
����������	

��
�
�����
����

�����������
���	���

�

C H A P T E R 1

Getting Started with UML State
Machines and Event-Driven

Programming

It is common sense to take a method and try it. If it fails, admit it frankly and try another. But above all,
try something.
—Franklin D. Roosevelt

This chapter presents an example project implemented entirely with UML state
machines and the event-driven paradigm. The example application is an interactive
“Fly ‘n’ Shoot”-type game, which I decided to include early in the book so that you can
start playing (literally) with the code as soon as possible. My aim in this chapter is
to show the essential elements of the method in a real, nontrivial program, but without
getting bogged down in details, rules, and exceptions. At this point, I am not trying
to be complete or even precise, although this example as well as all other examples in
the book is meant to show a good design and the recommended coding style. I don’t
assume that you know much about UML state machines, UML notation, or event-driven
programming. I will either briefly introduce the concepts, as needed, or refer you to
the later chapters of the book for more details.

The example “Fly ‘n’ Shoot” game is based on the Quickstart application provided in source
code with the Stellaris EV-LM3S811 evaluation kit from Luminary Micro [Luminary 06].
I was trying to make the “Fly ‘n’ Shoot” example behave quite similarly to the original
Luminary Micro Quickstart application so that you can directly compare the event-driven
approach with the traditional solution to essentially the same problem specification.

www.newnespress.com

1.1 Installing the Accompanying Code
The companion Website to this book at www.quantum-leaps.com/psicc2 contains the
self-extracting archive with the complete source code of the QP event-driven platform
and all executable examples described in this book; as well as documentation,
development tools, resources, and more. You can uncompress the archive into any
directory. The installation directory you choose will be referred henceforth as the QP
Root Directory <qp> .

NOTE

Although in the text I mostly concentrate on the C implementation, the accompanying Web-
site also contains the equivalent C++ version of virtually every element available in C. The
C++ code is organized in exactly the same directory tree as the corresponding C code, except
you need to look in the <qp>\qpcpp\. . . directory branch.

Specifically to the “Fly ‘n’ Shoot” example, the companion code contains two versions1

of the game. I provide a DOS version for the standard Windows-based PC (see
Figure 1.1) so that you don’t need any special embedded board to play the game and
experiment with the code.

NOTE

I’ve chosen the legacy 16-bit DOS platform because it allows programming a standard PC at
the bare-metal level. Without leaving your desktop, you can work with interrupts, directly
manipulate CPU registers, and directly access the I/O space. No other modern 32-bit devel-
opment environment for the standard PC allows this much so easily. The ubiquitous PC run-
ning under DOS (or a DOS console within any variant of Windows) is as close as it gets to
emulating embedded software development on the commodity 80x86 hardware. Addition-
ally, you can use free, mature tools, such as the Borland C/C++ compiler.

I also provide an embedded version for the inexpensive2 ARM Cortex-M3-based
Stellaris EV-LM3S811 evaluation kit (see Figure 1.2). Both the PC and Cortex-M3

1 The accompanying code actually contains many more versions of the “Fly ‘n’ Shoot” game, but they are
not relevant at this point.
2 At the time of this writing the EV-LM3S811 kit was available for $49 (www.luminarymicro.com).

www.newnespress.com

4 Chapter 1

http://www.quantum-leaps.com/psicc2
http://www.luminarymicro.com

versions use the exact same source code for all application components and differ only
in the Board Support Package (BSP).

1.2 Let’s Play
The following description of the “Fly ‘n’ Shoot” game serves the dual purpose of
explaining how to play the game and as the problem specification for the purpose of
designing and implementing the software later in the chapter. To accomplish these two
goals I need to be quite detailed, so please bear with me.

Your objective in the game is to navigate a spaceship through an endless horizontal
tunnel with mines. Any collision with the tunnel or the mine destroys the ship. You can
move the ship up and down with Up-arrow and Down-arrow keys on the PC (see
Figure 1.1) or via the potentiometer wheel on the EV-LM3S811 board (see Figure 1.2).
You can also fire a missile to destroy the mines in the tunnel by pressing the Spacebar
on the PC or the User button on the EV-LM3S811 board. Score accumulates for
survival (at the rate of 30 points per second) and destroying the mines. The game lasts
for only one ship.

The game starts in a demo mode, where the tunnel walls scroll at the normal pace
from right to left and the “Press Button” text flashes in the middle of the screen.
You need to generate the “fire missile” event for the game to begin (press Spacebar
on the PC or the User button on the EV-LM3S811 board).

You can have only one missile in flight at a time, so trying to fire a missile while it is
already flying has no effect. Hitting the tunnel wall with the missile brings you no
points, but you earn extra points for destroying the mines.

The game has two types of mines with different behavior. In the original Luminary
Quickstart application both types of mines behave the same, but I wanted to
demonstrate how state machines can elegantly handle differently behaving mines.

Mine type 1 is small, but can be destroyed by hitting any of its pixels with the missile.
You earn 25 points for destroying a mine type 1. Mine type 2 is bigger but is nastier
in that the missile can destroy it only by hitting its center, not any of the “tentacles.”
Of course, the ship is vulnerable to the whole mine. You earn 45 points for destroying
a mine type 2.

When you crash the ship, by either hitting a wall or a mine, the game ends and displays
the flashing “Game Over” text as well as your final score. After 5 seconds of flashing,

www.newnespress.com

5Getting Started with UML State Machines and Event-Driven Programming

the “Game Over” screen changes back to the demo screen, where the game waits to be
started again.

Additionally the application contains a screen saver because the OLED display of the
original EV-LM3S811 board has burn-in characteristics similar to a CRT. The screen
saver only becomes active if 20 seconds elapse in the demo mode without starting
the game (i.e., the screen saver never appears during game play). The screen saver is
a simple random pixel type rather than the “Game of Life” algorithm used in the
original Luminary Quickstart application. I’ve decided to simplify this aspect of the
implementation because the more elaborate pixel-mixing algorithm does not contribute
any new or interesting behavior.

After a minute of running the screen saver, the display turns blank and only a single
random pixel shows on the screen. Again, this is a little different from the original
Quickstart application, which instead blanks the screen and starts flashing the User
LED. I’ve changed this behavior because I have a better purpose for the User LED (to
visualize the activity of the idle loop).

Ship Missile
Mine

Type 1 Explosion
Mine

Type 2
Tunnel
wall

Figure 1.1: The “Fly ‘n’ Shoot” game running in a DOS window under Windows XP.

www.newnespress.com

6 Chapter 1

1.2.1 Running the DOS Version

The “Fly ‘n’ Shoot” sample code for the DOS version (in C) is located in the
<qp>\qpc\examples\80x86\dos\tcpp101\l\game\ directory, where <qp> stands
for the installation directory in which you chose to install the accompanying software.

The compiled executable is provided, so you can run the game on any Windows-based
PC by simply double-clicking the executable game.exe located in the directory
<qp>\qpc\examples\80x86\dos\tcpp101\l\game\dbg\. The first screen you
see is the game running in the demo mode with the text “Push Button” flashing in
the middle of the display. At the top of the display you see a legend of keystrokes
recognized by the application. You need to hit the SPACEBAR to start playing the game.
Press the ESC key to cleanly exit the application.

If you run “Fly ‘n’ Shoot” in a window under Microsoft Windows, the animation effects in
the game might appear a little jumpy, especially compared to the Stellaris version of the
same game. You can make the application execute significantly more smoothly if you
switch to the full-screen mode by pressing and holding the Alt key and then pressing the
Enter key. You go back to the window mode via the same Alt-Enter key combination.

As you can see in Figure 1.1, the DOS version uses simply the standard VGA text mode
to emulate the OLED display of the EV-LM3S811 board. The lower part of the DOS screen

User
Switch

96 x 16
OLED Display

LM3S811
Cortex-M3 MCU

USB Cable
to PC

User
LED

Power
LED

Potentiometer
Wheel

LMI FTDI
Debugger

Reset
Switch

Figure 1.2: The “Fly ‘n’ Shoot” game running on the Stellaris EV-LM3S811
evaluation board.

www.newnespress.com

7Getting Started with UML State Machines and Event-Driven Programming

is used as a matrix of 80 � 16 character-wide “pixels,” which is a little less than the 96 � 16
pixels of the OLED display but still good enough to play the game. I specifically avoid
employing any fancier graphics in this early example because I have bigger fish to fry for
you than to worry about the irrelevant complexities of programming graphics.

My main goal is to make it easy for you to understand the event-driven code and
experiment with it. To this end, I chose the legacy Borland Turbo C++ 1.01 toolset to
build this example as well as several other examples in this book. Even though Turbo
C++ 1.01 is an older compiler, it is adequate to demonstrate all features of both the
C and C++ versions. Best of all, it is available for a free download from the Borland
“Museum” at http://bdn.borland.com/article/0,1410,21751,00.html.

The toolset is very easy to install. After you download the Turbo C++ 1.01 files directly
from Borland, you need to unzip the files onto your hard drive. Then you run the
INSTALL.EXE program and follow the installation instructions it provides.

NOTE

I strongly recommend that you install the Turbo C++ 1.01 toolset into the directory
C:\tools\tcpp101\. That way you will be able to directly use the provided project files
and make scripts.

Perhaps the easiest way to experiment with the “Fly ‘n’ Shoot” code is to launch the Turbo
C++ IDE (TC.EXE) and open the provided project file GAME-DBG.PRJ, which is located
in the directory <qp>\qpc\examples\80x86\dos\tcpp101\l\game\. You can
modify, recompile, execute, and debug the program directly from the IDE. However, you
should avoid terminating the program stopped in the debugger, because this will not restore
the standard DOS interrupt vectors for the time tick and keyboard interrupts. You should
always cleanly exit the application by letting it freely run and pressing the Esc key.

The next section briefly describes how to run the embedded version of the game. If you
are not interested in the Cortex-M3 version, feel free to skip to Section 1.3, where I start
explaining the application code.

1.2.2 Running the Stellaris Version

In contrast to the “Fly ‘n’ Shoot” version for DOS running in the ancient real mode of
the 80x86 processor, the exact same source code runs on one of the most modern
processors in the industry: the ARM Cortex-M3.

www.newnespress.com

8 Chapter 1

http://bdn.borland.com/article/0,1410,21751,00.html

The sample code for the Stellaris EV-LM3S811 board is located in the
<qp>\qpc\examples\cortex-m3\vanilla\iar\game-ev-lm3s811\ directory,
where <qp> stands for the root directory in which you chose to install the
accompanying software.

The code for the Stellaris kit has been compiled with the 32KB-limited Kickstart edition
of the IAR Embedded Workbench for ARM (IAR EWARM) v 5.11, which is provided
with the Stellaris EV-LM3S811 kit. You can also download this software free of charge
directly from IAR Systems (www.iar.com) after filling out an online registration.

The installation of IAR EWARM is quite straightforward, since the software comes
with the installation utility. You also need to install the USB drivers for the hardware
debugger built into the EV-LM3S811 board, as described in the documentation of
the Stellaris EV-LM3S811 kit.

NOTE

I strongly recommend that you install the IAR EWARM toolset into the directory C:\tools
\iar\arm_ks_5.11. That way you will be able to directly use the provided EWARM work-
space files and make scripts.

Before you program the “Fly ‘n’ Shoot” game to the EV-LM3S811 board, you might
want to play a little with the original Quickstart application that comes preprogrammed
with the EV-LM3S811 kit.

To program the “Fly ‘n’ Shoot” game to the Flash memory of the EV-LM3S811 board,
you first connect the EV-LM3S811 board to your PC with the USB cable provided in the
kit and make sure that the Power LED is on (see Figure 1.2). Next, you need to launch the
IAR Embedded Workbench and open the workspace game-ev-lm3s811.eww located
in the <qp>\qpc\examples\cortex-m3\vanilla\iar\game-ev-lm3s811\
directory. At this point your screen should look similar to the screenshot shown in
Figure 1.3.

The game-ev-lm3s811 project is set up to use the LMI FTDI debugger, which is the
piece of hardware integrated on the EV-LM3S811 board (see Figure 1.2). You can
verify this setup by opening the “Options” dialog box via the Project | Options menu.
Within the “Options” dialog box, you need to select the Debugger category in the panel
on the left. While you’re at it, you could also verify that the Flash loading is enabled
by selecting the “Download” tab. The checked “Use flash loader(s)” check box means

www.newnespress.com

9Getting Started with UML State Machines and Event-Driven Programming

http://www.iar.com

that the Flash loader application provided by IAR will be first loaded to the RAM of the
MCU, and this application will program the Flash with the image of your application.

To start the Flash programming process, select the Project | Debug menu, or simply
click the Debug button (see Figure 1.3) in the toolbar. The IAR Workbench should
respond by showing the Flash programming progress bar for several seconds, as shown
in Figure 1.3. Once the Flash programming completes, the IAR EWARM switches to
the IAR C-Spy debugger and the program should stop at the entry to main(). You can
start playing the game either by clicking the Go button in the debugger or you can
close the debugger and reset the board by pressing the Reset button. Either way, the
“Fly ‘n’ Shoot” game is now permanently programmed into the EV-LM3S811 board
and will start automatically on every powerup.

Build Configuration
Selection

QP Libraries

Application Sources

Debug
Button

Flash Programming
Progress

Figure 1.3: Loading the “Fly ‘n’ Shoot” game into the flash of LM3S811 MCU
with IAR EWARM IDE.

www.newnespress.com

10 Chapter 1

	PSiCC2.pdf
	Cover

