OOP in C can be cumbersome and error-
prone, and rarely offers any performance advantage.

However, if you build software libraries or frameworks the OOP concepts can be very useful as the
primary mechanisms of organizing the code. In that case, most difficulties of doing OOP in C can be
confined to the library and can be effectively hidden from the application developers. This document
has this primary use case in mind.

This Application Note describes how OOP is implemented in the QP/C and QP-nano real-time
frameworks. As a user of these frameworks, you need to understand the techniques, because you
will need to apply them also to your own application-level code. But these techniques are not limited
only to developing QP/C or QP-nano applications and are applicable generally to any C program.

2 Encapsulation
Encapsulation is the ability to package data with functions into classes. This concept should actually
come as very familiar to any C programmer because it’s quite often used even in the traditional C. For
example, in the Standard C runtime library, the family of functions that includes fopen(), fclose(),
fread(), fwrite(), etc. operates on objects of type FILE. The FILE structure is thus encapsulated
because client programmers have no need to access the internal attributes of the FILE struct and
instead the whole interface to files consists only of the aforementioned functions. You can think of the
FILE structure and the associated C-functions that operate on it as the FILE class. The following bullet
items summarize how the C runtime library implements the FILE class:

1. Attributes of the class are defined with a C struct (the FILE struct).

2. Operations of the class are defined as C functions. Each function takes a pointer to the attribute
structure (FILE *) as an argument. Class operations typically follow a common naming convention
(e.g., all FILE class methods start with prefix f).

3. Special functions initialize and clean up the attribute structure (fopen() and fclose()). These
functions play the roles of class constructor and destructor, respectively.

You can very easily apply these design principles to come up with your own “classes”. For example,
suppose you have an application that employs two-dimensional geometric shapes (perhaps to be
rendered on an embedded graphic LCD). The basic Shape “class” in C can be declared as follows:

1 of 13

https://state-machine.com/qpn
https://state-machine.com/qpc

Copyright © Quantum Leaps, LLC. All Rights Reserved.

Application Note
OOP in C

state-machine.com

Listing 1 Declaration of the Shape “class” in C

/* Shape's attributes... */
typedef struct {
 int16_t x; /* x-coordinate of Shape's position */
 int16_t y; /* y-coordinate of Shape's position */
} Shape;

/* Shape's operations (Shape's interface)... */
void Shape_ctor(Shape * const me, int16_t x, int16_t y);
void Shape_moveBy(Shape * const me, int16_t dx, int16_t dy);

The Shape “class” declaration goes typically into a header file (e.g., shape.h), although sometimes you
might choose to put the declaration into a file scope (.c file).

One nice aspect of classes is that they can be drawn in diagrams, which show the class name, attributes,
operations, and relationships among classes. The following figure shows the UML class diagram of the
Shape class:

Figure 1 UML Class Diagram of the Shape class

And here is the definition of the Shape's operations (must be in a .c file):

Listing 2 Definition of the Shape “class” in C

/* constructor */
void Shape_ctor(Shape * const me, int16_t x, int16_t y) {
 me->x = x;
 me->y = y;
}

/* move-by operation */
void Shape_moveBy(Shape * const me, int16_t dx, int16_t dy) {
 me->x += dx;
 me->y += dy;
}

You can create any number of Shape objects as instances of the Shape attributes struct. You need to
initialize each instance with the “constructor” Shape_ctor(). You manipulate the Shapes only through the
provided operations, which take the pointer “me” as the first argument.

2 of 13

ctor(x, y)
moveBy(dx, dy)

x : int16_t
y: int16_t

Shape

Attribute
compartment

Operation
compartment

Name
compartment

https://state-machine.com/

Copyright © Quantum Leaps, LLC. All Rights Reserved.

Application Note
OOP in C

state-machine.com

NOTE: The “me” pointer in C corresponds directly to the implicit “this” pointer in C++. The “this”
identifier is not used, however, because it is a keyword in C++ and such a program wouldn't compile
with a C++ compiler.

Listing 3 Examples of using the Shape class in C

 Shape s1, s2; /* multiple instances of Shape */

 Shape_ctor(&s1, 0, 1);
 Shape_ctor(&s2, -1, 2);
 Shape_moveBy(&s1, 2, -4);
 . . .

3 of 13

https://state-machine.com/

Copyright © Quantum Leaps, LLC. All Rights Reserved.

Application Note
OOP in C

state-machine.com

3 Inheritance
Inheritance is the ability to define new classes based on existing classes in order to reuse and organize
code. You can easily implement single inheritance in C by literally embedding the inherited class attribute
structure as the first member of the derived class attribute structure.

For example, instead of creating a Rectangle class from scratch, you can inherit most what’s common
from the already existing Shape class and add only what’s different for rectangles. Here’s how you declare
the Rectangle “class”:

Listing 4 Declaration of the Rectangle as a Subclass of Shape

typedef struct {
 Shape super; /* <== inherits Shape */
 /* attributes added by this subclass... */
 uint16_t width;
 uint16_t height;
} Rectangle;

/* constructor */
void Rectangle_ctor(Rectangle * const me, int16_t x, int16_t y,
 uint16_t width, uint16_t height);

As you can see, you implement inheritance by literally embedding the superclass (Shape) as the first
member “super” of the subclass (Rectangle).

As shown in the following figure, this arrangement leads to the memory alignment, which lets you treat
any pointer to the Rectangle class as a pointer to the Shape class:

Figure 2 Single inheritance in C: (a) class diagram with inheritance, and
(b) memory layout for Rectangle and Shape objects

4 of 13

Low memory

High memory

ctor(x, y)
moveBy(dx, dy)

x : int16_t
y: int16_t

Shape

ctor(x, y, width, height)

width : uint16_t
height: uint16_t

Rectangle

super

(a) (b)

inherited

Rectangle
Shape

me

https://state-machine.com/

Copyright © Quantum Leaps, LLC. All Rights Reserved.

Application Note
OOP in C

state-machine.com

NOTE: The alignment of the Rectangle structure and the inherited attributes from the Shape
structure is guaranteed by the C Standard WG14/N1124. Section 6.7.2.1.13 of this Standard, says:
“… A pointer to a structure object, suitably converted, points to its initial member. There may be
unnamed padding within a structure object, but not at its beginning”.

With this arrangement, you can always safely pass a pointer to Rectangle to any C function that expects
a pointer to Shape. Specifically, all functions from the Shape class (called the superclass or the base
class) are automatically available to the Rectangle class (called the subclass or the derived class). So,
not only all attributes, but also all functions from the superclass are inherited by all subclasses.

Listing 5 The Constructor of class Rectangle

void Rectangle_ctor(Rectangle * const me, int16_t x, int16_t y,
 uint16_t width, uint16_t height)

{
 /* first call superclass’ ctor */
 Shape_ctor(&me->super, x, y);

 /* next, you initialize the attributes added by this subclass... */
 me->width = width;
 me->height = height;
}

To be strictly correct in C, you should explicitly cast a pointer to the subclass on the pointer to the
superclass. In OOP such casting is called upcasting and is always safe.

Listing 6 Example of Using Rectangle Objects

 Rectangle r1, r2;

 /* instantiate rectangles... */
 Rectangle_ctor(&r1, 0, 2, 10, 15);
 Rectangle_ctor(&r2, -1, 3, 5, 8);

 /* re-use inherited function from the superclass Shape... */
 Shape_moveBy((Shape *)&r1, -2, 3);
 Shape_moveBy(&r2->super, 2, -1);

As you can see, to call the inherited functions you need to either explicitly up-cast the first ”me” parameter
to the superclass (Shape *), or alternatively, you can avoid casting and take the address of the member
“super” (&r2->super).

NOTE: There are no additional costs to using the “inherited” functions for instances of the
subclasses. In other words, the cost of calling a function for an object of a subclass is exactly as
expensive as calling the same function for an object of the superclass. This overhead is also very
similar (identical really) as in C++.

5 of 13

https://state-machine.com/

Copyright © Quantum Leaps, LLC. All Rights Reserved.

Application Note
OOP in C

state-machine.com

4 Polymorphism (Virtual Functions)
Polymorphism is the ability to substitute objects of matching interfaces for one another at run-time. C++
implements polymorphism with virtual functions. In C, you can also implement virtual functions in a
number of ways [1,4,10]. The implementation presented here (and used in the QP/C and QP-nano real-time
frameworks) has very similar performance and memory overhead as virtual functions in C++ [4,7,8].

As an example of how virtual functions could be useful, consider again the Shape class introduced before.
This class could provide many more useful operations, such as area() (to let the shape compute its own
area) or draw() (to let the shape draw itself on the screen), etc. But the trouble is that the Shape class
cannot provide the actual implementation of such operations, because Shape is too abstract and doesn't
“know” how to calculate, say its own area. The computation will be very different for a Rectangle
subclass (width * height) than for the Circle subclass (pi * radius2).

However, this does not mean that Shape cannot provide at least the interface for the operations, like
Shape_area() or Shape_draw(), as follows:

 uint32_t Shape_area(Shape * const me);
 void Shape_draw(Shape * const me);

In fact, such an interface could be very useful, because it would allow you to write generic code to
manipulate shapes uniformly. For example, given such an interface, you will be able to write a generic
function to draw all shapes on the screen or to find the largest shape (with the largest area). This might
sound a bit theoretical at this point, but it will become more clear when you see the actual code later in
this Section.

Figure 3 Adding virtual functions area() and draw() to the Shape class and its subclasses

6 of 13

ctor(x, y, w, h)
area() : uint32_t
draw()

height : uint16_t
width : uint16_t

Rectangle

ctor(x, y)
moveBy(dx, dy)
area() : uint32_t
draw()

x : int16_t
y : int16_t

«abstract»
Shape

ctor(x, y, r)
area() : uint32_t
draw()

radius : uint16_t

Circle

virtual
functions

https://state-machine.com/
https://state-machine.com/qpn
https://state-machine.com/qpc

Copyright © Quantum Leaps, LLC. All Rights Reserved.

Application Note
OOP in C

state-machine.com

4.1 Virtual Table (vtbl) and Virtual Pointer (vptr)

By now it should be clear that a single virtual function, such as Shape_area(), can have many different
implementations in the subclasses of Shape. For example, the Rectangle subclass of Shape will have a
different way of calculating its area than the Circle subclass.

This means that a virtual function call cannot be resolved at link-time, as it is done for ordinary function
calls in C, because the actual version of the function to call depends on the type of the object
(Rectangle, Circle, etc.) So, instead the binding between the invocation of a virtual function and the
actual implementation must happen at run-time, which is called late binding (as opposed to the link-time
binding, which is also called early binding).

Practically all C++ compilers implement late binding by means of one Virtual Table (vtbl) per class and a
Virtual Pointer (vptr) per each object [4,7]. This method can be applied to C as well.

Virtual Table is a table of function pointers corresponding to the virtual functions introduced by the class.
In C, a Virtual Table can be emulated by a structure of pointers-to-functions, as follows:

Listing 7 Virtual Table for the Shape Class (see also Figure 3)

 struct ShapeVtbl {
 uint32_t (*area)(Shape * const me);
 void (*draw)(Shape * const me);
 };

Virtual Pointer (vptr) is a pointer to the Virtual Table of the class. This pointer must be present in every
instance (object) of the class, and so it must go into the attribute structure of the class. For example, here
is the attribute structure of the Shape class augmented with the vptr member added at the top:

Listing 8 Adding the Virtual Pointer (vptr) to the Shape class

/* Shape's attributes... */
struct ShapeVtbl; /* forward declaration */
typedef struct {
 struct ShapeVtbl const *vptr; /* <== Shape's Virtual Pointer */
 int16_t x; /* x-coordinate of Shape's position */
 int16_t y; /* y-coordinate of Shape's position */
} Shape;

The vptr is declared as pointer to an immutable object (see the const keyword in front of the *), because
the Virtual Table should not be changed and is, in fact, allocated in ROM.

The Virtual Pointer (vptr) is inherited by all subclasses, so the vptr of the Shape class will be
automatically available in all its subclasses, such as Rectangle, Circle, etc.

7 of 13

https://state-machine.com/

Copyright © Quantum Leaps, LLC. All Rights Reserved.

Application Note
OOP in C

state-machine.com

4.2 Setting the vptr in the Constructor

The Virtual Pointer (vptr) must be initialized to point to the corresponding Virtual Table (vtbl) in every
instance (object) of a class. The ideal place to perform such initialization is the class' constructor. In fact,
this is exactly where the C++ compilers generate an implicit initialization of the vptr.

In C, you need to initialize the vptr explicitly. Here is an example of setting up the vtbl and the
initialization of the vptr in the Shape's constructor:

Listing 9 Defining the Virtual Table and Initializing the Virtual Pointer (vptr) in the constructor

/* Shape class implementation of its virtual functions... */
static uint32_t Shape_area_(Shape * const me);
static void Shape_draw_(Shape * const me);

/* constructor */
void Shape_ctor(Shape * const me, int16_t x, int16_t y) {
 static struct ShapeVtbl const vtbl = { /* vtbl of the Shape class */
 &Shape_area_,
 &Shape_draw_
 };
 me->vptr = &vtbl; /* "hook" the vptr to the vtbl */

 me->x = x;
 me->y = y;
}

As you can see the vtbl is defined as both static and const, because you need only one instance of
vtbl per class and also the vtbl should go into ROM (in embedded systems).

The vtbl is initialized with pointer to functions that implement the corresponding operations. In this case,
the implementations are Shape_area_() and Shape_draw_() (please note the trailing underscores).

If a class cannot provide a reasonable implementation of some of its virtual functions (because this is an
abstract class, as Shape is), the implementations should assert internally. This way, you would know at
least at run-time, that an unimplemented (purely virtual) function has been called:

Listing 10 Defining purely virtual functions for the Shape class

/* Shape class implementations of its virtual functions... */
static uint32_t Shape_area_(Shape * const me) {
 ASSERT(0); /* purely-virtual function should never be called */
 return 0U; /* to avoid compiler warnings */
}

static void Shape_draw_(Shape * const me) {
 ASSERT(0); /* purely-virtual function should never be called */
}

8 of 13

https://state-machine.com/

Copyright © Quantum Leaps, LLC. All Rights Reserved.

Application Note
OOP in C

state-machine.com

4.3 Inheriting the vtbl and Overriding the vptr in the Subclasses

As mentioned before, if a superclass contains the vptr, it is inherited automatically by all the derived
subclasses at all levels of inheritance, so the technique of inheriting attributes (via the “super“ member)
works automatically for polymorphic classes.

However, the vptr typically needs to be re-assigned to the vtbl of the specific subclass. Again, this re-
assignment must happen in the subclass' constructor. For example, here is the constructor of the
Rectangle subclass of Shape:

Listing 11 Overriding the vtbl and vptr in the subclass Rectangle of the Shape superclass

/* Rectangle's class implementations of its virtual functions... */
static uint32_t Rectangle_area_(Shape * const me);
static void Rectangle_draw_(Shape * const me);

/* constructor */
void Rectangle_ctor(Rectangle * const me, int16_t x, int16_t y,
 uint16_t width, uint16_t height)
{
 static struct ShapeVtbl const vtbl = { /* vtbl of the Rectangle class */
 &Rectangle_area_,
 &Rectangle_draw_
 };
 Shape_ctor(&me->super, x, y); /* call the superclass' ctor */
 me->super.vptr = &vtbl; /* override the vptr */

 me->width = width;
 me->height = height;
}

Please note that the superclass' constructor (Shape_ctor()) is called first to initialize the me->super
member inherited from Shape. This constructor sets the vptr to point to the Shape's vtbl. However, the
vptr is overridden in the next statement, where it is assigned to the Rectangle's vtbl.

Please also note that the subclass' implementation of the virtual functions must precisely match the
signatures defined in the superclass in order to fit into the vtbl. For example, the implementation
Rectangle_area_() takes the pointer “me” of class Shape*, instead of its own class Rectangle*. The
actual implementation from the subclass must then perform an explicit downcast of the “me” pointer, as
illustrated below:

Listing 12 Explicit downcasting of the “me” pointer in the subclass' implementation

static uint32_t Rectangle_area_(Shape * const me) {
 Rectangle * const me_ = (Rectangle *)me; /* explicit downcast */
 return (uint32_t)me_->width * (uint32_t)me_->height;
}

NOTE: To simplify the discussion, Listing 11 shows the case where Rectangle does not introduce
any new virtual functions of its own. In this case, Rectangle can just re-use the ShapeVtbl “as is”.
However, it is also fairly straightforward to extend the implementation to the generic case where
Rectangle would introduce its own RectangleVtbl that would inherit ShapeVtbl.

9 of 13

https://state-machine.com/

Copyright © Quantum Leaps, LLC. All Rights Reserved.

Application Note
OOP in C

state-machine.com

4.4 Virtual Call (Late Binding)

With the infrastructure of Virtual Tables and Virtual Pointers in place, the virtual call (late binding) can be
realized as follows:

uint32_t Shape_area(Shape * const me) {
 return (*me->vptr->area)(me);
}

This function definition can be either placed in the .c file scope, but the downside is that you incur
additional function call overhead for every virtual call. To avoid this overhead, if your compiler supports in-
lining of functions (C99 standard), you can put the definition in the header file like this:

static inline uint32_t Shape_area(Shape * const me) {
 return (*me->vptr->area)(me);
}

Alternatively, for older compilers (C89) you can use function-like macro, like this:

#define Shape_area(me_) ((*(me_)->vptr->area)((me_)))

Either way, the virtual call works by first de-referencing the vtbl of the object to find the corresponding
vtbl, and only then calling the appropriate implementation from this vtbl via a pointer-to-function. The
figure below illustrates this process:

Figure 4 Virtual Call Mechanism for Rectangles and Circles

10 of 13

vptr

x

y

width

height

vptr

x

y

r

&Rectangle_area_

&Rectangle_draw_

&Circle_area_

&Circle_draw_

Rectangle object

Circle object

Rectangle vtbl

Circle vtbl

RAM ROM Code (ROM)

uint32_t Rectangle_area_(Shape *me) {
 return me->widtht * me->height;
}

void Rectangle_draw_(Shape *me) {
 . . .
}

uint32_t Circle_area_(Shape *me) {
 return (uint32_t)(pi * me->r * me->r);
}

void Circle_draw_(Shape *me) {
 . . .
}

https://state-machine.com/

Copyright © Quantum Leaps, LLC. All Rights Reserved.

Application Note
OOP in C

state-machine.com

4.5 Examples of Using Virtual Functions

As mentioned in the beginning of this section on polymorphism, virtual functions allow you to write generic
code that is very clean and independent on the specific implementation details for subclasses. Moreover,
the code automatically supports an open-ended number of sub-classes, which can be added long after
the generic code has been developed (and compiled!).

For example, the following code finds and returns the largest shape on the screen:

Shape const *largestShape(Shape const *shapes[], size_t nShapes) {
 Shape const *s = NULL;
 uint32_t max = 0U;
 size_t i;
 for (i = 0U; i < nShapes; ++i) {
 uint32_t area = Shape_area(shapes[i]); /* virtual call */
 if (area > max) {
 max = area;
 s = shape[i];
 }
 }
 return s; /* the largest shape in the array shapes[] */
}

Similarly, the following code will draw all Shapes on the screen:

void drawAllShapes(Shape const *shapes[], size_t nShapes) {
 size_t i;
 for (i = 0U; i < nShapes; ++i) {
 Shape_draw(shapes[i]); /* virtual call */
 }
}

5 Summary
OOP is a design method rather than the use of a particular language or a tool. This Application Note
described how to implement the concepts of encapsulation, (single) inheritance, and polymorphism in
portable ANSI-C. The first two of these concepts (classes and inheritance) turned out to be quite simple to
implement without adding any extra costs or overheads.

Polymorphism turned out to be quite involved, and if you intend to use it extensively, you would be
probably better off by switching to C++. However, if you build or use libraries (such as the QP/C and QP-
nano real-time frameworks), the complexities of the OOP in C can be confined to the library and can be
effectively hidden from the application developers.

11 of 13

https://state-machine.com/qpn
https://state-machine.com/qpn
https://state-machine.com/qpc
https://state-machine.com/

Copyright © Quantum Leaps, LLC. All Rights Reserved.

Application Note
OOP in C

state-machine.com

6 References
[1] Miro Samek, “Portable Inheritance and Polymorphism in C”, Embedded Systems Programming

December, 1997

[2] Miro Samek, “Practical Statecharts in C/C++”, CMP Books 2002, ISBN 978-1578201105

[3] Miro Samek, “Practical UML Statecharts in C/C++, 2nd Edition”, Newnes 2008, ISBN 978-
0750687065

[4] Dan Saks, “Virtual Functions in C”, “Programming Pointers” column August, 2012,
Embedded.com.

[5] Dan Saks, “Impure Thoughts”, “Programming Pointers” column September, 2012,
Embedded.com.

[6] Dan Saks, “Implementing a derived class vtbl in C”, “Programming Pointers” column February,
2013, Embedded.com.

[7] Stanley Lippman, “Inside the C++ Object Model”, Addison Wesley 1996, ISBN 0-201-83454-5

[8] Bruce Eckel, “Thinking in C++”, http://mindview.net/Books/TICPP/ThinkingInCPP2e.html

[9] StackOverflow: Object-Orientation in C, August 2011

[10] Axel-Tobias Schreiner, “Object-Oriented Programming in ANSI-C”, Hanser 1994, ISBN 3-446-
17426-5

12 of 13

https://state-machine.com/
http://stackoverflow.com/questions/415452/object-orientation-in-c
http://mindview.net/Books/TICPP/ThinkingInCPP2e.html

Copyright © Quantum Leaps, LLC. All Rights Reserved.

Application Note
OOP in C

state-machine.com

7 Contact Information

Quantum Leaps, LLC
103 Cobble Ridge Drive
Chapel Hill, NC 27516
USA

+1 919 360-5668
+1 919 869-2998 (FAX)

Email: info@state-machine.com
Web : http://www.state-machine.com/

“Practical UML Statecharts
in C/C++, Second Edition:
Event Driven
Programming for
Embedded Systems”,
by Miro Samek,
Newnes, 2008

13 of 13

https://state-machine.com/
http://www.state-machine.com/
mailto:info@state-machine.com

	1 Introduction
	2 Encapsulation
	3 Inheritance
	4 Polymorphism (Virtual Functions)
	4.1 Virtual Table (vtbl) and Virtual Pointer (vptr)
	4.2 Setting the vptr in the Constructor
	4.3 Inheriting the vtbl and Overriding the vptr in the Subclasses
	4.4 Virtual Call (Late Binding)
	4.5 Examples of Using Virtual Functions

	5 Summary
	6 References
	7 Contact Information

